当前位置: 首页>>代码示例>>C++>>正文


C++ BoundConstraint::pruneActive方法代码示例

本文整理汇总了C++中BoundConstraint::pruneActive方法的典型用法代码示例。如果您正苦于以下问题:C++ BoundConstraint::pruneActive方法的具体用法?C++ BoundConstraint::pruneActive怎么用?C++ BoundConstraint::pruneActive使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在BoundConstraint的用法示例。


在下文中一共展示了BoundConstraint::pruneActive方法的6个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: compute

  void compute( Vector<Real> &s, const Vector<Real> &x,
                Objective<Real> &obj, BoundConstraint<Real> &bnd,
                AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    // Compute projected secant step
    // ---> Apply inactive-inactive block of inverse secant to gradient
    gp_->set(*(step_state->gradientVec));
    bnd.pruneActive(*gp_,*(step_state->gradientVec),x,algo_state.gnorm);
    secant_->applyH(s,*gp_);
    bnd.pruneActive(s,*(step_state->gradientVec),x,algo_state.gnorm);
    // ---> Add in active gradient components
    gp_->set(*(step_state->gradientVec));
    bnd.pruneInactive(*d_,*(step_state->gradientVec),x,algo_state.gnorm);
    s.plus(gp_->dual());
    s.scale(-1.0);
  }
开发者ID:Russell-Jones-OxPhys,项目名称:Trilinos,代码行数:17,代码来源:ROL_ProjectedSecantStep.hpp

示例2: compute

  void compute( Vector<Real> &s, const Vector<Real> &x,
                Objective<Real> &obj, BoundConstraint<Real> &bnd,
                AlgorithmState<Real> &algo_state ) {
    Real tol = std::sqrt(ROL_EPSILON<Real>());
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    // Compute projected Newton step
    // ---> Apply inactive-inactive block of inverse hessian to gradient
    gp_->set(*(step_state->gradientVec));
    bnd.pruneActive(*gp_,*(step_state->gradientVec),x,algo_state.gnorm);
    obj.invHessVec(s,*gp_,x,tol);
    bnd.pruneActive(s,*(step_state->gradientVec),x,algo_state.gnorm);
    // ---> Add in active gradient components
    gp_->set(*(step_state->gradientVec));
    bnd.pruneInactive(*d_,*(step_state->gradientVec),x,algo_state.gnorm);
    s.plus(gp_->dual());
    s.scale(-1.0);
  }
开发者ID:Russell-Jones-OxPhys,项目名称:Trilinos,代码行数:18,代码来源:ROL_ProjectedNewtonStep.hpp

示例3: GradDotStep

 Real GradDotStep(const Vector<Real> &g, const Vector<Real> &s,
                  const Vector<Real> &x,
                  BoundConstraint<Real> &bnd, Real eps = 0) {
   Real gs(0), one(1);
   if (!bnd.isActivated()) {
     gs = s.dot(g.dual());
   }
   else {
     d_->set(s);
     bnd.pruneActive(*d_,g,x,eps);
     gs = d_->dot(g.dual());
     d_->set(x);
     d_->axpy(-one,g.dual());
     bnd.project(*d_);
     d_->scale(-one);
     d_->plus(x);
     bnd.pruneInactive(*d_,g,x,eps);
     gs -= d_->dot(g.dual());
   }
   return gs;
 }
开发者ID:agrippa,项目名称:Trilinos,代码行数:21,代码来源:ROL_LineSearchStep.hpp

示例4: compute

  /** \brief Compute step.

      Computes a trial step, \f$s_k\f$ as defined by the enum EDescent.  Once the 
      trial step is determined, this function determines an approximate minimizer 
      of the 1D function \f$\phi_k(t) = f(x_k+ts_k)\f$.  This approximate 
      minimizer must satisfy sufficient decrease and curvature conditions.

