本文整理汇总了C++中CLWrapper类的典型用法代码示例。如果您正苦于以下问题:C++ CLWrapper类的具体用法?C++ CLWrapper怎么用?C++ CLWrapper使用的例子?那么, 这里精选的类代码示例或许可以为您提供帮助。
在下文中一共展示了CLWrapper类的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: TEST
TEST(testcopybuffer, throwsifnotondevice) {
if(!EasyCL::isOpenCLAvailable()) {
cout << "opencl library not found" << endl;
exit(-1);
}
cout << "found opencl library" << endl;
EasyCL *cl = EasyCL::createForFirstGpuOtherwiseCpu();
//CLKernel *kernel = cl->buildKernel("testeasycl.cl", "test");
const int bufferSize = 100 * 1024 / 4;
float *in = new float[bufferSize];
float *in2 = new float[bufferSize];
for(int i = 0; i < bufferSize; i++) {
in[i] = i * 3;
in2[i] = 23 + i;
}
CLWrapper *inwrapper = cl->wrap(bufferSize, in);
CLWrapper *in2wrapper = cl->wrap(bufferSize, in2);
inwrapper->copyToDevice();
// in2wrapper->copyToDevice();
bool threw = false;
try {
inwrapper->copyTo(in2wrapper);
} catch(runtime_error &e) {
threw = true;
}
EXPECT_TRUE(threw);
delete cl;
}
示例2: copy
void CopyBuffer::copy( EasyCL *cl, CLWrapper *sourceWrapper, int *target ) {
// first we will copy it to another buffer, so we can copy it out
int bufferSize = sourceWrapper->size();
// float *copiedBuffer = new float[ bufferSize ];
CLWrapper *targetWrapper = cl->wrap( bufferSize, target );
targetWrapper->createOnDevice();
// now copy it, via a kernel
const string kernelSource = "\n"
"kernel void copy( int N, global int const *source, global int *dest ) {\n"
" #define globalId ( get_global_id(0) )\n"
" if( (int)globalId < N ) {\n"
" dest[globalId] = source[globalId];\n"
" }\n"
" }\n";
CLKernel *kernel = cl->buildKernelFromString( kernelSource, "copy", "" );
kernel->in( bufferSize )->in( sourceWrapper )->out( targetWrapper );
int workgroupSize = 32;
int numWorkgroups = ( bufferSize + workgroupSize - 1 ) / workgroupSize;
kernel->run_1d( numWorkgroups * workgroupSize, workgroupSize );
cl->finish();
targetWrapper->copyToHost();
delete targetWrapper;
delete kernel;
// delete[] copiedBuffer;
}
示例3: TEST
TEST( SLOW_testintwrapper_huge, testreadwrite ) {
EasyCL *cl = EasyCL::createForFirstGpuOtherwiseCpu();
CLKernel *kernel = cl->buildKernel("testeasycl.cl", "test_stress");
const int N = 1000000;
int *in = new int[N];
for( int i = 0; i < N; i++ ) {
in[i] = i * 3;
}
int *out = new int[N];
CLWrapper *inwrapper = cl->wrap(N, in);
CLWrapper *outwrapper = cl->wrap(N, out);
inwrapper->copyToDevice();
outwrapper->createOnDevice();
kernel->input( inwrapper );
kernel->output( outwrapper );
int globalSize = N;
int workgroupsize = cl->getMaxWorkgroupSize();
globalSize = ( ( globalSize + workgroupsize - 1 ) / workgroupsize ) * workgroupsize;
cout << "globalsize: " << globalSize << " workgroupsize " << workgroupsize << endl;
kernel->run_1d( globalSize, workgroupsize );
outwrapper->copyToHost();
for( int i = 0; i < N; i++ ) {
if( out[i] != 689514 ) {
cout << "out[" << i << "] != 689514: " << out[i] << endl;
exit(-1);
}
}
delete outwrapper;
delete inwrapper;
delete kernel;
delete cl;
}
示例4: THClStorage_newWithSize
THClStorage* THClStorage_newWithSize(THClState *state, int device, long size)
{
THArgCheck(size >= 0, 2, "invalid size");
if(size > 0)
{
StatefulTimer::timeCheck("THClStorage_newWithSize START");
THClStorage *storage = (THClStorage*)THAlloc(sizeof(THClStorage));
float *data = new float[size];
storage->device = device;
storage->cl = THClState_getClv2(state, storage->device);
