本文整理汇总了C++中BlockBegin::pred_at方法的典型用法代码示例。如果您正苦于以下问题:C++ BlockBegin::pred_at方法的具体用法?C++ BlockBegin::pred_at怎么用?C++ BlockBegin::pred_at使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BlockBegin
的用法示例。
在下文中一共展示了BlockBegin::pred_at方法的3个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: process
bool ShortLoopOptimizer::process(BlockBegin* loop_header) {
TRACE_VALUE_NUMBERING(tty->print_cr("** loop header block"));
_too_complicated_loop = false;
_loop_blocks.clear();
_loop_blocks.append(loop_header);
for (int i = 0; i < _loop_blocks.length(); i++) {
BlockBegin* block = _loop_blocks.at(i);
TRACE_VALUE_NUMBERING(tty->print_cr("processing loop block B%d", block->block_id()));
if (block->is_set(BlockBegin::exception_entry_flag)) {
// this would be too complicated
return false;
}
// add predecessors to worklist
for (int j = block->number_of_preds() - 1; j >= 0; j--) {
BlockBegin* pred = block->pred_at(j);
if (pred->is_set(BlockBegin::osr_entry_flag)) {
return false;
}
ValueMap* pred_map = value_map_of(pred);
if (pred_map != NULL) {
current_map()->kill_map(pred_map);
} else if (!_loop_blocks.contains(pred)) {
if (_loop_blocks.length() >= ValueMapMaxLoopSize) {
return false;
}
_loop_blocks.append(pred);
}
}
// use the instruction visitor for killing values
for (Value instr = block->next(); instr != NULL; instr = instr->next()) {
instr->visit(this);
if (_too_complicated_loop) {
return false;
}
}
}
bool optimistic = this->_gvn->compilation()->is_optimistic();
if (UseLoopInvariantCodeMotion && optimistic) {
LoopInvariantCodeMotion code_motion(this, _gvn, loop_header, &_loop_blocks);
}
TRACE_VALUE_NUMBERING(tty->print_cr("** loop successfully optimized"));
return true;
}
示例2: short_loop_optimizer
GlobalValueNumbering::GlobalValueNumbering(IR* ir)
: _current_map(NULL)
, _value_maps(ir->linear_scan_order()->length(), NULL)
{
TRACE_VALUE_NUMBERING(tty->print_cr("****** start of global value numbering"));
ShortLoopOptimizer short_loop_optimizer(this);
int subst_count = 0;
BlockList* blocks = ir->linear_scan_order();
int num_blocks = blocks->length();
BlockBegin* start_block = blocks->at(0);
assert(start_block == ir->start() && start_block->number_of_preds() == 0 && start_block->dominator() == NULL, "must be start block");
assert(start_block->next()->as_Base() != NULL && start_block->next()->next() == NULL, "start block must not have instructions");
// initial, empty value map with nesting 0
set_value_map_of(start_block, new ValueMap());
for (int i = 1; i < num_blocks; i++) {
BlockBegin* block = blocks->at(i);
TRACE_VALUE_NUMBERING(tty->print_cr("**** processing block B%d", block->block_id()));
int num_preds = block->number_of_preds();
assert(num_preds > 0, "block must have predecessors");
BlockBegin* dominator = block->dominator();
assert(dominator != NULL, "dominator must exist");
assert(value_map_of(dominator) != NULL, "value map of dominator must exist");
// create new value map with increased nesting
_current_map = new ValueMap(value_map_of(dominator));
if (num_preds == 1) {
assert(dominator == block->pred_at(0), "dominator must be equal to predecessor");
// nothing to do here
} else if (block->is_set(BlockBegin::linear_scan_loop_header_flag)) {
// block has incoming backward branches -> try to optimize short loops
if (!short_loop_optimizer.process(block)) {
// loop is too complicated, so kill all memory loads because there might be
// stores to them in the loop
current_map()->kill_memory();
}
} else {
// only incoming forward branches that are already processed
for (int j = 0; j < num_preds; j++) {
BlockBegin* pred = block->pred_at(j);
ValueMap* pred_map = value_map_of(pred);
if (pred_map != NULL) {
// propagate killed values of the predecessor to this block
current_map()->kill_map(value_map_of(pred));
} else {
// kill all memory loads because predecessor not yet processed
// (this can happen with non-natural loops and OSR-compiles)
current_map()->kill_memory();
}
}
}
if (block->is_set(BlockBegin::exception_entry_flag)) {
current_map()->kill_exception();
}
