当前位置: 首页>>代码示例>>C++>>正文


C++ CBNet::GetFactor方法代码示例

本文整理汇总了C++中CBNet::GetFactor方法的典型用法代码示例。如果您正苦于以下问题:C++ CBNet::GetFactor方法的具体用法?C++ CBNet::GetFactor怎么用?C++ CBNet::GetFactor使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在CBNet的用法示例。


在下文中一共展示了CBNet::GetFactor方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: GibbsForSingleGaussian

int GibbsForSingleGaussian(float eps)
{
    std::cout<<std::endl<<"Using Gibbs for testing samples from gaussian"<<std::endl;

    int nnodes = 1;
    int numnt = 1;
    CNodeType *nodeTypes = new CNodeType[numnt];
    nodeTypes[0] = CNodeType(0,2);
   
    intVector nodeAssociation = intVector(nnodes,0);
   
   
    CGraph *graph;
    graph = CGraph::Create(nnodes, 0, NULL, NULL);

    CBNet *pBnet = CBNet::Create( nnodes, numnt, nodeTypes,
    &nodeAssociation.front(),graph );
    pBnet->AllocFactors();
    pBnet->AllocFactor(0);


    float mean[2] = {0.0f, 0.0f};
    intVector ranges(2,1);
    ranges[0] = 2;

    ///////////////////////////////////////////////////////////////////
    CNumericDenseMatrix<float> *mean0 =	CNumericDenseMatrix<float>::Create( 2, &ranges.front(), mean);

    ranges[1] = 2;
    float cov[4] = {1.0f, 0.3f, 0.3f, 1.0f};
    CNumericDenseMatrix<float> *cov0 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), cov);

    pBnet->GetFactor(0)->AttachMatrix( mean0, matMean );
    pBnet->GetFactor(0)->AttachMatrix( cov0, matCovariance );
    /////////////////////////////////////////////////////////////////////
    CGibbsSamplingInfEngine *pGibbsInf = CGibbsSamplingInfEngine::Create( pBnet );
    pGibbsInf->SetBurnIn( 100 );
    pGibbsInf->SetMaxTime( 5000 );

    pEvidencesVector evidences;
    pBnet->GenerateSamples(&evidences, 1 );
    
    const int ndsToToggle[] = { 0 };
    evidences[0]->ToggleNodeState( 1, ndsToToggle );
    
    intVector query(1,0);
    
    
    intVecVector queryes(1);
    queryes[0].push_back(0);
    pGibbsInf->SetQueries( queryes);
    pGibbsInf->EnterEvidence( evidences[0] );
    pGibbsInf->MarginalNodes( &query.front(),query.size() );

    const CPotential *pQueryPot1 = pGibbsInf->GetQueryJPD();
  
    std::cout<<"result of gibbs"<<std::endl<<std::endl;
    pQueryPot1->Dump();
    
    delete evidences[0];
   
    delete pGibbsInf;
    delete pBnet;
    delete []nodeTypes;

    return 1;

}
开发者ID:billryan,项目名称:OpenPNL,代码行数:69,代码来源:AGibbsInfEngine.cpp

示例2: GibbsForSimplestGaussianBNet

int GibbsForSimplestGaussianBNet( float eps)
{
    std::cout<<std::endl<<"Gibbs for simplest gaussian BNet (3 nodes) "<<std::endl;

    int nnodes = 3;
    int numnt = 2;
    CNodeType *nodeTypes = new CNodeType[numnt];
    nodeTypes[0] = CNodeType(0,1);
    nodeTypes[1] = CNodeType(0,2);
    intVector nodeAssociation = intVector(nnodes,1);
    nodeAssociation[0] = 0;
    int nbs0[] = { 1 };
    int nbs1[] = { 0, 2 };
    int nbs2[] = { 1 };
    ENeighborType ori0[] = { ntChild };
    ENeighborType ori1[] = { ntParent, ntChild  };
    ENeighborType ori2[] = { ntParent };
    int *nbrs[] = { nbs0, nbs1, nbs2 };
    ENeighborType *orient[] = { ori0, ori1, ori2 };

    intVector numNeighb = intVector(3);
    numNeighb[0] = 1;
    numNeighb[1] = 2;
    numNeighb[2] = 1;

    CGraph *graph;
    graph = CGraph::Create(nnodes, &numNeighb.front(), nbrs, orient);

    CBNet *pBnet = CBNet::Create( nnodes, numnt, nodeTypes,
    &nodeAssociation.front(),graph );
    pBnet->AllocFactors();

    for(int i = 0; i < nnodes; i++ )
    {
    pBnet->AllocFactor(i);

    }

    floatVector data(1,0.0f);
    intVector ranges(2,1);