CLWrapper *wrapper = storage->cl->wrap( size, data );
if(state->trace) cout << "new wrapper, size " << size << endl;
if(state->trace) cout << "wrapper->createOnDevice()" << endl;
wrapper->createOnDevice();
storage->data = data;
storage->wrapper = wrapper;
storage->size = size;
storage->refcount = 1;
storage->flag = TH_STORAGE_REFCOUNTED | TH_STORAGE_RESIZABLE | TH_STORAGE_FREEMEM;
StatefulTimer::timeCheck("THClStorage_newWithSize END");
return storage;
}
else
{
return THClStorage_newv2(state, device);
}
}
示例5: backward
VIRTUAL void ActivationLayer::backward() {
// have no weights to backprop to, just need to backprop the errors
// CLWrapper *imagesWrapper = 0;
// if( previousLayer->hasOutputWrapper() ) {
// imagesWrapper = previousLayer->getOutputWrapper();
// } else {
// imagesWrapper = cl->wrap( previousLayer->getOutputSize(), previousLayer->getOutput() );
// imagesWrapper->copyToDevice();
// }
CLWrapper *gradOutputWrapper = 0;
bool weOwnGradOutputWrapper = false;
if( nextLayer->providesGradInputWrapper() ) {
gradOutputWrapper = nextLayer->getGradInputWrapper();
} else {
gradOutputWrapper = cl->wrap( getOutputSize(), nextLayer->getGradInput() );
gradOutputWrapper->copyToDevice();
weOwnGradOutputWrapper = true;
}
activationBackpropImpl->backward( batchSize, outputWrapper, gradOutputWrapper, gradInputWrapper );
// gradInputCopiedToHost = false;
// if( !previousLayer->hasOutputWrapper() ) {
// delete imagesWrapper;
// }
if( weOwnGradOutputWrapper ) {
delete gradOutputWrapper;
}
}
示例6: TEST
TEST(testfloatwrapperconst, main) {
if(!EasyCL::isOpenCLAvailable()) {
cout << "opencl library not found" << endl;
exit(-1);
}
cout << "found opencl library" << endl;
EasyCL *cl = EasyCL::createForFirstGpuOtherwiseCpu();
CLKernel *kernel = cl->buildKernelFromString(getKernel(), "test", "");
float in[5];
for(int i = 0; i < 5; i++) {
in[i] = i * 3;
}
float out[5];
CLWrapper *inwrapper = cl->wrap(5, (float const *)in);
CLWrapper *outwrapper = cl->wrap(5, out);
inwrapper->copyToDevice();
kernel->input(inwrapper);
kernel->output(outwrapper);
kernel->run_1d(5, 5);
outwrapper->copyToHost();
assertEquals(out[0] , 7);
assertEquals(out[1] , 10);
assertEquals(out[2] , 13);
assertEquals(out[3] , 16);
assertEquals(out[4] , 19);
cout << "tests completed ok" << endl;
delete inwrapper;
delete outwrapper;
delete kernel;
delete cl;
}
示例7: updateWeights
VIRTUAL void Adagrad::updateWeights(CLWrapper *weightsWrapper, CLWrapper *gradWeightsWrapper,
AdagradState *trainerState) {
int numWeights = trainerState->numWeights;
float *working = new float[ numWeights ];
CLWrapper *workingWrapper = cl->wrap(numWeights, working);
workingWrapper->createOnDevice();
CLMathWrapper clWeights(weightsWrapper);
CLMathWrapper clGradWeights(gradWeightsWrapper);
CLMathWrapper clSumSquares(trainerState->sumSquaresWrapper);
CLMathWrapper clWorking(workingWrapper);
// following all happens on gpu, via clmathwrapper:
clWorking = clGradWeights;
clWorking.squared();
clSumSquares += clWorking;
clWorking = clSumSquares;
clWorking.sqrt();
clWorking.inv();
clWorking *= clGradWeights;
clWorking *= - learningRate;
clWeights += clWorking;
delete workingWrapper;
delete[] working;
}
示例8: forward
VIRTUAL void PoolingLayer::forward() {
CLWrapper *upstreamOutputWrapper = 0;
if( previousLayer->hasOutputWrapper() ) {
upstreamOutputWrapper = previousLayer->getOutputWrapper();
} else {
float *upstreamOutput = previousLayer->getOutput();
