本文整理汇总了C++中CBoundingBoxAligned::IntersectFrustumConservative方法的典型用法代码示例。如果您正苦于以下问题:C++ CBoundingBoxAligned::IntersectFrustumConservative方法的具体用法?C++ CBoundingBoxAligned::IntersectFrustumConservative怎么用?C++ CBoundingBoxAligned::IntersectFrustumConservative使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类CBoundingBoxAligned
的用法示例。
在下文中一共展示了CBoundingBoxAligned::IntersectFrustumConservative方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: CalcShadowMatrices
///////////////////////////////////////////////////////////////////////////////////////////////////
// CalcShadowMatrices: calculate required matrices for shadow map generation - the light's
// projection and transformation matrices
void ShadowMapInternals::CalcShadowMatrices()
{
CRenderer& renderer = g_Renderer;
float minZ = ShadowBound[0].Z;
ShadowBound.IntersectFrustumConservative(LightspaceCamera.GetFrustum());
// ShadowBound might have been empty to begin with, producing an empty result
if (ShadowBound.IsEmpty())
{
// no-op
LightProjection.SetIdentity();
TextureMatrix = LightTransform;
return;
}
// round off the shadow boundaries to sane increments to help reduce swim effect
float boundInc = 16.0f;
ShadowBound[0].X = floor(ShadowBound[0].X / boundInc) * boundInc;
ShadowBound[0].Y = floor(ShadowBound[0].Y / boundInc) * boundInc;
ShadowBound[1].X = ceil(ShadowBound[1].X / boundInc) * boundInc;
ShadowBound[1].Y = ceil(ShadowBound[1].Y / boundInc) * boundInc;
// minimum Z bound must not be clipped too much, because objects that lie outside
// the shadow bounds cannot cast shadows either
// the 2.0 is rather arbitrary: it should be big enough so that we won't accidentally miss
// a shadow generator, and small enough not to affect Z precision
ShadowBound[0].Z = minZ - 2.0;
// Setup orthogonal projection (lightspace -> clip space) for shadowmap rendering
CVector3D scale = ShadowBound[1] - ShadowBound[0];
CVector3D shift = (ShadowBound[1] + ShadowBound[0]) * -0.5;
if (scale.X < 1.0)
scale.X = 1.0;
if (scale.Y < 1.0)
scale.Y = 1.0;
if (scale.Z < 1.0)
scale.Z = 1.0;
scale.X = 2.0 / scale.X;
scale.Y = 2.0 / scale.Y;
scale.Z = 2.0 / scale.Z;
// make sure a given world position falls on a consistent shadowmap texel fractional offset
float offsetX = fmod(ShadowBound[0].X - LightTransform._14, 2.0f/(scale.X*EffectiveWidth));
float offsetY = fmod(ShadowBound[0].Y - LightTransform._24, 2.0f/(scale.Y*EffectiveHeight));
LightProjection.SetZero();
LightProjection._11 = scale.X;
LightProjection._14 = (shift.X + offsetX) * scale.X;
LightProjection._22 = scale.Y;
LightProjection._24 = (shift.Y + offsetY) * scale.Y;
LightProjection._33 = scale.Z;
LightProjection._34 = shift.Z * scale.Z + renderer.m_ShadowZBias;
LightProjection._44 = 1.0;
// Calculate texture matrix by creating the clip space to texture coordinate matrix
// and then concatenating all matrices that have been calculated so far
float texscalex = scale.X * 0.5f * (float)EffectiveWidth / (float)Width;
float texscaley = scale.Y * 0.5f * (float)EffectiveHeight / (float)Height;
float texscalez = scale.Z * 0.5f;
CMatrix3D lightToTex;
lightToTex.SetZero();
lightToTex._11 = texscalex;
lightToTex._14 = (offsetX - ShadowBound[0].X) * texscalex;
lightToTex._22 = texscaley;
lightToTex._24 = (offsetY - ShadowBound[0].Y) * texscaley;
lightToTex._33 = texscalez;
lightToTex._34 = -ShadowBound[0].Z * texscalez;
lightToTex._44 = 1.0;
TextureMatrix = lightToTex * LightTransform;
}