    ///////////////////////////////////////////////////////////////////
    CNumericDenseMatrix<float> *mean0 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());

    data[0] = 0.3f;
    CNumericDenseMatrix<float> *cov0 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());

    pBnet->GetFactor(0)->AttachMatrix( mean0, matMean );
    pBnet->GetFactor(0)->AttachMatrix( cov0, matCovariance );
    /////////////////////////////////////////////////////////////////////

    ranges[0] = 2;
    data.resize(2);
    data[0] = -1.0f;
    data[1] = 0.0f;
    CNumericDenseMatrix<float> *mean1 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());

    ranges[1] = 2;
    data.resize(4);
    data[0] = 1.0f;
    data[1] = 0.1f;
    data[3] = 3.0f;
    data[2] = 0.1f;
    CNumericDenseMatrix<float> *cov1 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());

    ranges[1] =1;
    data.resize(2);
    data[0] = 1.0f;
    data[1] = 0.5f;
    CNumericDenseMatrix<float> *weight1 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());


    pBnet->GetFactor(1)->AttachMatrix( mean1, matMean );
    pBnet->GetFactor(1)->AttachMatrix( cov1, matCovariance );
    pBnet->GetFactor(1)->AttachMatrix( weight1, matWeights,0 );
    ///////////////////////////////////////////////////////////////////////////


    ranges[0] = 2;
    data.resize(2);
    data[0] = 1.0f;
    data[1] = 20.5f;
    CNumericDenseMatrix<float> *mean2 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());

    ranges[1] = 2;
    data.resize(4);
    data[0] = 1.0f;
    data[1] = 0.0f;
    data[3] = 9.0f;
    data[2] = 0.0f;
    CNumericDenseMatrix<float> *cov2 =
    CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &data.front());


//.........这里部分代码省略.........
开发者ID:billryan,项目名称:OpenPNL,代码行数:101,代码来源:AGibbsInfEngine.cpp

示例3: GibbsForScalarGaussianBNet

int GibbsForScalarGaussianBNet( float eps)
{
    std::cout<<std::endl<<" Scalar gaussian BNet (5 nodes)"<< std::endl;
    CBNet *pBnet;
    pEvidencesVector evidences;

    CGibbsSamplingInfEngine *pGibbsInf;
    const CPotential *pQueryPot1, *pQueryPot2;
    int i, ret;

    ////////////////////////////////////////////////////////////////////////
    //Do the example from Satnam Alag's PhD thesis, UCB ME dept 1996 p46
    //Make the following polytree, where all arcs point down
    //
    // 0   1
    //  \ /
    //   2
    //  / \
    // 3   4
    //
    //////////////////////////////////////////////////////////////////////

    int nnodes = 5;
    int numnt = 1;
    CNodeType *nodeTypes = new CNodeType[numnt];
    nodeTypes[0] = CNodeType(0,1);

    intVector nodeAssociation = intVector(nnodes,0);

    int nbs0[] = { 2 };
    int nbs1[] = { 2 };
    int nbs2[] = { 0, 1, 3, 4 };
    int nbs3[] = { 2 };
    int nbs4[] = { 2 };
    ENeighborType ori0[] = { ntChild };
    ENeighborType ori1[] = { ntChild };
    ENeighborType ori2[] = { ntParent, ntParent, ntChild, ntChild };
    ENeighborType ori3[] = { ntParent };
    ENeighborType ori4[] = { ntParent };
    int *nbrs[] = { nbs0, nbs1, nbs2, nbs3, nbs4 };
    ENeighborType *orient[] = { ori0, ori1, ori2, ori3, ori4 };
    intVector numNeighb = intVector(5,1);
    numNeighb[2] = 4;
    CGraph *graph;
    graph = CGraph::Create(nnodes, &numNeighb.front(), nbrs, orient);

    pBnet = CBNet::Create( nnodes, numnt, nodeTypes, &nodeAssociation.front(),graph );
    pBnet->AllocFactors();

    for( i = 0; i < nnodes; i++ )
    {
    pBnet->AllocFactor(i);
    }
    //now we need to create data for factors - we'll create matrices
    floatVector smData = floatVector(1,0.0f);
    floatVector bigData = floatVector(1,1.0f);
    intVector ranges = intVector(2, 1);
    ranges[0] = 1;
    smData[0] = 1.0f;
    CNumericDenseMatrix<float> *mean0 = CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &smData.front());
    bigData[0] = 4.0f;

    CNumericDenseMatrix<float> *cov0 = CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &bigData.front());
    pBnet->GetFactor(0)->AttachMatrix(mean0, matMean);
    pBnet->GetFactor(0)->AttachMatrix(cov0, matCovariance);

    float val = 1.0f;

