当前位置: 首页>>代码示例>>C++>>正文


C++ CFactor::UpdateStatisticsML方法代码示例

本文整理汇总了C++中CFactor::UpdateStatisticsML方法的典型用法代码示例。如果您正苦于以下问题:C++ CFactor::UpdateStatisticsML方法的具体用法?C++ CFactor::UpdateStatisticsML怎么用?C++ CFactor::UpdateStatisticsML使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CFactor的用法示例。


在下文中一共展示了CFactor::UpdateStatisticsML方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Learn

void CParEMLearningEngine::Learn()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);

    CJtreeInfEngine *pCurrentInfEng = NULL;

    CFactor *parameter = NULL;
    int exit = 0;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    int domainNodes;
    int infIsNeed = 0;
    int itsML = 0;

    // !!!
    float loglik = -FLT_MAX;
    float loglikOld = -FLT_MAX;
    float epsilon = GetPrecisionEM();
    float stopExpression = epsilon + 1.0f;
    int iteration = 0;
    int currentEvidNumber;
    int bMaximize = 0;
    int bSumOnMixtureNode = 0;
    const CEvidence* pCurrentEvid;
    int start_mpi, finish_mpi;
    int NumberOfProcesses, MyRank;
    int numSelfEvidences;
    
    MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses);
    MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);

    int d = 0;
    do
    {
        iteration++;

        numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses;
        start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; // !!!
        if (MyRank < NumberOfProcesses - 1)
            finish_mpi = start_mpi + numSelfEvidences; // !!!
        else
            finish_mpi = GetNumEv(); // !!!        

        for(int ev = start_mpi; ev < finish_mpi; ev++)
        {
            infIsNeed = 0;
            currentEvidNumber = ev; // !!!

            pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];
            if( !pCurrentEvid)
            {
                PNL_THROW(CNULLPointer, "evidence")
            }

            infIsNeed = !GetObsFlags(ev)->empty(); // !!!

            if(infIsNeed)
            {
                // create inference engine
                if(!pCurrentInfEng)
                {
                    pCurrentInfEng = CJtreeInfEngine::Create(pGrModel);
                }
                pCurrentInfEng->EnterEvidence(pCurrentEvid, bMaximize,
                    bSumOnMixtureNode);
            }

            for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++)
            {
                parameter = pGrModel->GetFactor(domainNodes);
                if(infIsNeed)
                {
                    int DomainSize;
                    const int *domain;
                    parameter->GetDomain(&DomainSize, &domain);
                    if (IsDomainObserved(DomainSize, domain, currentEvidNumber))
                    {
                        const CEvidence *pEvidences[] = { pCurrentEvid };
                        parameter->UpdateStatisticsML(pEvidences, 1);
                    }
                    else
                    {
                        pCurrentInfEng->MarginalNodes(domain, DomainSize, 1);
                        const CPotential * pMargPot = pCurrentInfEng->GetQueryJPD();
                        parameter ->UpdateStatisticsEM(pMargPot, pCurrentEvid);
                    }
                }
                else
                {
                    const CEvidence *pEvidences[] = { pCurrentEvid };
                    parameter->UpdateStatisticsML(pEvidences, 1);
                }
            }
            itsML = itsML || !infIsNeed;
        }

        for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ )
        {
            parameter = pGrModel->GetFactor(domainNodes);
//.........这里部分代码省略.........
开发者ID:PyOpenPNL,项目名称:OpenPNL,代码行数:101,代码来源:pnlParEmLearningEngine.cpp

示例2: LearnOMP


//.........这里部分代码省略.........
            int bSumOnMixtureNode = 0;
            int infIsNeed = 0;
            int currentEvidNumber = ev; // !!!

            const CEvidence* pCurrentEvid = m_Vector_pEvidences[currentEvidNumber];

            infIsNeed = !GetObsFlags(ev)->empty(); // !!!

            int Num_thread = omp_get_thread_num();

            if (infIsNeed)
            {
                if (!pCurrentInfEng[Num_thread])
                {
                    pCurrentInfEng[Num_thread] = CJtreeInfEngine::Create(
                        (const CStaticGraphicalModel *)pGrModel);
                }
                pCurrentInfEng[Num_thread]->EnterEvidence(pCurrentEvid, bMaximize,
                    bSumOnMixtureNode);
            }
            for (DomainNodes_new = 0; DomainNodes_new < numberOfParameters; 
            DomainNodes_new++)
            {
                parameter = ppAllFactors[DomainNodes_new + 
                    Num_thread * numberOfParameters];
                if (infIsNeed)
                {
                    int DomainSize;
                    const int *domain;
                    parameter->GetDomain(&DomainSize, &domain);
                    if (IsDomainObserved(DomainSize, domain, currentEvidNumber))
                    {
                        const CEvidence *pEvidences[] = { pCurrentEvid };
                        parameter->UpdateStatisticsML(pEvidences, 1);
                        was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                    }
                    else
                    {
                        pCurrentInfEng[Num_thread]->MarginalNodes(domain, DomainSize, 1);
                        const CPotential * pMargPot = 
                            pCurrentInfEng[Num_thread]->GetQueryJPD();
                        parameter ->UpdateStatisticsEM(pMargPot, pCurrentEvid);
                        was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                    }
                }
                else
                {
                    const CEvidence *pEvidences[] = { pCurrentEvid };
                    parameter->UpdateStatisticsML(pEvidences, 1); 
                    was_updated[DomainNodes_new+Num_thread*numberOfParameters]= true;
                }  
            }
            itsML[Num_thread] = itsML[Num_thread] || !infIsNeed;
        }  // end of parallel for

