本文整理汇总了C++中BinaryTree::access_root方法的典型用法代码示例。如果您正苦于以下问题:C++ BinaryTree::access_root方法的具体用法?C++ BinaryTree::access_root怎么用?C++ BinaryTree::access_root使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类BinaryTree
的用法示例。
在下文中一共展示了BinaryTree::access_root方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: BuildLabelGTDirect
void BuildLabelGTDirect(Graph& g, BinaryTree& btree, const vector<set<int> >& nodedirectory, vector<vector<int> >& node_mapping_directory, vector<vector<VertexDistancePair> >& LabelGT_From, vector<vector<VertexDistancePair> >& LabelGT_To, vector<vertex_mapping_info>& vertex_mapping_table, vector<int>& vertex_to_nodeID){
//calculate the number of vertices in the connected component (BFS)
queue<int> q;
if(btree.access_root()<0){
cout<<"Btree has not been fully constructed. Exit."<<endl;
exit(-1);
}
q.push(btree.access_root());
while(q.size()>0){
size_t j=q.front();
q.pop();
if (j<nodedirectory.size()){
int i=0;
for(set<int>::const_iterator sit=nodedirectory[j].begin(); sit!=nodedirectory[j].end(); sit++){
if(g[*sit].active==true){
vertex_to_nodeID[*sit]=j;
vertex_mapping_table[*sit].level=btree[j].level;
vertex_mapping_table[*sit].offset=i;
node_mapping_directory[j].push_back(*sit);
g[*sit].active=false;
BFSLabelingDirect(g, *sit, LabelGT_From, 0);//0 means from and in edges;
BFSLabelingDirect(g, *sit, LabelGT_To, 1);//1 means to and out edges;
i++;
}
}
}
if (btree[j].left_child>=0){
q.push(btree[j].left_child);
}
if (btree[j].right_child>=0){
q.push(btree[j].right_child);
}
}
//calculate the number of vertices in the connected component done
}
示例2: buildBinaryTree
void buildBinaryTree(GenericTree& btd, BinaryTree& btree, vector<int>& virtualnode_to_realnode){
multimap<int, int> subsize_root;////The first int is subtree size, and the second is node ID.
for(int current_node=0; current_node<btd.num_nodes(); current_node++){
int current_node_level=btd[current_node].nodelevel;
multimap<int, int> subsize_node;//The first int is subtree size, and the second is node ID.
int parent=-1;
int total_size=0;
for(TreeEdgeList::iterator tit=btd.get_neighbors(current_node).begin(); tit!=btd.get_neighbors(current_node).end(); tit++){
if(btd[tit->nodeID].nodelevel>current_node_level){
subsize_node.insert(pair<int, int>(tit->subtree_size, tit->nodeID));
total_size+=tit->subtree_size;
}else if (btd[tit->nodeID].nodelevel==current_node_level){
cout<<"Internal logic error 1 ocurrs on binary tree construction."<<endl;
}else{//implies btd[tit->nodeID].nodelevel<current_node_level
if (parent==-1){
parent=tit->nodeID;
}else{
cout<<"Internal logic error 2 (multiple parents) ocurrs on binary tree construction."<<endl;
}
}
}
if (parent==-1){//implies root node
subsize_root.insert(pair<int, int>(total_size+1, current_node));
}
btree[current_node].parent=parent;
if(subsize_node.size()==1){
btree[current_node].left_child=(subsize_node.begin())->second;
}else if (subsize_node.size()==2){
multimap<int, int>::iterator mit=subsize_node.begin();
btree[current_node].left_child=mit->second;
mit++;
btree[current_node].right_child=mit->second;
}else if (subsize_node.size()>2){
while(subsize_node.size()>2){
int first_size=(subsize_node.begin())->first;
int first_node=(subsize_node.begin())->second;
subsize_node.erase(subsize_node.begin());
int second_size=(subsize_node.begin())->first;
int second_node=(subsize_node.begin())->second;
subsize_node.erase(subsize_node.begin());
int new_node_id=btree.num_nodes();
//add a virtual node
btree.addNode(new_node_id);
virtualnode_to_realnode.push_back(current_node);
//add a virtual node done
btree[new_node_id].left_child=first_node;
btree[new_node_id].right_child=second_node;
btree[first_node].parent=new_node_id;
btree[second_node].parent=new_node_id;
subsize_node.insert(pair<int, int>(first_size+second_size, new_node_id));
}
multimap<int, int>::iterator mit=subsize_node.begin();
btree[current_node].left_child=mit->second;
btree[mit->second].parent=current_node;
mit++;
btree[current_node].right_child=mit->second;
btree[mit->second].parent=current_node;
}
}
int root=-1;
if(subsize_root.size()==1){
root=(subsize_root.begin())->second;
}else if (subsize_root.size()>1){
while(subsize_root.size()>1){
int first_size=(subsize_root.begin())->first;
int first_node=(subsize_root.begin())->second;
subsize_root.erase(subsize_root.begin());
int second_size=(subsize_root.begin())->first;
int second_node=(subsize_root.begin())->second;
subsize_root.erase(subsize_root.begin());
int new_node_id=btree.num_nodes();
//add a virtual node
btree.addNode(new_node_id);
virtualnode_to_realnode.push_back(-1);//If the root node is a virtual node, there is no real node can be associated with it.
//add a virtual node done
btree[new_node_id].left_child=first_node;
btree[new_node_id].right_child=second_node;
btree[first_node].parent=new_node_id;
btree[second_node].parent=new_node_id;
subsize_root.insert(pair<int, int>(first_size+second_size, new_node_id));
root=new_node_id;
}
}
if(root<0){
cout<<"The btree is empty. Please check input."<<endl;
return;
}else{
btree.access_root()=root;
btree[root].level=0;
int maximum_level=0;
queue<int> q;
q.push(root);
while(q.size()>0){
//.........这里部分代码省略.........