    CNumericDenseMatrix<float> *mean1 = CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &val );
    CNumericDenseMatrix<float> *cov1 = CNumericDenseMatrix<float>::Create( 2, &ranges.front(), &val );
    pBnet->GetFactor(1)->AttachMatrix(mean1, matMean);
    pBnet->GetFactor(1)->AttachMatrix(cov1, matCovariance);
    smData[0] = 0.0f;

    CNumericDenseMatrix<float> *mean2 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &smData.front());
    smData[0] = 2.0f;

    CNumericDenseMatrix<float> *w21 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &smData.front());
    bigData[0] = 2.0f;

    CNumericDenseMatrix<float> *cov2 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &bigData.front());
    bigData[0] = 1.0f;

    CNumericDenseMatrix<float> *w20 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &bigData.front());
    pBnet->GetFactor(2)->AttachMatrix( mean2, matMean );
    pBnet->GetFactor(2)->AttachMatrix( cov2, matCovariance );
    pBnet->GetFactor(2)->AttachMatrix( w20, matWeights,0 );
    pBnet->GetFactor(2)->AttachMatrix( w21, matWeights,1 );

    val = 0.0f;

    CNumericDenseMatrix<float> *mean3 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &val);
    val = 4.0f;
    CNumericDenseMatrix<float> *cov3 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &val);

    smData[0] = 1.1f;

    CNumericDenseMatrix<float> *w30 = CNumericDenseMatrix<float>::Create(2, &ranges.front(), &smData.front());
    pBnet->GetFactor(3)->AttachMatrix( mean3, matMean );
    pBnet->GetFactor(3)->AttachMatrix( cov3, matCovariance );
//.........这里部分代码省略.........
开发者ID:billryan,项目名称:OpenPNL,代码行数:101,代码来源:AGibbsInfEngine.cpp

示例4: Learn

void CBICLearningEngine::Learn()
{
    CEMLearningEngine *pLearn = NULL;

    float resultBIC = -FLT_MAX;
    CBNet *pResultBNet = NULL;
    intVector resultOrder;
    
    
    pEvidencesVector pEv(m_Vector_pEvidences.size(), NULL );
    
    CModelDomain *pMD = m_pGrModel->GetModelDomain();
    
    int nnodes = m_pGrModel->GetNumberOfNodes();
    
    nodeTypeVector varTypes;
    pMD->GetVariableTypes(&varTypes);

    intVector varAss( pMD->GetVariableAssociations(), pMD->GetVariableAssociations() + nnodes );
       
    intVector currentAssociation(nnodes);
    intVector currentObsNodes(nnodes);
    int i;
    for( i = 0; i < nnodes; i++ )
    {
    currentObsNodes[i] = i;
    }

    CGraph *pGraph = CGraph::Create(nnodes, NULL, NULL, NULL);
    CBNet *pBNet;
    int lineSz = int( nnodes * ( nnodes - 1 ) / 2 );
    intVecVector connect;
    intVector indexes(lineSz, 0);
    int startNode, endNode;
    int ind;
    for( ind = 0; ind < lineSz ; )
    {
    if( indexes[ind] == 1 )
    {
        FindNodesByNumber(&startNode, &endNode, nnodes, ind);
        pGraph->RemoveEdge(startNode, endNode );
        indexes[ind] = 0;
        ind++;
    }
    else
    {
        FindNodesByNumber(&startNode, &endNode, nnodes, ind);
        pGraph->AddEdge(startNode, endNode, 1 );
        indexes[ind] = 1;
        ind = 0;
        connect.clear();
        pGraph->GetConnectivityComponents(&connect);
        if( connect.size() == 1 )
        {
        
        do
        {
            CGraph *pCopyGraph = CGraph::Copy(pGraph);
            int j;
            for( j = 0; j < nnodes; j++ )
            {
            currentAssociation[j] = varAss[currentObsNodes[j]];
            }
            
            pBNet = CBNet::Create(nnodes, varTypes, currentAssociation, pCopyGraph);
            pBNet->AllocFactors();
            for( j = 0; j < nnodes; j++ )
            {
            pBNet->AllocFactor( j );
            pBNet->GetFactor(j)->CreateAllNecessaryMatrices();
            }

            int dimOfModel = DimOfModel(pBNet);
            int k;
            for( k = 0; k < pEv.size(); k++ )
            {
            valueVector vls; 
            m_Vector_pEvidences[k]->GetRawData(&vls);
            pEv[k] = CEvidence::Create( pBNet->GetModelDomain(),currentObsNodes, vls );
            }
            
