本文整理汇总了C++中AvatarAudioStream::getPosition方法的典型用法代码示例。如果您正苦于以下问题:C++ AvatarAudioStream::getPosition方法的具体用法?C++ AvatarAudioStream::getPosition怎么用?C++ AvatarAudioStream::getPosition使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AvatarAudioStream
的用法示例。
在下文中一共展示了AvatarAudioStream::getPosition方法的10个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: sendEnvironmentPacket
void sendEnvironmentPacket(const SharedNodePointer& node, AudioMixerClientData& data) {
bool hasReverb = false;
float reverbTime, wetLevel;
auto& reverbSettings = AudioMixer::getReverbSettings();
auto& audioZones = AudioMixer::getAudioZones();
AvatarAudioStream* stream = data.getAvatarAudioStream();
glm::vec3 streamPosition = stream->getPosition();
// find reverb properties
for (int i = 0; i < reverbSettings.size(); ++i) {
AABox box = audioZones[reverbSettings[i].zone];
if (box.contains(streamPosition)) {
hasReverb = true;
reverbTime = reverbSettings[i].reverbTime;
wetLevel = reverbSettings[i].wetLevel;
break;
}
}
// check if data changed
bool dataChanged = (stream->hasReverb() != hasReverb) ||
(stream->hasReverb() && (stream->getRevebTime() != reverbTime || stream->getWetLevel() != wetLevel));
if (dataChanged) {
// update stream
if (hasReverb) {
stream->setReverb(reverbTime, wetLevel);
} else {
stream->clearReverb();
}
}
// send packet at change or every so often
float CHANCE_OF_SEND = 0.01f;
bool sendData = dataChanged || (randFloat() < CHANCE_OF_SEND);
if (sendData) {
// size the packet
unsigned char bitset = 0;
int packetSize = sizeof(bitset);
if (hasReverb) {
packetSize += sizeof(reverbTime) + sizeof(wetLevel);
}
// write the packet
auto envPacket = NLPacket::create(PacketType::AudioEnvironment, packetSize);
if (hasReverb) {
setAtBit(bitset, HAS_REVERB_BIT);
}
envPacket->writePrimitive(bitset);
if (hasReverb) {
envPacket->writePrimitive(reverbTime);
envPacket->writePrimitive(wetLevel);
}
// send the packet
DependencyManager::get<NodeList>()->sendPacket(std::move(envPacket), *node);
}
}
示例2: computeGain
float computeGain(const AudioMixerClientData& listenerNodeData, const AvatarAudioStream& listeningNodeStream,
const PositionalAudioStream& streamToAdd, const glm::vec3& relativePosition, bool isEcho) {
float gain = 1.0f;
// injector: apply attenuation
if (streamToAdd.getType() == PositionalAudioStream::Injector) {
gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
// avatar: apply fixed off-axis attenuation to make them quieter as they turn away
} else if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;
// source directivity is based on angle of emission, in local coordinates
glm::vec3 direction = glm::normalize(rotatedListenerPosition);
float angleOfDelivery = fastAcosf(glm::clamp(-direction.z, -1.0f, 1.0f)); // UNIT_NEG_Z is "forward"
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION + (angleOfDelivery * (OFF_AXIS_ATTENUATION_STEP / PI_OVER_TWO));
gain *= offAxisCoefficient;
// apply master gain, only to avatars
gain *= listenerNodeData.getMasterAvatarGain();
}
auto& audioZones = AudioMixer::getAudioZones();
auto& zoneSettings = AudioMixer::getZoneSettings();
// find distance attenuation coefficient
float attenuationPerDoublingInDistance = AudioMixer::getAttenuationPerDoublingInDistance();
for (int i = 0; i < zoneSettings.length(); ++i) {
if (audioZones[zoneSettings[i].source].contains(streamToAdd.getPosition()) &&
audioZones[zoneSettings[i].listener].contains(listeningNodeStream.getPosition())) {
attenuationPerDoublingInDistance = zoneSettings[i].coefficient;
break;
}
}
// distance attenuation
const float ATTENUATION_START_DISTANCE = 1.0f;
float distance = glm::length(relativePosition);
assert(ATTENUATION_START_DISTANCE > EPSILON);
if (distance >= ATTENUATION_START_DISTANCE) {
// translate the zone setting to gain per log2(distance)
float g = 1.0f - attenuationPerDoublingInDistance;
g = glm::clamp(g, EPSILON, 1.0f);
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = fastExp2f(fastLog2f(g) * fastLog2f(distance/ATTENUATION_START_DISTANCE));
// multiply the current attenuation coefficient by the distance coefficient
gain *= distanceCoefficient;
}
return gain;
}
示例3: gainForSource
float AudioMixer::gainForSource(const PositionalAudioStream& streamToAdd,
const AvatarAudioStream& listeningNodeStream, const glm::vec3& relativePosition, bool isEcho) {
float gain = 1.0f;
float distanceBetween = glm::length(relativePosition);
if (distanceBetween < EPSILON) {
distanceBetween = EPSILON;
}
if (streamToAdd.getType() == PositionalAudioStream::Injector) {
gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
}
if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
// source is another avatar, apply fixed off-axis attenuation to make them quieter as they turn away from listener
glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;
float angleOfDelivery = glm::angle(glm::vec3(0.0f, 0.0f, -1.0f),
glm::normalize(rotatedListenerPosition));
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_FORMULA_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION +
(OFF_AXIS_ATTENUATION_FORMULA_STEP * (angleOfDelivery / PI_OVER_TWO));
// multiply the current attenuation coefficient by the calculated off axis coefficient
