本文整理汇总了C++中COutput::SetBaselineResult_Files_FEM方法的典型用法代码示例。如果您正苦于以下问题:C++ COutput::SetBaselineResult_Files_FEM方法的具体用法?C++ COutput::SetBaselineResult_Files_FEM怎么用?C++ COutput::SetBaselineResult_Files_FEM使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类COutput
的用法示例。
在下文中一共展示了COutput::SetBaselineResult_Files_FEM方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: main
//.........这里部分代码省略.........
Physical_t = (iExtIter+1)*Physical_dt;
if (Physical_t >= config_container[ZONE_0]->GetTotal_UnstTime())
StopCalc = true;
if ((iExtIter+1 == config_container[ZONE_0]->GetnExtIter()) ||
((iExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq() == 0) && (iExtIter != 0) &&
!(config_container[ZONE_0]->GetUnsteady_Simulation() == TIME_STEPPING)) ||
(StopCalc) ||
((config_container[ZONE_0]->GetUnsteady_Simulation() == TIME_STEPPING) &&
((iExtIter == 0) || (iExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0)))) {
/*--- Read in the restart file for this time step ---*/
for (iZone = 0; iZone < nZone; iZone++) {
/*--- Set the current iteration number in the config class. ---*/
config_container[iZone]->SetExtIter(iExtIter);
/*--- Either instantiate the solution class or load a restart file. ---*/
if (SolutionInstantiated[iZone] == false &&
(iExtIter == 0 ||
(config_container[ZONE_0]->GetRestart() && ((long)iExtIter == config_container[ZONE_0]->GetUnst_RestartIter() ||
iExtIter % config_container[ZONE_0]->GetWrt_Sol_Freq_DualTime() == 0 ||
iExtIter+1 == config_container[ZONE_0]->GetnExtIter())))) {
solver_container[iZone][INST_0] = new CBaselineSolver_FEM(geometry_container[iZone][INST_0], config_container[iZone]);
SolutionInstantiated[iZone] = true;
}
solver_container[iZone][INST_0]->LoadRestart(&geometry_container[iZone][INST_0], &solver_container[iZone],
config_container[iZone], (int)iExtIter, true);
}
if (rank == MASTER_NODE)
cout << "Writing the volume solution for time step " << iExtIter << "." << endl;
output->SetBaselineResult_Files_FEM(solver_container, geometry_container, config_container, iExtIter, nZone);
}
iExtIter++;
if (StopCalc) break;
}
} else {
/*--- Steady simulation: merge the single solution file. ---*/
for (iZone = 0; iZone < nZone; iZone++) {
/*--- Definition of the solution class ---*/
solver_container[iZone][INST_0] = new CBaselineSolver_FEM(geometry_container[iZone][INST_0], config_container[iZone]);
solver_container[iZone][INST_0]->LoadRestart(&geometry_container[iZone][INST_0], &solver_container[iZone], config_container[iZone], SU2_TYPE::Int(MESH_0), true);
}
output->SetBaselineResult_Files_FEM(solver_container, geometry_container, config_container, 0, nZone);
}
}
else {
if (config_container[ZONE_0]->GetWrt_Unsteady()) {
/*--- Unsteady simulation: merge all unsteady time steps. First,
find the frequency and total number of files to write. ---*/
su2double Physical_dt, Physical_t;
unsigned long iExtIter = 0;
bool StopCalc = false;
bool *SolutionInstantiated = new bool[nZone];