            
            pLearn = CEMLearningEngine::Create(pBNet);
            pLearn->SetData(pEv.size(), &pEv.front());
            pLearn->Learn();
            int nsteps;
            const float *score;
            pLearn->GetCriterionValue(&nsteps, &score);
            float log_lik = score[nsteps-1];
            float BIC = log_lik - 0.5f*float( dimOfModel*log(float(pEv.size())) );
            
            if( BIC >= resultBIC )
            {
            delete pResultBNet;
            resultBIC = BIC;
            m_critValue.push_back(BIC);
            pResultBNet = pBNet;
            resultOrder.assign( currentObsNodes.begin(), currentObsNodes.end() );
            }
            else
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:pnlBicLearningEngine.cpp

示例5: CreateBNet

CBNet* CreateBNet()
{
    // Creation Water-Sprinkler Bayesian network

    const int numOfNds = 4;//*<-

    // 1 STEP:
    // need to specify the graph structure of the model;
    // there are two way to do it

    CGraph *pGraph;

        // Graph creation using neighbors list

        int numOfNbrs[numOfNds] = { 2, 2, 2, 2 };//*<-
        int nbrs0[] = { 1, 2 };//*<-
        int nbrs1[] = { 0, 3 };//*<-
        int nbrs2[] = { 0, 3 };//*<-
        int nbrs3[] = { 1, 2 };//*<-

        // number of neighbors for every node
        int *nbrs[] = { nbrs0, nbrs1, nbrs2, nbrs3 };//*<-

        // neighbors can be of either one of the three following types:
        // a parent, a child (for directed arcs) or just a neighbor (for undirected graphs).
        // Accordingly, the types are ntParent, ntChild or ntNeighbor.

        ENeighborType nbrsTypes0[] = { ntChild, ntChild };//*<-
        ENeighborType nbrsTypes1[] = { ntParent, ntChild };//*<-
        ENeighborType nbrsTypes2[] = { ntParent, ntChild };//*<-
        ENeighborType nbrsTypes3[] = { ntParent, ntParent };//*<-

        ENeighborType *nbrsTypes[] = { nbrsTypes0, nbrsTypes1,nbrsTypes2, nbrsTypes3 };//*<-

        // this is creation of a directed graph for the BNet model using neighbors list
        pGraph = CGraph::Create( numOfNds, numOfNbrs, nbrs, nbrsTypes );

    // 2 STEP:
    // Creation NodeType objects and specify node types for all nodes of the model.

    nodeTypeVector  nodeTypes;

    // number of node types is 1, because all nodes are of the same type
    // all four are discrete and binary
    CNodeType nt(1,2);//*<-
    nodeTypes.push_back(nt);

    intVector nodeAssociation;
    // reflects association between node numbers and node types
    // nodeAssociation[k] is a number of node type object in the
    // node types array for the k-th node
    nodeAssociation.assign(numOfNds, 0);

    // 2 STEP:
    // Creation base for BNet using Graph, types of nodes and nodes association

    CBNet* pBNet = CBNet::Create( numOfNds, nodeTypes, nodeAssociation, pGraph );

    // 3 STEP:
    // Allocation space for all factors of the model
    pBNet->AllocFactors();

    // 4 STEP:
    // Creation factors and attach their to model

    //create raw data tables for CPDs
    float table0[] = { 0.5f, 0.5f };//*<-
    float table1[] = { 0.5f, 0.5f, 0.9f, 0.1f };
    float table2[] = { 0.8f, 0.2f, 0.2f, 0.8f };
    float table3[] = { 1.0f, 0.0f, 0.1f, 0.9f, 0.1f, 0.9f, 0.01f, 0.99f };

    float* table[] = { table0, table1, table2, table3 };//*<-

    int i;
    for( i = 0; i < numOfNds; ++i )
    {
        pBNet->AllocFactor(i);

        CFactor* pFactor = pBNet->GetFactor(i);

        pFactor->AllocMatrix( table[i], matTable );
    }

    return pBNet;
}
开发者ID:caseypp,项目名称:Bayesian_Attack_Graph,代码行数:85,代码来源:inf_learn_bnet.cpp

示例6: testBayesLearningEngine

int testBayesLearningEngine()
{
    
    int ret = TRS_OK;
    int i, j;
    const int nnodes = 4;//Number of nodes
    int numNt = 1;//number of Node Types

    float eps = -1.0f;
    while( eps <= 0)
    {
    trssRead( &eps, "0.01f", "accuracy in test");
    }
    CNodeType *nodeTypes = new CNodeType [numNt];
    for( i=0; i < numNt; i++ )
    {
    nodeTypes[i] = CNodeType(1,2);//all nodes are discrete and binary
    }

    int nodeAssociation[] = {0, 0, 0, 0};
    int obs_nodes[] = { 0, 1, 2, 3 };
    int numOfNeigh[] = { 2, 2, 2, 2};

    int neigh0[] = { 1, 2 };
    int neigh1[] = { 0, 3 };
    int neigh2[] = { 0, 3 };
    int neigh3[] = { 1, 2 };