upstreamOutputWrapper = cl->wrap( previousLayer->getOutputSize(), upstreamOutput );
upstreamOutputWrapper->copyToDevice();
}
poolingForwardImpl->forward( batchSize, upstreamOutputWrapper, selectorsWrapper, outputWrapper );
if( !previousLayer->hasOutputWrapper() ) {
delete upstreamOutputWrapper;
}
// cout << "PoolingLayer::forward() selectors after forward: " << endl;
// for( int i = 0; i < outputImageSize; i++ ) {
// for( int j = 0; j < outputImageSize; j++ ) {
// cout << selectors[ i * outputImageSize + j ] << " ";
// }
// cout << endl;
// }
// cout << "PoolingLayer::forward() selectorsWrapper after forward: " << endl;
// PrintBuffer::printInts( cl, selectorsWrapper, outputImageSize, outputImageSize );
}
示例9: backward
VIRTUAL void PoolingLayer::backward() {
// have no weights to backprop to, just need to backprop the errors
CLWrapper *gradOutputWrapper = 0;
bool weOwnErrorsWrapper = false;
if( nextLayer->providesGradInputWrapper() ) {
gradOutputWrapper = nextLayer->getGradInputWrapper();
} else {
gradOutputWrapper = cl->wrap( getOutputSize(), nextLayer->getGradInput() );
gradOutputWrapper->copyToDevice();
weOwnErrorsWrapper = true;
}
// cout << "PoolingLayer::backward selectorsWrapper:" << endl;
// PrintBuffer::printInts( cl, selectorsWrapper, outputImageSize, outputImageSize );
// int *selectors = reinterpret_cast< int * >( selectorsWrapper->getHostArray() );
// cout << "PoolingLayer::backward selectors before copy to host:" << endl;
// for( int i = 0; i < outputImageSize; i++ ) {
// for( int j = 0; j < outputImageSize; j++ ) {
// cout << " " << selectors[i * outputImageSize + j];
// }
// cout << endl;
// }
// selectorsWrapper->copyToHost();
// cout << "PoolingLayer::backward selectors after copy to host:" << endl;
// for( int i = 0; i < outputImageSize; i++ ) {
// for( int j = 0; j < outputImageSize; j++ ) {
// cout << " " << selectors[i * outputImageSize + j];
// }
// cout << endl;
// }
// selectorsWrapper->copyToDevice();
// selectorsWrapper->copyToHost();
poolingBackpropImpl->backward( batchSize, gradOutputWrapper, selectorsWrapper, gradInputWrapper );
// gradInputWrapper->copyToHost();
// float *gradInput = reinterpret_cast< float * >( gradInputWrapper->getHostArray() );
// cout << "gradInput:" << endl;
// for( int i = 0; i < inputImageSize; i++ ) {
// for( int j = 0; j < inputImageSize; j++ ) {
//// cout << " " << gradInput[i * inputImageSize + j];
// if( gradInput[i * inputImageSize + j] != 0 ) {
// cout << " *";
// } else {
// cout << " .";
// }
// }
// cout << endl;
// }
if( weOwnErrorsWrapper ) {
delete gradOutputWrapper;
}
}
示例10: propagateWithWipe
void propagateWithWipe( Propagate *prop, int batchSize, LayerDimensions dim, float *inputData, float *filters, float *biases, float *results ) {
int inputDataSize = batchSize * dim.inputCubeSize;
CLWrapper *dataWrapper = prop->cl->wrap( inputDataSize, inputData );
dataWrapper->copyToDevice();
int weightsSize = dim.filtersSize;
CLWrapper *weightsWrapper = prop->cl->wrap( weightsSize, filters );
weightsWrapper->copyToDevice();
CLWrapper *biasWeightsWrapper = 0;
if( dim.biased ) {
biasWeightsWrapper = prop->cl->wrap( dim.numFilters, biases );
biasWeightsWrapper->copyToDevice();
}
CLWrapper *resultsWrapper = prop->cl->wrap( batchSize * dim.outputCubeSize, results );
memset( results, 99, sizeof(float) * batchSize * dim.outputCubeSize );
resultsWrapper->copyToDevice(); // so we can wipe it...
