本文整理汇总了C++中CData::is_case方法的典型用法代码示例。如果您正苦于以下问题:C++ CData::is_case方法的具体用法?C++ CData::is_case怎么用?C++ CData::is_case使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CData
的用法示例。
在下文中一共展示了CData::is_case方法的5个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: init_logUnif_y_tilde
void CParam::init_logUnif_y_tilde(CData &Data,CFeasibilityMap &FM, Uniform &randUnif, int n_simul) {
logUnif_y_tilde = ColumnVector(Data.n_faulty);
for (int i = 1; i <= Data.n_faulty; i++) {
ColumnVector s_i = S_Mat.column(i);
int i_original = Data.Faulty2Original[i-1];
// double log_f_y_tilde_q = 0; Commented by HANG on 5/16/2015
if (FM.useMap && Data.is_case(i_original,2)) {
logUnif_y_tilde(i) = FM.Simulate_logUnif_case2(CFeasibilityMap::s_to_tau_fn(s_i),i_original,n_simul,randUnif);
} else {
logUnif_y_tilde(i) = Data.get_logUnif_y_tilde(s_i, CFeasibilityMap::s_to_tau_fn(s_i),i_original);
}
//logUnif_y_tilde(i) = Data.get_logUnif_y_tilde(s_i, CFeasibilityMap::s_to_tau_fn(s_i),i_original);
}
}
示例2: Rprintf
void CFeasibilityMap::Simulate_logUnif_case2(int n_simul, Uniform &randUnif, CData &Data) {
if (useMap) {return;}
if (feasibleMap.nrows() == 0 || feasibleMap.maximum()==0) {
Rprintf( "Feasibility Map need to be set or computed first\n");
return;
}
Data.logUnif_case2 =Matrix(Data.n_faulty,Data.n_tau); Data.logUnif_case2 = 0;
for (int i_original=1; i_original<=Data.n_sample; i_original++){
if (Data.is_case(i_original,2)) {
int i_faulty = Data.Original2Faulty[i_original-1];
ColumnVector tilde_y_i = Data.log_D_Observed.row(i_original).t();
for (int i_tau=1; i_tau<=Data.n_tau; i_tau++){
if ( feasibleMap(i_tau,i_faulty)==1 ){
double case2_count_out = 0;
ColumnVector s_i = tau_to_s_fn( i_tau, Data.n_var );
ColumnVector item_by_joint = Data.copy_non_balance_edit(s_i);
for (int i_simul=1; i_simul<=n_simul; i_simul++){
//Generate from uniform distribution
ColumnVector y_q = tilde_y_i;
for ( int temp_j=1; temp_j<=Data.n_var; temp_j++ ){
if ( item_by_joint(temp_j)==1 ){
y_q(temp_j) = Data.logB_L(temp_j)+Data.logB_U_L(temp_j)*randUnif.Next();
}
}
ColumnVector x_q = exp_ColumnVector(y_q) ;
Data.update_full_x_for_balance_edit(x_q);
if (!Data.PassEdits(x_q)) { case2_count_out += 1.0;}
}
double Area = 1.0;
for ( int temp_j=1; temp_j<=Data.n_var; temp_j++ ){
if ( item_by_joint(temp_j)==1 ){
Area = Area * Data.logB_U_L(temp_j) ;
}
}
Area = Area * case2_count_out / n_simul ;
Data.set_logUnif_case2(i_original, i_tau, -log(Area));
}
}
if ( ((1.0*i_original/100)==(floor(1.0*i_original/100))) ){
Rprintf( "logUnif_y_tilde for i_sample= %d\n",i_original);
}
}
}
}
示例3: initilize_D_and_S
void CFeasibilityMap::initilize_D_and_S(CData &Data) {
ColumnVector order_to_test = get_order_to_test(Data.n_tau, Data.n_var);
ColumnVector list_feasible_type2 = get_feasible_tau(Data);
for (int i_faulty = 1; i_faulty <= Data.n_faulty; i_faulty++) {
bool is_pass = false;