      @param[out]      s          is the computed trial step
      @param[in]       x          is the current iterate
      @param[in]       obj        is the objective function
      @param[in]       con        are the bound constraints
      @param[in]       algo_state contains the current state of the algorithm
  */
  void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &con, 
                AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();

    Real tol = std::sqrt(ROL_EPSILON);

    // Set active set parameter
    Real eps = 0.0;
    if ( con.isActivated() ) {
      eps = algo_state.gnorm;
    }
    lineSearch_->setData(eps);
    if ( hessian_ != Teuchos::null ) {
      hessian_->setData(eps);
    }
    if ( precond_ != Teuchos::null ) {
      precond_->setData(eps);
    }

    // Compute step s
    switch(edesc_) {
      case DESCENT_NEWTONKRYLOV:
        flagKrylov_ = 0;
        krylov_->run(s,*hessian_,*(step_state->gradientVec),*precond_,iterKrylov_,flagKrylov_);
        break;
      case DESCENT_NEWTON:
      case DESCENT_SECANT:
        hessian_->applyInverse(s,*(step_state->gradientVec),tol);
        break;
      case DESCENT_NONLINEARCG:
        nlcg_->run(s,*(step_state->gradientVec),x,obj);
        break;
      case DESCENT_STEEPEST:
        s.set(step_state->gradientVec->dual());
        break;
      default: break;
    }

    // Compute g.dot(s)
    Real gs = 0.0;
    if ( !con.isActivated() ) {
      gs = -s.dot((step_state->gradientVec)->dual());
    }
    else {
      if ( edesc_ == DESCENT_STEEPEST ) {
        d_->set(x);
        d_->axpy(-1.0,s);
        con.project(*d_);
        d_->scale(-1.0);
        d_->plus(x);
        //d->set(s);
        //con.pruneActive(*d,s,x,eps);
        //con.pruneActive(*d,*(step_state->gradientVec),x,eps);
        gs = -d_->dot((step_state->gradientVec)->dual());
      }
      else {
        d_->set(s);
        con.pruneActive(*d_,*(step_state->gradientVec),x,eps);
        gs = -d_->dot((step_state->gradientVec)->dual());
        d_->set(x);
        d_->axpy(-1.0,(step_state->gradientVec)->dual());
        con.project(*d_);
        d_->scale(-1.0);
        d_->plus(x);
        con.pruneInactive(*d_,*(step_state->gradientVec),x,eps);
        gs -= d_->dot((step_state->gradientVec)->dual());
      }
    }

    // Check if s is a descent direction i.e., g.dot(s) < 0
    if ( gs >= 0.0 || (flagKrylov_ == 2 && iterKrylov_ <= 1) ) {
      s.set((step_state->gradientVec)->dual());
      if ( con.isActivated() ) {
        d_->set(s);
        con.pruneActive(*d_,s,x);
        gs = -d_->dot((step_state->gradientVec)->dual());
      }
      else {
        gs = -s.dot((step_state->gradientVec)->dual());
      }
    }
    s.scale(-1.0);

    // Perform line search
    Real fnew  = algo_state.value;
    ls_nfval_ = 0;
    ls_ngrad_ = 0;
//.........这里部分代码省略.........
开发者ID:ChiahungTai,项目名称:Trilinos,代码行数:101,代码来源:ROL_LineSearchStep.hpp

示例5: status

  virtual bool status( const ELineSearch type, int &ls_neval, int &ls_ngrad, const Real alpha, 
                       const Real fold, const Real sgold, const Real fnew, 
                       const Vector<Real> &x, const Vector<Real> &s, 
                       Objective<Real> &obj, BoundConstraint<Real> &con ) { 
    Real tol = std::sqrt(ROL_EPSILON);

    // Check Armijo Condition
    bool armijo = false;
    if ( con.isActivated() ) {
      Real gs = 0.0;
      if ( edesc_ == DESCENT_STEEPEST ) {
        updateIterate(*d_,x,s,alpha,con);
        d_->scale(-1.0);
        d_->plus(x);
        gs = -s.dot(*d_);
      }
      else {
        d_->set(s);
        d_->scale(-1.0);
        con.pruneActive(*d_,*(grad_),x,eps_);
        gs = alpha*(grad_)->dot(*d_);
        d_->zero();
        updateIterate(*d_,x,s,alpha,con);
        d_->scale(-1.0);
        d_->plus(x);
        con.pruneInactive(*d_,*(grad_),x,eps_);
        gs += d_->dot(grad_->dual());
      }
      if ( fnew <= fold - c1_*gs ) {
        armijo = true;
      }
    }
    else {
      if ( fnew <= fold + c1_*alpha*sgold ) {
        armijo = true;
      }
    }