StatefulTimer::timeCheck("testpropagate: after data wrapper processing");
prop->propagate( batchSize, dataWrapper, weightsWrapper, biasWeightsWrapper,
resultsWrapper );
// StatefulTimer::timeCheck("Propagate::propagate after call propagate");
resultsWrapper->copyToHost();
// StatefulTimer::timeCheck("Propagate::propagate after copytohost");
delete resultsWrapper;
delete dataWrapper;
delete weightsWrapper;
if( dim.biased ) {
delete biasWeightsWrapper;
}
}
示例11: forwardWithWipe
void forwardWithWipe( Forward *prop, int batchSize, LayerDimensions dim, float *inputData, float *filters, float *biases, float *output ) {
int inputDataSize = batchSize * dim.inputCubeSize;
CLWrapper *dataWrapper = prop->cl->wrap( inputDataSize, inputData );
dataWrapper->copyToDevice();
int weightsSize = dim.filtersSize;
CLWrapper *weightsWrapper = prop->cl->wrap( weightsSize, filters );
weightsWrapper->copyToDevice();
CLWrapper *biasWrapper = 0;
if( dim.biased ) {
biasWrapper = prop->cl->wrap( dim.numFilters, biases );
biasWrapper->copyToDevice();
}
CLWrapper *outputWrapper = prop->cl->wrap( batchSize * dim.outputCubeSize, output );
memset( output, 99, sizeof(float) * batchSize * dim.outputCubeSize );
outputWrapper->copyToDevice(); // so we can wipe it...
StatefulTimer::timeCheck("testforward: after data wrapper processing");
prop->forward( batchSize, dataWrapper, weightsWrapper, biasWrapper,
outputWrapper );
// StatefulTimer::timeCheck("Forward::forward after call forward");
outputWrapper->copyToHost();
// StatefulTimer::timeCheck("Forward::forward after copytohost");
delete outputWrapper;
delete dataWrapper;
delete weightsWrapper;
if( dim.biased ) {
delete biasWrapper;
}
}
示例12: TEST
TEST(testcopybuffer, main) {
if(!EasyCL::isOpenCLAvailable()) {
cout << "opencl library not found" << endl;
exit(-1);
}
cout << "found opencl library" << endl;
EasyCL *cl = EasyCL::createForFirstGpuOtherwiseCpu();
//CLKernel *kernel = cl->buildKernel("testeasycl.cl", "test");
float in[5];
float in2[5];
for(int i = 0; i < 5; i++) {
in[i] = i * 3.0f;
in2[i] = 23.0f + i;
}
float out[5];
CLWrapper *inwrapper = cl->wrap(5, in);
CLWrapper *in2wrapper = cl->wrap(5, in2);
CLWrapper *outwrapper = cl->wrap(5, out);
inwrapper->copyToDevice();
in2wrapper->copyToDevice();
EXPECT_FALSE(in2wrapper->isDeviceDirty());
inwrapper->copyTo(in2wrapper);
EXPECT_TRUE(in2wrapper->isDeviceDirty());
// cl->finish();
// check that in2 host-side unchanged:
for(int i = 0; i < 5; i++) {
in[i] = i * 3.0f;
EXPECT_EQ(23.0f + i, in2[i]);
}
in2wrapper->copyToHost();
// check that in2 is now a copy of in:
for(int i = 0; i < 5; i++) {
in[i] = i * 3.0f;
EXPECT_EQ(i * 3.0f, in2[i]);
}
