本文整理汇总了C++中CompilerType::GetBitSize方法的典型用法代码示例。如果您正苦于以下问题:C++ CompilerType::GetBitSize方法的具体用法?C++ CompilerType::GetBitSize怎么用?C++ CompilerType::GetBitSize使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CompilerType
的用法示例。
在下文中一共展示了CompilerType::GetBitSize方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: GetChildAtIndex
ValueObjectSP BitsetFrontEnd::GetChildAtIndex(size_t idx) {
if (idx >= m_elements.size() || !m_first)
return ValueObjectSP();
if (m_elements[idx])
return m_elements[idx];
ExecutionContext ctx = m_backend.GetExecutionContextRef().Lock(false);
CompilerType type;
ValueObjectSP chunk;
// For small bitsets __first_ is not an array, but a plain size_t.
if (m_first->GetCompilerType().IsArrayType(&type, nullptr, nullptr)) {
llvm::Optional<uint64_t> bit_size =
type.GetBitSize(ctx.GetBestExecutionContextScope());
if (!bit_size || *bit_size == 0)
return {};
chunk = m_first->GetChildAtIndex(idx / *bit_size, true);
} else {
type = m_first->GetCompilerType();
chunk = m_first;
}
if (!type || !chunk)
return {};
llvm::Optional<uint64_t> bit_size =
type.GetBitSize(ctx.GetBestExecutionContextScope());
if (!bit_size || *bit_size == 0)
return {};
size_t chunk_idx = idx % *bit_size;
uint8_t value = !!(chunk->GetValueAsUnsigned(0) & (uint64_t(1) << chunk_idx));
DataExtractor data(&value, sizeof(value), m_byte_order, m_byte_size);
m_elements[idx] = CreateValueObjectFromData(llvm::formatv("[{0}]", idx).str(),
data, ctx, m_bool_type);
return m_elements[idx];
}
示例2: exe_ctx
ValueObjectSP
ABISysV_mips::GetReturnValueObjectImpl (Thread &thread, CompilerType &return_clang_type) const
{
ValueObjectSP return_valobj_sp;
Value value;
if (!return_clang_type)
return return_valobj_sp;
ExecutionContext exe_ctx (thread.shared_from_this());
if (exe_ctx.GetTargetPtr() == NULL || exe_ctx.GetProcessPtr() == NULL)
return return_valobj_sp;
value.SetCompilerType(return_clang_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
bool is_signed = false;
bool is_complex = false;
uint32_t count = 0;
// In MIPS register "r2" (v0) holds the integer function return values
const RegisterInfo *r2_reg_info = reg_ctx->GetRegisterInfoByName("r2", 0);
size_t bit_width = return_clang_type.GetBitSize(&thread);
if (return_clang_type.IsIntegerType (is_signed))
{
switch (bit_width)
{
default:
return return_valobj_sp;
case 64:
{
const RegisterInfo *r3_reg_info = reg_ctx->GetRegisterInfoByName("r3", 0);
uint64_t raw_value;
raw_value = reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX;
raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(r3_reg_info, 0) & UINT32_MAX)) << 32;
if (is_signed)
value.GetScalar() = (int64_t)raw_value;
else
value.GetScalar() = (uint64_t)raw_value;
}
break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX);
else
value.GetScalar() = (uint32_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT16_MAX);
else
value.GetScalar() = (uint16_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT16_MAX);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT8_MAX);
else
value.GetScalar() = (uint8_t)(reg_ctx->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT8_MAX);
break;
}
}
else if (return_clang_type.IsPointerType ())
{
uint32_t ptr = thread.GetRegisterContext()->ReadRegisterAsUnsigned(r2_reg_info, 0) & UINT32_MAX;
value.GetScalar() = ptr;
}
else if (return_clang_type.IsAggregateType ())
{
// Structure/Vector is always passed in memory and pointer to that memory is passed in r2.
uint64_t mem_address = reg_ctx->ReadRegisterAsUnsigned(reg_ctx->GetRegisterInfoByName("r2", 0), 0);
// We have got the address. Create a memory object out of it
return_valobj_sp = ValueObjectMemory::Create (&thread,
"",
Address (mem_address, NULL),
return_clang_type);
return return_valobj_sp;
}
else if (return_clang_type.IsFloatingPointType (count, is_complex))
{
const RegisterInfo *f0_info = reg_ctx->GetRegisterInfoByName("f0", 0);
const RegisterInfo *f1_info = reg_ctx->GetRegisterInfoByName("f1", 0);
if (count == 1 && !is_complex)
{
switch (bit_width)
{
default:
return return_valobj_sp;
case 64:
{
static_assert(sizeof(double) == sizeof(uint64_t), "");
uint64_t raw_value;
raw_value = reg_ctx->ReadRegisterAsUnsigned(f0_info, 0) & UINT32_MAX;
raw_value |= ((uint64_t)(reg_ctx->ReadRegisterAsUnsigned(f1_info, 0) & UINT32_MAX)) << 32;
value.GetScalar() = *reinterpret_cast<double*>(&raw_value);
break;
//.........这里部分代码省略.........