int i_original = Data.Faulty2Original[i_faulty-1];
ColumnVector x_tilde_i = (Data.D_Observed.row(i_original)).t();
for (int i_order = 1; i_order <= order_to_test.nrows() && !is_pass; i_order++) {
int i_tau = order_to_test(i_order);
ColumnVector s_i = tau_to_s_fn(i_tau,Data.n_var);
bool skip_for_type2 = false;
if (Data.is_case(i_original,2) && list_feasible_type2(i_tau) == 0) { skip_for_type2 = true;}
if (!skip_for_type2){
ColumnVector x_mean;
int is_feasible = feasible_test_fn(Data, x_tilde_i, s_i, i_original, true, Data.epsilon, x_mean);
if (is_feasible > 0) {
//copy solution to a temp vector
ColumnVector temp = x_tilde_i;
for (int index = 1, count =0; index <= Data.n_var; index++){
if (s_i(index) == 1) {
count++;
temp(index) = x_mean(count);
}
}
Data.Debug = Debug;
if (Data.PassEdits(temp)) { //then check if it satifies edits
is_pass = true;
Data.initial_S_Mat.row(i_faulty) = s_i.t();
Data.D_initial.row(i_original) = temp.t();
}
}//is_feasible
Debug = false;
}
}
}
}
示例4: init_sigmamu
void CParam::init_sigmamu(CData &Data) {
mu_bar = ColumnVector(n_var_independent);
ColumnVector log_obs_mean(n_var), log_obs_sd(n_var) ;
Matrix logD_editpassing(n_sample-Data.n_faulty,n_var) ;
for (int i_sample=1, count = 1; i_sample<=n_sample; i_sample++){
if (Data.is_case(i_sample,0)) {
logD_editpassing.row(count++) = Data.log_D_Observed.row(i_sample);
}
}
for (int i_var=1; i_var<=n_var; i_var++){
ColumnVector temp_col = logD_editpassing.column(i_var) ;
log_obs_mean(i_var) = 1.0/(n_sample-Data.n_faulty)*(temp_col.sum()) ;
ColumnVector temp_mean(n_sample-Data.n_faulty) ; temp_mean = log_obs_mean(i_var) ;
Matrix SumSq = (temp_col-temp_mean).t()*(temp_col-temp_mean) ;
log_obs_sd(i_var) = sqrt( 1.0/(n_sample-Data.n_faulty-1)*SumSq(1,1) ) ;
}
Data.UpdateCompactVector(mu_bar,log_obs_mean);
DiagonalMatrix LSigma_temp(n_var_independent);
for (int i=1; i<= n_var_independent; i++){
LSigma_temp(i) = log_obs_sd(i);
}
DiagonalMatrix LSigma_temp_i = LSigma_temp.i();
LSIGMA = vector<LowerTriangularMatrix>(K);
LSIGMA_i = vector<LowerTriangularMatrix>(K);
SIGMA = vector<SymmetricMatrix>(K);
for (int k=0 ; k<K; k++) {
LSIGMA[k] = LSigma_temp;
LSIGMA_i[k] = LSigma_temp_i;
SIGMA[k] << LSigma_temp * LSigma_temp; //lazy
}
logdet_and_more = ColumnVector(K); logdet_and_more = -0.5*n_var* LOG_2_PI + logdet(LSIGMA_i[0]);
Mu = Matrix((n_var_independent),K); // Note that mu_k is Mu.column(k)
for (int k=1; k<=K; k++){
Mu.column(k) = mu_bar ; // starting value
}
}
示例5: y_q
void CParam::S1(int iter, Uniform &randUnif, CData &Data, CFeasibilityMap &FM, int n_simul) {
is_accept(1) = 0;
for (int i_faulty=1; i_faulty<=Data.n_faulty; i_faulty++) {
if (FM.useMap) {FM.pmm->iter = iter;}
int i_original = Data.Faulty2Original[i_faulty-1];
double g_option_q, g_mode_q;
int what_type_move;
ColumnVector s_i = S_Mat.column(i_faulty);