    ENeighborType orient0[] = { ntChild, ntChild };
    ENeighborType orient1[] = { ntParent, ntChild };
    ENeighborType orient2[] = { ntParent, ntChild };
    ENeighborType orient3[] = { ntParent, ntParent };

    int *neigh[] = { neigh0, neigh1, neigh2, neigh3 };
    ENeighborType *orient[] = { orient0, orient1, orient2, orient3 };

    float prior0[] = { 1.f, 1.f };
    float prior1[] = { 1.f, 1.f, 1.f, 1.f };
    float prior2[] = { 1.f, 1.f, 1.f, 1.f };
    float prior3[] = { 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f, 1.f };

    float* priors[] = { prior0,prior1,prior2,prior3 };

    float zero_array[] = { 1,1,1,1, 1,1,1,1 };

    float test_data0[] = { 0.636364f, 0.363636f };
    float test_data1[] = { 0.6f, 0.4f, 0.777778f, 0.222222f };
    float test_data2[] = { 0.866667f, 0.133333f, 0.111111f, 0.888889f };
    float test_data3[] = { 0.888889f, 0.111111f, 0.111111f, 0.888889f,
    0.142857f, 0.857143f, 0.333333f, 0.666667f };
    float* test_data_first[] = { test_data0, test_data1, test_data2, test_data3 };

    float test_data4[] = { 0.519231f, 0.480769f };
    float test_data5[] = { 0.571429f, 0.428571f, 0.884615f, 0.115385f };
    float test_data6[] = { 0.857143f, 0.142857f, 0.0769231f, 0.923077f };
    float test_data7[] = { 0.937500f, 0.0625000f, 0.12f, 0.88f,
    0.166667f, 0.833333f, 0.2f, 0.8f };
    float* test_data_second[] = { test_data4, test_data5, test_data6, test_data7 };

    CGraph* Graph = CGraph::Create( nnodes, numOfNeigh, neigh,
    orient);

    CBNet *myBNet = CBNet::Create(nnodes, numNt, nodeTypes,
    nodeAssociation, Graph );

    myBNet->AllocFactors();
    for ( int node = 0; node < nnodes; node++ )
    {
    myBNet->AllocFactor( node );
    //allocate empty CPT matrix, it needs to be allocated even if
    //we are going to learn train it.
    (myBNet->GetFactor( node ))->AllocMatrix( zero_array, matTable );
    //allocate prior matrices
    (myBNet->GetFactor( node ))->AllocMatrix( priors[node], matDirichlet );
    static_cast<CCPD *>(myBNet->GetFactor( node ))->NormalizeCPD();
    }

    ///////////////////////////////////////////////////////////////
    //Reading cases from disk

    FILE *fp;
    const int nEv = 50;
    CEvidence **m_pEv;
    m_pEv = new CEvidence *[nEv];
    std::vector<valueVector> Evidence(nEv);
    for( int ev = 0; ev < nEv; ev++)
    {
    Evidence[ev].resize(nnodes);
    }

    int simbol;
    char *argv = "../c_pgmtk/tests/testdata/cases1";
    fp = fopen(argv, "r");
    if(!fp)
    {
        argv = "../testdata/cases1";
        if ((fp = fopen(argv, "r")) == NULL)
    {
            printf( "can't open file %s\n", argv );
        ret = TRS_FAIL;
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:ABayesParameterLearning.cpp

示例7: testRandomFactors

int testRandomFactors()
{
    int ret = TRS_OK;
    