示例3: exe_ctx
ValueObjectSP ABISysV_ppc64::GetReturnValueObjectImpl(
Thread &thread, CompilerType &return_compiler_type) const {
ValueObjectSP return_valobj_sp;
if (!return_compiler_type)
return return_valobj_sp;
ExecutionContext exe_ctx(thread.shared_from_this());
return_valobj_sp = GetReturnValueObjectSimple(thread, return_compiler_type);
if (return_valobj_sp)
return return_valobj_sp;
RegisterContextSP reg_ctx_sp = thread.GetRegisterContext();
if (!reg_ctx_sp)
return return_valobj_sp;
const size_t bit_width = return_compiler_type.GetBitSize(&thread);
if (return_compiler_type.IsAggregateType()) {
Target *target = exe_ctx.GetTargetPtr();
bool is_memory = true;
if (bit_width <= 128) {
ByteOrder target_byte_order = target->GetArchitecture().GetByteOrder();
DataBufferSP data_sp(new DataBufferHeap(16, 0));
DataExtractor return_ext(data_sp, target_byte_order,
target->GetArchitecture().GetAddressByteSize());
const RegisterInfo *r3_info = reg_ctx_sp->GetRegisterInfoByName("r3", 0);
const RegisterInfo *rdx_info =
reg_ctx_sp->GetRegisterInfoByName("rdx", 0);
RegisterValue r3_value, rdx_value;
reg_ctx_sp->ReadRegister(r3_info, r3_value);
reg_ctx_sp->ReadRegister(rdx_info, rdx_value);
DataExtractor r3_data, rdx_data;
r3_value.GetData(r3_data);
rdx_value.GetData(rdx_data);
uint32_t fp_bytes =
0; // Tracks how much of the xmm registers we've consumed so far
uint32_t integer_bytes =
0; // Tracks how much of the r3/rds registers we've consumed so far
const uint32_t num_children = return_compiler_type.GetNumFields();
// Since we are in the small struct regime, assume we are not in memory.
is_memory = false;
for (uint32_t idx = 0; idx < num_children; idx++) {
std::string name;
uint64_t field_bit_offset = 0;
bool is_signed;
bool is_complex;
uint32_t count;
CompilerType field_compiler_type = return_compiler_type.GetFieldAtIndex(
idx, name, &field_bit_offset, nullptr, nullptr);
const size_t field_bit_width = field_compiler_type.GetBitSize(&thread);
// If there are any unaligned fields, this is stored in memory.
if (field_bit_offset % field_bit_width != 0) {
is_memory = true;
break;
}
uint32_t field_byte_width = field_bit_width / 8;
uint32_t field_byte_offset = field_bit_offset / 8;
DataExtractor *copy_from_extractor = nullptr;
uint32_t copy_from_offset = 0;
if (field_compiler_type.IsIntegerOrEnumerationType(is_signed) ||
field_compiler_type.IsPointerType()) {
if (integer_bytes < 8) {
if (integer_bytes + field_byte_width <= 8) {
// This is in RAX, copy from register to our result structure:
copy_from_extractor = &r3_data;
copy_from_offset = integer_bytes;
integer_bytes += field_byte_width;
} else {
// The next field wouldn't fit in the remaining space, so we
// pushed it to rdx.
copy_from_extractor = &rdx_data;
copy_from_offset = 0;
integer_bytes = 8 + field_byte_width;
}
} else if (integer_bytes + field_byte_width <= 16) {
copy_from_extractor = &rdx_data;
copy_from_offset = integer_bytes - 8;
integer_bytes += field_byte_width;
} else {
// The last field didn't fit. I can't see how that would happen w/o
// the overall size being
// greater than 16 bytes. For now, return a nullptr return value
// object.
return return_valobj_sp;
}
} else if (field_compiler_type.IsFloatingPointType(count, is_complex)) {
// Structs with long doubles are always passed in memory.
//.........这里部分代码省略.........
示例4: if
ValueObjectSP
ABIMacOSX_i386::GetReturnValueObjectImpl (Thread &thread,
CompilerType &compiler_type) const
{
Value value;
ValueObjectSP return_valobj_sp;
if (!compiler_type)
return return_valobj_sp;
//value.SetContext (Value::eContextTypeClangType, compiler_type.GetOpaqueQualType());
value.SetCompilerType (compiler_type);
RegisterContext *reg_ctx = thread.GetRegisterContext().get();
if (!reg_ctx)
return return_valobj_sp;
bool is_signed;
if (compiler_type.IsIntegerType (is_signed))
{
size_t bit_width = compiler_type.GetBitSize(&thread);
unsigned eax_id = reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
unsigned edx_id = reg_ctx->GetRegisterInfoByName("edx", 0)->kinds[eRegisterKindLLDB];
switch (bit_width)
{
default:
case 128:
// Scalar can't hold 128-bit literals, so we don't handle this
return return_valobj_sp;
case 64:
uint64_t raw_value;
raw_value = thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff;
raw_value |= (thread.GetRegisterContext()->ReadRegisterAsUnsigned(edx_id, 0) & 0xffffffff) << 32;
if (is_signed)
value.GetScalar() = (int64_t)raw_value;
else
value.GetScalar() = (uint64_t)raw_value;
break;
case 32:
if (is_signed)
value.GetScalar() = (int32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff);
else
value.GetScalar() = (uint32_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff);
break;
case 16:
if (is_signed)
value.GetScalar() = (int16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffff);
else
value.GetScalar() = (uint16_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffff);
break;
case 8:
if (is_signed)
value.GetScalar() = (int8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xff);
else
value.GetScalar() = (uint8_t)(thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xff);
break;
}
}
else if (compiler_type.IsPointerType ())
{
unsigned eax_id = reg_ctx->GetRegisterInfoByName("eax", 0)->kinds[eRegisterKindLLDB];
uint32_t ptr = thread.GetRegisterContext()->ReadRegisterAsUnsigned(eax_id, 0) & 0xffffffff;
value.GetScalar() = ptr;
}
else
{
// not handled yet
return return_valobj_sp;
}
// If we get here, we have a valid Value, so make our ValueObject out of it:
return_valobj_sp = ValueObjectConstResult::Create(thread.GetStackFrameAtIndex(0).get(),
value,
ConstString(""));
return return_valobj_sp;
}