        for (int delta = 1; delta < numberOfThreads; delta++)
        {
            itsML[0] = itsML[0] || itsML[delta];
        };

        //to join factors
#pragma omp parallel for private(factor) default(shared)
        for (factor = 0; factor < numberOfParameters; factor++)
        {
            for (int proc = 1; proc < numberOfThreads; proc++)
            {
开发者ID:PyOpenPNL,项目名称:OpenPNL,代码行数:67,代码来源:pnlParEmLearningEngine.cpp

示例3: LearnExtraCPDs

void CEMLearningEngine::LearnExtraCPDs(int nMaxFamily, pCPDVector* additionalCPDs, floatVector* additionalLLs)
{

    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv(), 1);
    
    int numberOfFactors = pGrModel->GetNumberOfFactors();
    int numberOfAddFactors = additionalCPDs->size();
    
    additionalLLs->resize(numberOfAddFactors);
    additionalLLs->clear();
    
    m_vFamilyLogLik.resize(numberOfFactors);
    float	loglik = 0.0f, ll;
    int		i, ev;
    int iteration = 0;
    const CEvidence* pEv;
    
    CFactor *factor = NULL;
    int nnodes;
    const int * domain;
    
    bool bInfIsNeed;
    CInfEngine *pInfEng = m_pInfEngine;
    
    if (IsAllObserved())
    {
        for (i = 0; i < numberOfFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
            factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
                GetNumEv() - GetNumberProcEv());
        }
        
        for( ev = 0; ev < GetNumEv() ; ev++)
        {
            pEv = m_Vector_pEvidences[ev];
            for( i = 0; i < numberOfAddFactors; i++ )
            {
                factor = static_cast<CFactor*>((*additionalCPDs)[i]);
                factor->UpdateStatisticsML( &pEv, 1 );
            }
        }
        
        switch (pGrModel->GetModelType())
        {
        case mtBNet:
            {
                for( i = 0; i<numberOfFactors; i++ )
                {
                    factor = pGrModel->GetFactor(i);
                    ll = factor->ProcessingStatisticalData( GetNumEv());
                    m_vFamilyLogLik[i] = ll;
                    loglik += ll;
                }
                
                for( i = 0; i < numberOfAddFactors; i++ )
                {
                    factor = static_cast<CFactor*>((*additionalCPDs)[i]);
                    ll = factor->ProcessingStatisticalData( GetNumEv());
                    (*additionalLLs)[i] = ll;
                }
                break;
            }
        case mtMRF2:
        case mtMNet:
            {	
                break;
            }
        default:
            {
                PNL_THROW(CBadConst, "model type" )
                    break;
            }
        }
        m_critValue.push_back(loglik);    
        
    }
    else
    {
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:81,代码来源:pnlEmLearningEngine.cpp

示例4: LearnContMPI

void CParEMLearningEngine::LearnContMPI()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);
    
    CInfEngine *pInfEng = NULL;
  
    pInfEng = CJtreeInfEngine::Create(pGrModel);
      
    
    float loglik = 0.0f;
    int domainNodes;
    CFactor *parameter = NULL;
    int numberOfParameters = pGrModel->GetNumberOfParameters();
    
    int nFactors = pGrModel->GetNumberOfFactors();
    const CEvidence *pEv;
    CFactor *pFactor;
    
    int iteration = 0;
    int ev;
    int i,numSelfEvidences,NumberOfProcesses, MyRank;
    int start_mpi, finish_mpi;
    
    MPI_Comm_size(MPI_COMM_WORLD, &NumberOfProcesses);
    MPI_Comm_rank(MPI_COMM_WORLD, &MyRank);
    
    if (IsAllObserved())
    {
        int i;
        float **evid = NULL;
        EDistributionType dt;
        CFactor *factor = NULL;
        for (i = 0; i < nFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
                 
            factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
               GetNumEv() - GetNumberProcEv());
            