// check that modifying in2 doesnt modfiy in:
in2[1] = 27;
in2wrapper->copyToDevice();
inwrapper->copyToHost();
EXPECT_EQ(1 * 3.0f, in[1]);
in2wrapper->copyToHost();
EXPECT_EQ(1 * 3.0f, in[1]);
EXPECT_EQ(27.0f, in2[1]);
delete inwrapper;
delete in2wrapper;
delete outwrapper;
delete cl;
}
示例13: getInputSize
VIRTUAL void ActivationPropagate::propagate( int batchSize, float *input, float *output ) {
// cout << "ActivationPropagate::propagate( float * )" << endl;
CLWrapper *inputWrapper = cl->wrap( getInputSize( batchSize ), input );
CLWrapper *outputWrapper = cl->wrap( getResultsSize( batchSize ), output );
inputWrapper->copyToDevice();
propagate( batchSize, inputWrapper, outputWrapper );
outputWrapper->copyToHost();
delete outputWrapper;
delete inputWrapper;
}
示例14: forward
VIRTUAL void ActivationLayer::forward() {
CLWrapper *inputWrapper = 0;
if( previousLayer->hasOutputWrapper() ) {
inputWrapper = previousLayer->getOutputWrapper();
} else {
float *input = previousLayer->getOutput();
inputWrapper = cl->wrap( previousLayer->getOutputSize(), input );
inputWrapper->copyToDevice();
}
activationForwardImpl->forward( batchSize, inputWrapper, outputWrapper );
// outputCopiedToHost = false;
if( !previousLayer->hasOutputWrapper() ) {
delete inputWrapper;
}
}
示例15: TEST
TEST( testMemset, basic ) {
EasyCL *cl = DeepCLGtestGlobals_createEasyCL();
CLKernel *kMemset = 0;
// [[[cog
// import stringify
// stringify.write_kernel2( "kMemset", "cl/memset.cl", "cl_memset", '""' )
// ]]]
// generated using cog, from cl/memset.cl:
const char * kMemsetSource =
"// Copyright Hugh Perkins 2015 hughperkins at gmail\n"
"//\n"
"// This Source Code Form is subject to the terms of the Mozilla Public License,\n"
"// v. 2.0. If a copy of the MPL was not distributed with this file, You can\n"
"// obtain one at http://mozilla.org/MPL/2.0/.\n"
"\n"
"kernel void cl_memset(global float *target, const float value, const int N) {\n"
" #define globalId get_global_id(0)\n"
" if ((int)globalId < N) {\n"
" target[globalId] = value;\n"
" }\n"
"}\n"
"\n"
"";
kMemset = cl->buildKernelFromString(kMemsetSource, "cl_memset", "", "cl/memset.cl");
// [[[end]]]
int N = 10000;
float *myArray = new float[N];
CLWrapper *myArrayWrapper = cl->wrap( N, myArray );
myArrayWrapper->createOnDevice();
kMemset->out( myArrayWrapper )->in( 99.0f )->in( N );
int workgroupSize = 64;
kMemset->run_1d( ( N + workgroupSize - 1 ) / workgroupSize * workgroupSize, workgroupSize );
cl->finish();
myArrayWrapper->copyToHost();
for( int i = 0; i < 10; i++ ) {
// cout << "myArray[" << i << "]=" << myArray[i] << endl;
}
for( int i = 0; i < N; i++ ) {
EXPECT_EQ( 99.0f, myArray[i] );
}
delete kMemset;
delete cl;
}