本文整理汇总了C++中CodeGenTypes类的典型用法代码示例。如果您正苦于以下问题:C++ CodeGenTypes类的具体用法?C++ CodeGenTypes怎么用?C++ CodeGenTypes使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了CodeGenTypes类的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Types
CGRecordLowering::CGRecordLowering(CodeGenTypes &Types, const RecordDecl *D,
bool Packed)
: Types(Types), Context(Types.getContext()), D(D),
RD(dyn_cast<CXXRecordDecl>(D)),
Layout(Types.getContext().getASTRecordLayout(D)),
DataLayout(Types.getDataLayout()), IsZeroInitializable(true),
IsZeroInitializableAsBase(true), Packed(Packed) {}
示例2: MakeInfo
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
const FieldDecl *FD,
uint64_t Offset, uint64_t Size,
uint64_t StorageSize,
uint64_t StorageAlignment) {
llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
CharUnits TypeSizeInBytes =
CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
if (Size > TypeSizeInBits) {
// We have a wide bit-field. The extra bits are only used for padding, so
// if we have a bitfield of type T, with size N:
//
// T t : N;
//
// We can just assume that it's:
//
// T t : sizeof(T);
//
Size = TypeSizeInBits;
}
// Reverse the bit offsets for big endian machines. Because we represent
// a bitfield as a single large integer load, we can imagine the bits
// counting from the most-significant-bit instead of the
// least-significant-bit.
if (Types.getDataLayout().isBigEndian()) {
Offset = StorageSize - (Offset + Size);
}
return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
}
示例3: isSafeToConvert
/// isSafeToConvert - Return true if it is safe to convert the specified record
/// decl to IR and lay it out, false if doing so would cause us to get into a
/// recursive compilation mess.
static bool isSafeToConvert(const RecordDecl *RD, CodeGenTypes &CGT) {
// If no structs are being laid out, we can certainly do this one.
if (CGT.noRecordsBeingLaidOut()) return true;
llvm::SmallPtrSet<const RecordDecl*, 16> AlreadyChecked;
return isSafeToConvert(RD, CGT, AlreadyChecked);
}
示例4: ComputeBitFieldInfo
static CGBitFieldInfo ComputeBitFieldInfo(CodeGenTypes &Types,
const FieldDecl *FD,
uint64_t FieldOffset,
uint64_t FieldSize) {
const llvm::Type *Ty = Types.ConvertTypeForMemRecursive(FD->getType());
uint64_t TypeSizeInBytes = Types.getTargetData().getTypeAllocSize(Ty);
uint64_t TypeSizeInBits = TypeSizeInBytes * 8;
unsigned StartBit = FieldOffset % TypeSizeInBits;
bool IsSigned = FD->getType()->isSignedIntegerType();
// The current policy is to always access the bit-field using the source type
// of the bit-field. With the C bit-field rules, this implies that we always
// use either one or two accesses, and two accesses can only occur with a
// packed structure when the bit-field straddles an alignment boundary.
CGBitFieldInfo::AccessInfo Components[2];
unsigned LowBits = std::min(FieldSize, TypeSizeInBits - StartBit);
bool NeedsHighAccess = LowBits != FieldSize;
unsigned NumComponents = 1 + NeedsHighAccess;
// FIXME: This access policy is probably wrong on big-endian systems.
CGBitFieldInfo::AccessInfo &LowAccess = Components[0];
LowAccess.FieldIndex = 0;
LowAccess.FieldByteOffset =
TypeSizeInBytes * ((FieldOffset / 8) / TypeSizeInBytes);
LowAccess.FieldBitStart = StartBit;
LowAccess.AccessWidth = TypeSizeInBits;
// FIXME: This might be wrong!
LowAccess.AccessAlignment = 0;
LowAccess.TargetBitOffset = 0;
LowAccess.TargetBitWidth = LowBits;
if (NeedsHighAccess) {
CGBitFieldInfo::AccessInfo &HighAccess = Components[1];
HighAccess.FieldIndex = 0;
HighAccess.FieldByteOffset = LowAccess.FieldByteOffset + TypeSizeInBytes;
HighAccess.FieldBitStart = 0;
HighAccess.AccessWidth = TypeSizeInBits;
// FIXME: This might be wrong!
HighAccess.AccessAlignment = 0;
HighAccess.TargetBitOffset = LowBits;
HighAccess.TargetBitWidth = FieldSize - LowBits;
}
return CGBitFieldInfo(FieldSize, NumComponents, Components, IsSigned);
}
示例5: MakeInfo
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
const FieldDecl *FD,
uint64_t Offset, uint64_t Size,
uint64_t StorageSize,
CharUnits StorageOffset) {
// This function is vestigial from CGRecordLayoutBuilder days but is still
// used in GCObjCRuntime.cpp. That usage has a "fixme" attached to it that
// when addressed will allow for the removal of this function.
llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
CharUnits TypeSizeInBytes =
CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
if (Size > TypeSizeInBits) {
// We have a wide bit-field. The extra bits are only used for padding, so
// if we have a bitfield of type T, with size N:
//
// T t : N;
//
// We can just assume that it's:
//
// T t : sizeof(T);
//
Size = TypeSizeInBits;
}
// Reverse the bit offsets for big endian machines. Because we represent
// a bitfield as a single large integer load, we can imagine the bits
// counting from the most-significant-bit instead of the
// least-significant-bit.