    // Check Maximum Iteration
    bool itcond = false;
    if ( ls_neval >= maxit_ ) { 
      itcond = true;
    }

    // Check Curvature Condition
    bool curvcond = false;
    if ( armijo && ((type != LINESEARCH_BACKTRACKING && type != LINESEARCH_CUBICINTERP) ||
                    (edesc_ == DESCENT_NONLINEARCG)) ) {
      if (econd_ == CURVATURECONDITION_GOLDSTEIN) {
        if (fnew >= fold + (1.0-c1_)*alpha*sgold) {
          curvcond = true;
        }
      }
      else if (econd_ == CURVATURECONDITION_NULL) {
        curvcond = true;
      }
      else { 
        updateIterate(*xtst_,x,s,alpha,con);
        obj.update(*xtst_);
        obj.gradient(*g_,*xtst_,tol);
        Real sgnew = 0.0;
        if ( con.isActivated() ) {
          d_->set(s);
          d_->scale(-alpha);
          con.pruneActive(*d_,s,x);
          sgnew = -d_->dot(g_->dual());
        }
        else {
          sgnew = s.dot(g_->dual());
        }
        ls_ngrad++;
   
        if (    ((econd_ == CURVATURECONDITION_WOLFE)       
                     && (sgnew >= c2_*sgold))
             || ((econd_ == CURVATURECONDITION_STRONGWOLFE) 
                     && (std::abs(sgnew) <= c2_*std::abs(sgold)))
             || ((econd_ == CURVATURECONDITION_GENERALIZEDWOLFE) 
                     && (c2_*sgold <= sgnew && sgnew <= -c3_*sgold))
             || ((econd_ == CURVATURECONDITION_APPROXIMATEWOLFE) 
                     && (c2_*sgold <= sgnew && sgnew <= (2.0*c1_ - 1.0)*sgold)) ) {
          curvcond = true;
        }
      }
    }

    if (type == LINESEARCH_BACKTRACKING || type == LINESEARCH_CUBICINTERP) {
      if (edesc_ == DESCENT_NONLINEARCG) {
        return ((armijo && curvcond) || itcond);
      }
      else {
        return (armijo || itcond);
      }
    }
    else {
      return ((armijo && curvcond) || itcond);
    }
  }
开发者ID:abhishek4747,项目名称:trilinos,代码行数:97,代码来源:ROL_LineSearch.hpp

示例6: compute

  /** \brief Compute step.

             Given \f$x_k\f$, this function first builds the 
             primal-dual active sets
             \f$\mathcal{A}_k^-\f$ and \f$\mathcal{A}_k^+\f$.  
             Next, it uses CR to compute the inactive 
             components of the step by solving 
             \f[
                 \nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{I}_k}(s_k)_{\mathcal{I}_k}  = 
                     -\nabla f(x_k)_{\mathcal{I}_k}
                     -\nabla^2 f(x_k)_{\mathcal{I}_k,\mathcal{A}_k} (s_k)_{\mathcal{A}_k}.
             \f]
             Finally, it updates the active components of the 
             dual variables as 
             \f[
                \lambda_{k+1} = -\nabla f(x_k)_{\mathcal{A}_k} 
                                -(\nabla^2 f(x_k) s_k)_{\mathcal{A}_k}.
             \f]