TRACE_VALUE_NUMBERING(tty->print("value map before processing block: "); current_map()->print());
// visit all instructions of this block
for (Value instr = block->next(); instr != NULL; instr = instr->next()) {
assert(!instr->has_subst(), "substitution already set");
// check if instruction kills any values
instr->visit(this);
if (instr->hash() != 0) {
Value f = current_map()->find_insert(instr);
if (f != instr) {
assert(!f->has_subst(), "can't have a substitution");
instr->set_subst(f);
subst_count++;
}
}
}
// remember value map for successors
set_value_map_of(block, current_map());
}
if (subst_count != 0) {
SubstitutionResolver resolver(ir);
}
TRACE_VALUE_NUMBERING(tty->print("****** end of global value numbering. "); ValueMap::print_statistics());
}
示例3: merge_fpu_stack_with_successors
bool FpuStackAllocator::merge_fpu_stack_with_successors(BlockBegin* block) {
#ifndef PRODUCT
if (TraceFPUStack) {
tty->print_cr("Propagating FPU stack state for B%d at LIR_Op position %d to successors:",
block->block_id(), pos());
sim()->print();
tty->cr();
}
#endif
bool changed = false;
int number_of_sux = block->number_of_sux();
if (number_of_sux == 1 && block->sux_at(0)->number_of_preds() > 1) {
// The successor has at least two incoming edges, so a stack merge will be necessary
// If this block is the first predecessor, cleanup the current stack and propagate it
// If this block is not the first predecessor, a stack merge will be necessary
BlockBegin* sux = block->sux_at(0);
intArray* state = sux->fpu_stack_state();
LIR_List* instrs = new LIR_List(_compilation);
if (state != NULL) {
// Merge with a successors that already has a FPU stack state
// the block must only have one successor because critical edges must been split
FpuStackSim* cur_sim = sim();
FpuStackSim* sux_sim = temp_sim();
sux_sim->read_state(state);
merge_fpu_stack(instrs, cur_sim, sux_sim);
} else {
// propagate current FPU stack state to successor without state
// clean up stack first so that there are no dead values on the stack
if (ComputeExactFPURegisterUsage) {
FpuStackSim* cur_sim = sim();
ResourceBitMap live_fpu_regs = block->sux_at(0)->fpu_register_usage();
assert(live_fpu_regs.size() == FrameMap::nof_fpu_regs, "missing register usage");
merge_cleanup_fpu_stack(instrs, cur_sim, live_fpu_regs);
}
intArray* state = sim()->write_state();
if (TraceFPUStack) {
tty->print_cr("Setting FPU stack state of B%d (merge path)", sux->block_id());
sim()->print(); tty->cr();
}
sux->set_fpu_stack_state(state);
}
if (instrs->instructions_list()->length() > 0) {
lir()->insert_before(pos(), instrs);
set_pos(instrs->instructions_list()->length() + pos());
changed = true;
}
} else {
// Propagate unmodified Stack to successors where a stack merge is not necessary
intArray* state = sim()->write_state();
for (int i = 0; i < number_of_sux; i++) {
BlockBegin* sux = block->sux_at(i);
#ifdef ASSERT
for (int j = 0; j < sux->number_of_preds(); j++) {
assert(block == sux->pred_at(j), "all critical edges must be broken");
}
// check if new state is same
if (sux->fpu_stack_state() != NULL) {
intArray* sux_state = sux->fpu_stack_state();
assert(state->length() == sux_state->length(), "overwriting existing stack state");
for (int j = 0; j < state->length(); j++) {
assert(state->at(j) == sux_state->at(j), "overwriting existing stack state");
}
}
#endif
#ifndef PRODUCT
if (TraceFPUStack) {
tty->print_cr("Setting FPU stack state of B%d", sux->block_id());
sim()->print(); tty->cr();
}
#endif
sux->set_fpu_stack_state(state);
}
}
#ifndef PRODUCT
// assertions that FPU stack state conforms to all successors' states
intArray* cur_state = sim()->write_state();
for (int i = 0; i < number_of_sux; i++) {
BlockBegin* sux = block->sux_at(i);
intArray* sux_state = sux->fpu_stack_state();
assert(sux_state != NULL, "no fpu state");
assert(cur_state->length() == sux_state->length(), "incorrect length");
for (int i = 0; i < cur_state->length(); i++) {
assert(cur_state->at(i) == sux_state->at(i), "element not equal");
}
}
//.........这里部分代码省略.........