int tau_q = FM.EvaluateMove(i_original, Data, s_i, iter, what_type_move, g_option_q, g_mode_q, true);
// calculate g_mode_i & g_option_i
ColumnVector s_q = CFeasibilityMap::tau_to_s_fn(tau_q, n_var);
double g_option_i, g_mode_i;
FM.EvaluateMove(i_original, Data, s_q, iter, what_type_move, g_option_i, g_mode_i, false);
// calculate g_s_q & g_s_i
double g_s_q = g_mode_q * g_option_q;
double g_s_i = g_mode_i * g_option_i;
// whether drawn by item_by_rnorm and balance edits
ColumnVector item_by_bal;
ColumnVector item_by_rnorm;
if (Data.is_case(i_original,1)) {
item_by_rnorm = Data.get_item_by_norm_indicator(s_q,item_by_bal);
} else {
item_by_rnorm = Data.copy_non_balance_edit(s_q);
}
//Generate from normal distribution
ColumnVector mu_z_i = Mu.column(z_in(i_original)) ;
ColumnVector tilde_y_i = Data.log_D_Observed.row(i_original).t();
ColumnVector y_q(n_var);
LowerTriangularMatrix LSigma_i;
double log_cond_norm_q = calculate_log_cond_norm(Data, i_original, item_by_rnorm, tilde_y_i, y_q, true, LSigma_i, s_q); // MODIFIED 2015/02/16
// Put values from balance edits
ColumnVector x_q = exp_ColumnVector(y_q);
if (Data.is_case(i_original,1)) {
Data.set_balance_edit_values_for_x_q(s_q, x_q, item_by_bal); // CHANGED by Hang, 2014/12/29
} else {
Data.update_full_x_for_balance_edit(x_q);
}
// Acceptance/Rejection
if (Data.PassEdits(x_q)) { // Check constraints
ColumnVector item_i_by_rnorm;
if (Data.is_case(i_original,1)) {
item_i_by_rnorm = Data.get_item_by_norm_indicator(s_i,item_by_bal);
} else {
item_i_by_rnorm = Data.copy_non_balance_edit(s_i);
}
double log_cond_norm_i = calculate_log_cond_norm(Data, i_original, item_i_by_rnorm, tilde_y_i, y_q, false, LSigma_i, s_i); // MODIFIED 2015/02/16
y_q = log_ColumnVector(x_q) ;
ColumnVector y_i = (Y_in.row(i_original)).t();
// Calculate acceptance ratio
ColumnVector y_compact_q = Data.get_compact_vector(y_q);
ColumnVector y_compact_i = Data.get_compact_vector(y_i);
double log_full_norm_q = log_MVN_fn(y_compact_q,mu_z_i,LSIGMA_i[z_in(i_original)-1],logdet_and_more(z_in(i_original)));
double log_full_norm_i = log_MVN_fn(y_compact_i,mu_z_i,LSIGMA_i[z_in(i_original)-1],logdet_and_more(z_in(i_original)));
double log_f_y_tilde_q = 0;
if (FM.useMap && Data.is_case(i_original,2)) {
log_f_y_tilde_q = FM.Simulate_logUnif_case2(CFeasibilityMap::s_to_tau_fn(s_q),i_original,n_simul,randUnif);
} else {
log_f_y_tilde_q = Data.get_logUnif_y_tilde(s_q, CFeasibilityMap::s_to_tau_fn(s_q),i_original);
}
double logNum = log_full_norm_q + log_f_y_tilde_q - log_cond_norm_q - log(g_s_q);
double logDen = log_full_norm_i + logUnif_y_tilde(i_faulty) - log_cond_norm_i - log(g_s_i);
accept_rate(1) = exp( logNum - logDen ) ;
if ( randUnif.Next() < accept_rate(1) ){
Y_in.row(i_original) = y_q.t() ;
S_Mat.column(i_faulty) = s_q;
logUnif_y_tilde(i_faulty) = log_f_y_tilde_q;
is_accept(1)++;
}
}
}
is_accept(1) = is_accept(1) / Data.n_faulty;
}