if (Types.getDataLayout().isBigEndian()) {
Offset = StorageSize - (Offset + Size);
}
return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageOffset);
}
示例6: isSafeToConvert
/// isSafeToConvert - Return true if it is safe to convert this field type,
/// which requires the structure elements contained by-value to all be
/// recursively safe to convert.
static bool
isSafeToConvert(QualType T, CodeGenTypes &CGT,
llvm::SmallPtrSet<const RecordDecl*, 16> &AlreadyChecked) {
// Strip off atomic type sugar.
if (const auto *AT = T->getAs<AtomicType>())
T = AT->getValueType();
// If this is a record, check it.
if (const auto *RT = T->getAs<RecordType>())
return isSafeToConvert(RT->getDecl(), CGT, AlreadyChecked);
// If this is an array, check the elements, which are embedded inline.
if (const auto *AT = CGT.getContext().getAsArrayType(T))
return isSafeToConvert(AT->getElementType(), CGT, AlreadyChecked);
// Otherwise, there is no concern about transforming this. We only care about
// things that are contained by-value in a structure that can have another
// structure as a member.
return true;
}
示例7: MakeInfo
CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
const FieldDecl *FD,
uint64_t FieldOffset,
uint64_t FieldSize,
uint64_t ContainingTypeSizeInBits,
unsigned ContainingTypeAlign) {
llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
CharUnits TypeSizeInBytes =
CharUnits::fromQuantity(Types.getTargetData().getTypeAllocSize(Ty));
uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
if (FieldSize > TypeSizeInBits) {
// We have a wide bit-field. The extra bits are only used for padding, so
// if we have a bitfield of type T, with size N:
//
// T t : N;
//
// We can just assume that it's:
//
// T t : sizeof(T);
//
FieldSize = TypeSizeInBits;
}
// in big-endian machines the first fields are in higher bit positions,
// so revert the offset. The byte offsets are reversed(back) later.
if (Types.getTargetData().isBigEndian()) {
FieldOffset = ((ContainingTypeSizeInBits)-FieldOffset-FieldSize);
}
// Compute the access components. The policy we use is to start by attempting
// to access using the width of the bit-field type itself and to always access
// at aligned indices of that type. If such an access would fail because it
// extends past the bound of the type, then we reduce size to the next smaller
// power of two and retry. The current algorithm assumes pow2 sized types,
// although this is easy to fix.
//
assert(llvm::isPowerOf2_32(TypeSizeInBits) && "Unexpected type size!");
CGBitFieldInfo::AccessInfo Components[3];
unsigned NumComponents = 0;
unsigned AccessedTargetBits = 0; // The number of target bits accessed.
unsigned AccessWidth = TypeSizeInBits; // The current access width to attempt.
// If requested, widen the initial bit-field access to be register sized. The
// theory is that this is most likely to allow multiple accesses into the same
// structure to be coalesced, and that the backend should be smart enough to
// narrow the store if no coalescing is ever done.
//
// The subsequent code will handle align these access to common boundaries and
// guaranteeing that we do not access past the end of the structure.
if (Types.getCodeGenOpts().UseRegisterSizedBitfieldAccess) {
if (AccessWidth < Types.getTarget().getRegisterWidth())
AccessWidth = Types.getTarget().getRegisterWidth();
}
// Round down from the field offset to find the first access position that is
// at an aligned offset of the initial access type.
uint64_t AccessStart = FieldOffset - (FieldOffset % AccessWidth);
// Adjust initial access size to fit within record.
while (AccessWidth > Types.getTarget().getCharWidth() &&
AccessStart + AccessWidth > ContainingTypeSizeInBits) {
AccessWidth >>= 1;
AccessStart = FieldOffset - (FieldOffset % AccessWidth);
}
while (AccessedTargetBits < FieldSize) {
// Check that we can access using a type of this size, without reading off
// the end of the structure. This can occur with packed structures and
// -fno-bitfield-type-align, for example.
if (AccessStart + AccessWidth > ContainingTypeSizeInBits) {
// If so, reduce access size to the next smaller power-of-two and retry.
AccessWidth >>= 1;
assert(AccessWidth >= Types.getTarget().getCharWidth()
&& "Cannot access under byte size!");
continue;
}
// Otherwise, add an access component.
// First, compute the bits inside this access which are part of the
// target. We are reading bits [AccessStart, AccessStart + AccessWidth); the
// intersection with [FieldOffset, FieldOffset + FieldSize) gives the bits
// in the target that we are reading.
assert(FieldOffset < AccessStart + AccessWidth && "Invalid access start!");
assert(AccessStart < FieldOffset + FieldSize && "Invalid access start!");
uint64_t AccessBitsInFieldStart = std::max(AccessStart, FieldOffset);
uint64_t AccessBitsInFieldSize =
std::min(AccessWidth + AccessStart,
FieldOffset + FieldSize) - AccessBitsInFieldStart;
assert(NumComponents < 3 && "Unexpected number of components!");
CGBitFieldInfo::AccessInfo &AI = Components[NumComponents++];
AI.FieldIndex = 0;
// FIXME: We still follow the old access pattern of only using the field
// byte offset. We should switch this once we fix the struct layout to be
// pretty.
//.........这里部分代码省略.........