    int nnodes = 0;
    int i;
    while(nnodes <= 0)
    {
        trsiRead( &nnodes, "5", "Number of nodes in Model" );
    }
    //create node types
    int seed1 = pnlTestRandSeed();
    //create string to display the value
    char *value = new char[20];
#if 0
    value = _itoa(seed1, value, 10);
#else
    sprintf( value, "%d", seed1 );
#endif
    trsiRead(&seed1, value, "Seed for srand to define NodeTypes etc.");
    delete []value;
    trsWrite(TW_CON|TW_RUN|TW_DEBUG|TW_LST, "seed for rand = %d\n", seed1);
    //create 2 node types and model domain for them
    nodeTypeVector modelNodeType;
    modelNodeType.resize(2);
    modelNodeType[0] = CNodeType( 1, 4 );
    modelNodeType[1] = CNodeType( 1, 3 );
    intVector NodeAssociat;
    NodeAssociat.assign(nnodes, 0);
    for( i = 0; i < nnodes; i++ )
    {
        float rand = pnlRand( 0.0f, 1.0f );
        if( rand < 0.5f )
        {
            NodeAssociat[i] = 1;
        }
    }
    CModelDomain* pMDDiscr = CModelDomain::Create( modelNodeType,
        NodeAssociat );
    //create random graph - number of nodes for every node is rand too
    int lowBorder = nnodes - 1;
    int upperBorder = int((nnodes * (nnodes - 1))/2);
    int numEdges = pnlRand( lowBorder, upperBorder );
mark: 
    CGraph* pGraph = tCreateRandomDAG( nnodes, numEdges, 1 );
    if ( pGraph->NumberOfConnectivityComponents() != 1 )
    {
        delete pGraph;
        goto mark;
    }
    CBNet* pDiscrBNet = CBNet::CreateWithRandomMatrices( pGraph, pMDDiscr );
    //start jtree inference just for checking 
    //the model is valid for inference and all operations can be made
    CEvidence* pDiscrEmptyEvid = CEvidence::Create( pMDDiscr, 0, NULL, valueVector() );
    CJtreeInfEngine* pDiscrInf = CJtreeInfEngine::Create( pDiscrBNet );
    pDiscrInf->EnterEvidence( pDiscrEmptyEvid );
    const CPotential* pot = NULL;
    for( i = 0; i < nnodes; i++ )
    {
        intVector domain;
        pDiscrBNet->GetFactor(i)->GetDomain( &domain );
        pDiscrInf->MarginalNodes( &domain.front(), domain.size() );
        pot = pDiscrInf->GetQueryJPD();
    }
    //make copy of Graph for using with other models
    pGraph = CGraph::Copy( pDiscrBNet->GetGraph() );
    delete pDiscrInf;
    delete pDiscrBNet;
    delete pDiscrEmptyEvid;
    delete pMDDiscr;  

    //create gaussian model domain
    modelNodeType[0] = CNodeType( 0, 4 );
    modelNodeType[1] = CNodeType( 0, 2 );
    CModelDomain* pMDCont = CModelDomain::Create( modelNodeType,
        NodeAssociat );
    CBNet* pContBNet = CBNet::CreateWithRandomMatrices( pGraph, pMDCont );
    CEvidence* pContEmptyEvid = CEvidence::Create( pMDCont, 0, NULL, valueVector() );
    CNaiveInfEngine* pContInf = CNaiveInfEngine::Create( pContBNet );
    pContInf->EnterEvidence( pContEmptyEvid );
    for( i = 0; i < nnodes; i++ )
    {
        intVector domain;
        pContBNet->GetFactor(i)->GetDomain( &domain );
        pContInf->MarginalNodes( &domain.front(), domain.size() );
        pot = pContInf->GetQueryJPD();
    }

    pGraph = CGraph::Copy(pContBNet->GetGraph());
    delete pContInf;
    delete pContBNet;
    delete pContEmptyEvid;
    delete pMDCont;
    //find the node that haven't any parents 
    //and change its node type for it to create Conditional Gaussian CPD
    int numOfNodeWithoutParents = -1;
    intVector parents;
    parents.reserve(nnodes);
    for( i = 0; i < nnodes; i++ )
    {
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:ARandomFactors.cpp

示例8: testSetStatistics

int testSetStatistics()
{
    int ret = TRS_OK;
    float eps = 0.1f;
    
    int seed = pnlTestRandSeed();
    pnlSeed( seed );   
            
    CBNet *pBNet = pnlExCreateCondGaussArBNet();
    CModelDomain *pMD = pBNet->GetModelDomain();

    
    CGraph *pGraph = CGraph::Copy(pBNet->GetGraph());
    
    CBNet *pBNet1 = CBNet::CreateWithRandomMatrices( pGraph, pMD );

    pEvidencesVector evidences;
    int nEvidences = pnlRand( 3000, 4000);
    
    pBNet->GenerateSamples( &evidences, nEvidences );
   
    
    int i;
    for( i = 0; i < nEvidences; i++)
    {
    
    //evidences[i]->MakeNodeHiddenBySerialNum(0);
    }
    

    CEMLearningEngine *pLearn = CEMLearningEngine::Create(pBNet1);
    pLearn->SetData( nEvidences, &evidences.front() );
    pLearn->SetMaxIterEM();
    pLearn->Learn();

    for( i = 0; i < pBNet->GetNumberOfFactors(); i++ )
    {
    if( ! pBNet->GetFactor(i)->IsFactorsDistribFunEqual(pBNet1->GetFactor(i), eps))
    {
        ret = TRS_FAIL;
        pBNet->GetFactor(i)->GetDistribFun()->Dump();
        pBNet1->GetFactor(i)->GetDistribFun()->Dump();