             @param[out]       s           is the step computed via PDAS
             @param[in]        x           is the current iterate
             @param[in]        obj         is the objective function
             @param[in]        con         are the bound constraints
             @param[in]        algo_state  is the current state of the algorithm
  */
  void compute( Vector<Real> &s, const Vector<Real> &x, Objective<Real> &obj, BoundConstraint<Real> &con, 
                AlgorithmState<Real> &algo_state ) {
    Teuchos::RCP<StepState<Real> > step_state = Step<Real>::getState();
    s.zero();
    x0_->set(x);
    res_->set(*(step_state->gradientVec));
    for ( iter_ = 0; iter_ < maxit_; iter_++ ) {
      /********************************************************************/
      // MODIFY ITERATE VECTOR TO CHECK ACTIVE SET
      /********************************************************************/
      xlam_->set(*x0_);                          // xlam = x0
      xlam_->axpy(scale_,*(lambda_));            // xlam = x0 + c*lambda
      /********************************************************************/
      // PROJECT x ONTO PRIMAL DUAL FEASIBLE SET
      /********************************************************************/
      As_->zero();                               // As   = 0
   
      con.setVectorToUpperBound(*xbnd_);         // xbnd = u        
      xbnd_->axpy(-1.0,x);                       // xbnd = u - x    
      xtmp_->set(*xbnd_);                        // tmp  = u - x    
      con.pruneUpperActive(*xtmp_,*xlam_,neps_); // tmp  = I(u - x) 
      xbnd_->axpy(-1.0,*xtmp_);                  // xbnd = A(u - x)  
      As_->plus(*xbnd_);                         // As  += A(u - x)

      con.setVectorToLowerBound(*xbnd_);         // xbnd = l
      xbnd_->axpy(-1.0,x);                       // xbnd = l - x
      xtmp_->set(*xbnd_);                        // tmp  = l - x
      con.pruneLowerActive(*xtmp_,*xlam_,neps_); // tmp  = I(l - x)
      xbnd_->axpy(-1.0,*xtmp_);                  // xbnd = A(l - x)
      As_->plus(*xbnd_);                         // As  += A(l - x)
      /********************************************************************/
      // APPLY HESSIAN TO ACTIVE COMPONENTS OF s AND REMOVE INACTIVE 
      /********************************************************************/
      itol_ = std::sqrt(ROL_EPSILON);
      if ( useSecantHessVec_ && secant_ != Teuchos::null ) {        // IHAs = H*As
        secant_->applyB(*gtmp_,*As_,x);
      }
      else {
        obj.hessVec(*gtmp_,*As_,x,itol_);
      }
      con.pruneActive(*gtmp_,*xlam_,neps_);     // IHAs = I(H*As)
      /********************************************************************/
      // SEPARATE ACTIVE AND INACTIVE COMPONENTS OF THE GRADIENT
      /********************************************************************/
      rtmp_->set(*(step_state->gradientVec));    // Inactive components
      con.pruneActive(*rtmp_,*xlam_,neps_);

      Ag_->set(*(step_state->gradientVec));     // Active components
      Ag_->axpy(-1.0,*rtmp_);
      /********************************************************************/
      // SOLVE REDUCED NEWTON SYSTEM 
      /********************************************************************/
      rtmp_->plus(*gtmp_);
      rtmp_->scale(-1.0);                        // rhs = -Ig - I(H*As)
      s.zero();
      if ( rtmp_->norm() > 0.0 ) {             
        //solve(s,*rtmp_,*xlam_,x,obj,con);   // Call conjugate residuals
        krylov_->run(s,*hessian_,*rtmp_,*precond_,iterCR_,flagCR_);
        con.pruneActive(s,*xlam_,neps_);        // s <- Is
      }
      s.plus(*As_);                             // s = Is + As
      /********************************************************************/
      // UPDATE MULTIPLIER 
      /********************************************************************/
      if ( useSecantHessVec_ && secant_ != Teuchos::null ) {
        secant_->applyB(*rtmp_,s,x);
      }
      else {
        obj.hessVec(*rtmp_,s,x,itol_);
      }
      gtmp_->set(*rtmp_);
      con.pruneActive(*gtmp_,*xlam_,neps_);
      lambda_->set(*rtmp_);
      lambda_->axpy(-1.0,*gtmp_);
      lambda_->plus(*Ag_);
//.........这里部分代码省略.........
开发者ID:rainiscold,项目名称:trilinos,代码行数:101,代码来源:ROL_PrimalDualActiveSetStep.hpp


注:本文中的BoundConstraint::pruneActive方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。