        }
        m_critValue.push_back(UpdateModel());
    }
    else
    {
        bool bContinue;
        const CPotential * pot;
        
        do
        {
            ClearStatisticData();
            iteration++;

            numSelfEvidences = (GetNumEv() - GetNumberProcEv()) / NumberOfProcesses;
            start_mpi = GetNumberProcEv() + numSelfEvidences * MyRank; 
            if (MyRank < NumberOfProcesses - 1)
                finish_mpi = start_mpi + numSelfEvidences; 
            else
                finish_mpi = GetNumEv();            

            for(int ev = start_mpi; ev < finish_mpi; ev++)
            {
                
                bool bInfIsNeed = !GetObsFlags(ev)->empty(); 
                pEv = m_Vector_pEvidences[ev];
                
                if( bInfIsNeed )
                {
                    pInfEng->EnterEvidence(pEv,      0, 0);
                }
                int i;
                
                for( i = 0; i < nFactors; i++ )
                {
                    pFactor = pGrModel->GetFactor(i);
                    int nnodes;
                    const int * domain;
                    pFactor->GetDomain( &nnodes, &domain );
                    if( bInfIsNeed && !IsDomainObserved(nnodes, domain, ev ) )
                    {
                        pInfEng->MarginalNodes( domain, nnodes, 1 );
                        pot = pInfEng->GetQueryJPD(); 
                        
                        pFactor->UpdateStatisticsEM( /*pInfEng->GetQueryJPD */ pot, pEv );
                    }
                    else
                    {
                        pFactor->UpdateStatisticsML( &pEv, 1 );
                    }
                }
            }
            
            for(domainNodes = 0; domainNodes < numberOfParameters; domainNodes++ )
            {   
                parameter = pGrModel->GetFactor(domainNodes);
                
                C2DNumericDenseMatrix<float> *matMeanForSending;
                C2DNumericDenseMatrix<float> *matCovForSending;
                int dataLengthM,dataLengthC;
//.........这里部分代码省略.........
开发者ID:PyOpenPNL,项目名称:OpenPNL,代码行数:101,代码来源:pnlParEmLearningEngine.cpp

示例5: Learn

void CEMLearningEngine::Learn()
{
    CStaticGraphicalModel *pGrModel =  this->GetStaticModel();
    PNL_CHECK_IS_NULL_POINTER(pGrModel);
    PNL_CHECK_LEFT_BORDER(GetNumEv() - GetNumberProcEv() , 1);
    
    CInfEngine *pInfEng = NULL;
    if (m_pInfEngine)
    {
        pInfEng = m_pInfEngine;
    }
    else
    {
        if (!m_bAllObserved)
        {
            pInfEng = CJtreeInfEngine::Create(pGrModel);
            m_pInfEngine = pInfEng;
        }
    }
    
    float loglik = 0.0f;
    
    int nFactors = pGrModel->GetNumberOfFactors();
    const CEvidence *pEv;
    CFactor *pFactor;
    
    int iteration = 0;
    int ev;

    bool IsCastNeed = false;
    int i;
    for( i = 0; i < nFactors; i++ )
    {
        pFactor = pGrModel->GetFactor(i);
        EDistributionType dt = pFactor->GetDistributionType();
        if ( dt == dtSoftMax ) IsCastNeed = true;
    }

    float ** full_evid = NULL;
    if (IsCastNeed)
    {
        BuildFullEvidenceMatrix(&full_evid);
    }

    
    if (IsAllObserved())
    {
        int i;
        float **evid = NULL;
        EDistributionType dt;
        CFactor *factor = NULL;
        for (i = 0; i < nFactors; i++)
        {
            factor = pGrModel->GetFactor(i);
            dt = factor->GetDistributionType();
            if (dt != dtSoftMax)
            {
                factor->UpdateStatisticsML(&m_Vector_pEvidences[GetNumberProcEv()], 
                    GetNumEv() - GetNumberProcEv());
            }
            else
            {
                
                intVector family;
				family.resize(0);
                pGrModel->GetGraph()->GetParents(i, &family);
                family.push_back(i);
                CSoftMaxCPD* SoftMaxFactor = static_cast<CSoftMaxCPD*>(factor);
                SoftMaxFactor->BuildCurrentEvidenceMatrix(&full_evid, 
					&evid,family,m_Vector_pEvidences.size());
				SoftMaxFactor->InitLearnData();
                SoftMaxFactor->SetMaximizingMethod(m_MaximizingMethod);
                SoftMaxFactor->MaximumLikelihood(evid, m_Vector_pEvidences.size(),
                    0.00001f, 0.01f);
                SoftMaxFactor->CopyLearnDataToDistrib();
                for (int k = 0; k < factor->GetDomainSize(); k++)
                {
                    delete [] evid[k];
                }
                delete [] evid;
            }
        }
        m_critValue.push_back(UpdateModel());
    }
    else
    {
        bool bContinue;
        const CPotential * pot;
        
/*        bool IsCastNeed = false;
        int i;
        for( i = 0; i < nFactors; i++ )
        {
            pFactor = pGrModel->GetFactor(i);
            EDistributionType dt = pFactor->GetDistributionType();
            if ( dt == dtSoftMax ) IsCastNeed = true;
        }

        float ** full_evid;
        if (IsCastNeed)
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:pnlEmLearningEngine.cpp


注:本文中的CFactor::UpdateStatisticsML方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。