    }
    }
    
    CDistribFun *pDistr;
    const CMatrix<float>* pMat;
    CFactor *pCPD;
    
    pDistr = pBNet1->GetFactor(0)->GetDistribFun();
    pMat = pDistr->GetStatisticalMatrix(stMatTable);
    
    pCPD = pBNet->GetFactor(0);
    pCPD->SetStatistics(pMat, stMatTable);
    pCPD->ProcessingStatisticalData(nEvidences);
    if( ! pCPD->IsFactorsDistribFunEqual(pBNet1->GetFactor(0), 0.0001f) )
    {
    ret = TRS_FAIL;
    }
    

    pDistr = pBNet1->GetFactor(1)->GetDistribFun();
    
    int parentVal;
    pCPD = pBNet->GetFactor(1);
    
    parentVal = 0;

    pCPD->SetStatistics(pMat, stMatCoeff);

    pMat = pDistr->GetStatisticalMatrix(stMatMu, &parentVal);
    pCPD->SetStatistics(pMat, stMatMu, &parentVal);
    
    
    pMat = pDistr->GetStatisticalMatrix(stMatSigma, &parentVal);
    pCPD->SetStatistics(pMat, stMatSigma, &parentVal);
    
    parentVal = 1;
    
    pMat = pDistr->GetStatisticalMatrix(stMatMu, &parentVal);
    pCPD->SetStatistics(pMat, stMatMu, &parentVal);
    
    
    pMat = pDistr->GetStatisticalMatrix(stMatSigma, &parentVal);
    pCPD->SetStatistics(pMat, stMatSigma, &parentVal);

    pCPD->ProcessingStatisticalData(nEvidences);
    
    if( ! pCPD->IsFactorsDistribFunEqual(pBNet1->GetFactor(1), eps) )
    {
    ret = TRS_FAIL;
    }
    
    
    for( i = 0; i < nEvidences; i++)
    {
    delete evidences[i];
    }
    delete pLearn;
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:ASetStatistics.cpp

示例9: main

int main()
{
    PNL_USING
    //we create very small model to start inference on it
    // the model is from Kevin Murphy's BNT\examples\static\belprop_polytree_gaussain
    /*
    Do the example from Satnam Alag's PhD thesis, UCB ME dept 1996 p46
    Make the following polytree, where all arcs point down
    
     0   1
      \ /
       2
      / \
     3   4


    */
    int i;
    //create this model
    int nnodes = 5;
    int numnt = 2;
    CNodeType *nodeTypes = new CNodeType[numnt];
 	nodeTypes[0] = CNodeType(0,2);
    nodeTypes[1] = CNodeType(0,1);
    
    intVector nodeAssociation = intVector(nnodes,0);
    nodeAssociation[1] = 1;
    nodeAssociation[3] = 1;
    int nbs0[] = { 2 };
    int nbs1[] = { 2 };
    int nbs2[] = { 0, 1, 3, 4 };
    int nbs3[] = { 2 };
    int nbs4[] = { 2 };
    int *nbrs[] = { nbs0, nbs1, nbs2, nbs3, nbs4 };
    int numNeighb[] = {1, 1, 4, 1, 1};

    
    ENeighborType ori0[] = { ntChild };
    ENeighborType ori1[] = { ntChild };
    ENeighborType ori2[] = { ntParent, ntParent, ntChild, ntChild };
    ENeighborType ori3[] = { ntParent };
    ENeighborType ori4[] = { ntParent };
    ENeighborType *orient[] = { ori0, ori1, ori2, ori3, ori4 }; 
    
    
    CGraph *pGraph;
    pGraph = CGraph::Create(nnodes, numNeighb, nbrs, orient);
    
    CBNet *pBNet;
    
    pBNet = CBNet::Create( nnodes, numnt, nodeTypes, &nodeAssociation.front(), pGraph );
    //Allocation space for all factors of the model
    pBNet->AllocFactors();
    
    for( i = 0; i < nnodes; i++ )
    {
        //Allocation space for all matrices of CPD
        pBNet->AllocFactor(i);
    }
    
    //now we need to create data for CPDs - we'll create matrices
    CFactor *pCPD;
    floatVector smData = floatVector(2,0.0f);
    floatVector bigData = floatVector(4,1.0f);
    intVector ranges = intVector(2, 1);
    ranges[0] = 2;
    smData[0] = 1.0f;
    CNumericDenseMatrix<float> *mean0 = CNumericDenseMatrix<float>::
        Create( 2, &ranges.front(), &smData.front());
    bigData[0] = 4.0f;
    bigData[3] = 4.0f;
    ranges[1] = 2;
    CNumericDenseMatrix<float> *cov0 = CNumericDenseMatrix<float>::
        Create( 2, &ranges.front(), &bigData.front());
    pCPD = pBNet->GetFactor(0);
    pCPD->AttachMatrix(mean0, matMean);
    pCPD->AttachMatrix(cov0, matCovariance);
    ranges[0] = 1;
    ranges[1] = 1;
    float val = 1.0f;
    CNumericDenseMatrix<float> *mean1 = CNumericDenseMatrix<float>::
        Create( 2, &ranges.front(), &val );
    CNumericDenseMatrix<float> *cov1 = CNumericDenseMatrix<float>::
        Create( 2, &ranges.front(), &val );
    pCPD = pBNet->GetFactor(1);
    pCPD->AttachMatrix(mean1, matMean);
    pCPD->AttachMatrix(cov1, matCovariance);
    smData[0] = 0.0f;
    smData[1] = 0.0f;
    ranges[0] = 2;
    CNumericDenseMatrix<float> *mean2 = CNumericDenseMatrix<float>::
        Create(2, &ranges.front(), &smData.front());
    smData[0] = 2.0f;
    smData[1] = 1.0f;
    CNumericDenseMatrix<float> *w21 = CNumericDenseMatrix<float>::
        Create(2, &ranges.front(), &smData.front());
    bigData[0] = 2.0f;
    bigData[1] = 1.0f;
    bigData[2] = 1.0f;
    bigData[3] = 1.0f;
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:learn_param.cpp

示例10: main

PNL_USING
int main()
{
    int nnodes = 16;
    int nodeslice = 8;
    CBNet* pKjaerulf = pnlExCreateKjaerulfsBNet();
    CDBN*  pKj = CDBN::Create(pKjaerulf);

    int nSeries = 50;
    int	nslices = 101;
    int i;

    intVector nS(nSeries);
    for(i = 0; i < nSeries; i++)
    {
        nS[i] = nslices;
    }

    valueVector vValues;
    vValues.resize(nodeslice);
    intVector obsNodes(nodeslice);
    for( i=0; i<nodeslice; i++)obsNodes[i] = i;
    CEvidence ***pEv;
    pEv = new CEvidence **[nSeries];

    int series, slice, node, val;

    FILE * fp;
    fp = fopen("../Data/kjaerulff.dat", "r");

    if( !fp )
    {
        std::cout<<"can't open cases file"<<std::endl;
        exit(1);
    }

    for( series = 0; series < nSeries; series++ )
    {
        pEv[series] = new CEvidence*[ nslices ];
        for( slice = 0;  slice < nslices; slice++ )
        {
            for( node = 0; node < nodeslice; node++)
            {
                fscanf(fp, "%d,", &val);
        vValues[node].SetFlt(val);
            }
            (pEv[series])[slice] = CEvidence::Create(pKj->GetModelDomain(), obsNodes,  vValues );
        }

    }
    fclose(fp);

    CGraph *pGraph = CGraph::Create(nnodes, NULL, NULL, NULL);
    for(i=0; i<nnodes-1; i++)
    {
    pGraph->AddEdge(i, i+1,1);
    }
    CNodeType *nodeTypes = new CNodeType[1];

    nodeTypes[0].SetType(1, 2);
    int *nodeAssociation = new int[nnodes];

    for ( i = 0; i < nnodes; i++ )
    {
    nodeAssociation[i] = 0;
    }
    CBNet *pBnet = CBNet::Create( nnodes, 1, nodeTypes, nodeAssociation, pGraph );
    pBnet -> AllocFactors();
    floatVector data;
    data.assign(64, 0.0f);

    for ( node = 0; node < nnodes; node++ )
    {
    pBnet->AllocFactor( node );
    (pBnet->GetFactor( node )) ->AllocMatrix( &data.front(), matTable );
    }

    CDBN*  pDBN = CDBN::Create(pBnet);

    CMlDynamicStructLearn *pLearn = CMlDynamicStructLearn::Create(pDBN, itDBNStructLearnML,
    StructLearnHC, BIC, 4, 1, 30);

    pLearn -> SetData(nSeries, &nS.front(), pEv);
    //	pLearn->SetLearnPriorSlice(true);
    //	pLearn->SetMinProgress((float)1e-4);
    pLearn ->Learn();
    const CDAG* pDAG = pLearn->GetResultDag();
    pDAG->Dump();
    ////////////////////////////////////////////////////////////////////////////
    delete pLearn;
    delete pDBN;
    delete pKj;
    for(series = 0; series < nSeries; series++ )
    {
        for( slice = 0;  slice < nslices; slice++ )
        {
            delete (pEv[series])[slice];
        }
    delete[] pEv[series];
    }
//.........这里部分代码省略.........
开发者ID:JacobCWard,项目名称:PyPNL,代码行数:101,代码来源:testSL_DBN.cpp


注:本文中的CBNet::GetFactor方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。