gain *= offAxisCoefficient;
}
float attenuationPerDoublingInDistance = _attenuationPerDoublingInDistance;
for (int i = 0; i < _zonesSettings.length(); ++i) {
if (_audioZones[_zonesSettings[i].source].contains(streamToAdd.getPosition()) &&
_audioZones[_zonesSettings[i].listener].contains(listeningNodeStream.getPosition())) {
attenuationPerDoublingInDistance = _zonesSettings[i].coefficient;
break;
}
}
if (distanceBetween >= ATTENUATION_BEGINS_AT_DISTANCE) {
// translate the zone setting to gain per log2(distance)
float g = 1.0f - attenuationPerDoublingInDistance;
g = (g < EPSILON) ? EPSILON : g;
g = (g > 1.0f) ? 1.0f : g;
// calculate the distance coefficient using the distance to this node
float distanceCoefficient = exp2f(log2f(g) * log2f(distanceBetween/ATTENUATION_BEGINS_AT_DISTANCE));
// multiply the current attenuation coefficient by the distance coefficient
gain *= distanceCoefficient;
}
return gain;
}
示例4: approximateGain
float approximateGain(const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd) {
float gain = 1.0f;
// injector: apply attenuation
if (streamToAdd.getType() == PositionalAudioStream::Injector) {
gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
}
// avatar: skip attenuation - it is too costly to approximate
// distance attenuation: approximate, ignore zone-specific attenuations
glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();
float distance = glm::length(relativePosition);
return gain / distance;
// avatar: skip master gain - it is constant for all streams
}
示例5: updateHRTFParameters
void AudioMixerSlave::updateHRTFParameters(AudioMixerClientData::MixableStream& mixableStream,
AvatarAudioStream& listeningNodeStream,
float masterListenerGain) {
auto streamToAdd = mixableStream.positionalStream;
// check if this is a server echo of a source back to itself
bool isEcho = (streamToAdd == &listeningNodeStream);
glm::vec3 relativePosition = streamToAdd->getPosition() - listeningNodeStream.getPosition();
float distance = glm::max(glm::length(relativePosition), EPSILON);
float gain = computeGain(masterListenerGain, listeningNodeStream, *streamToAdd, relativePosition, distance, isEcho);
float azimuth = isEcho ? 0.0f : computeAzimuth(listeningNodeStream, listeningNodeStream, relativePosition);
mixableStream.hrtf->setParameterHistory(azimuth, distance, gain);
++stats.hrtfUpdates;
}
示例6: addStream
void AudioMixerSlave::addStream(AudioMixerClientData& listenerNodeData, const QUuid& sourceNodeID,
const AvatarAudioStream& listeningNodeStream, const PositionalAudioStream& streamToAdd,
bool throttle) {
++stats.totalMixes;
// to reduce artifacts we call the HRTF functor for every source, even if throttled or silent
// this ensures the correct tail from last mixed block and the correct spatialization of next first block
// check if this is a server echo of a source back to itself
bool isEcho = (&streamToAdd == &listeningNodeStream);
glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();
float distance = glm::max(glm::length(relativePosition), EPSILON);
float gain = computeGain(listenerNodeData, listeningNodeStream, streamToAdd, relativePosition, isEcho);
float azimuth = isEcho ? 0.0f : computeAzimuth(listeningNodeStream, listeningNodeStream, relativePosition);
const int HRTF_DATASET_INDEX = 1;
if (!streamToAdd.lastPopSucceeded()) {
bool forceSilentBlock = true;
if (!streamToAdd.getLastPopOutput().isNull()) {
bool isInjector = dynamic_cast<const InjectedAudioStream*>(&streamToAdd);
// in an injector, just go silent - the injector has likely ended
// in other inputs (microphone, &c.), repeat with fade to avoid the harsh jump to silence
if (!isInjector) {
// calculate its fade factor, which depends on how many times it's already been repeated.
float fadeFactor = calculateRepeatedFrameFadeFactor(streamToAdd.getConsecutiveNotMixedCount() - 1);
if (fadeFactor > 0.0f) {
// apply the fadeFactor to the gain
gain *= fadeFactor;
forceSilentBlock = false;
}
}
}
if (forceSilentBlock) {
// call renderSilent with a forced silent block to reduce artifacts
// (this is not done for stereo streams since they do not go through the HRTF)
if (!streamToAdd.isStereo() && !isEcho) {
// get the existing listener-source HRTF object, or create a new one
auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());
static int16_t silentMonoBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL] = {};
hrtf.renderSilent(silentMonoBlock, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
++stats.hrtfSilentRenders;
}
return;
}
}
// grab the stream from the ring buffer
AudioRingBuffer::ConstIterator streamPopOutput = streamToAdd.getLastPopOutput();
// stereo sources are not passed through HRTF
if (streamToAdd.isStereo()) {
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; ++i) {
_mixSamples[i] += float(streamPopOutput[i] * gain / AudioConstants::MAX_SAMPLE_VALUE);
}
++stats.manualStereoMixes;
return;
}
// echo sources are not passed through HRTF
if (isEcho) {
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; i += 2) {
auto monoSample = float(streamPopOutput[i / 2] * gain / AudioConstants::MAX_SAMPLE_VALUE);
_mixSamples[i] += monoSample;
_mixSamples[i + 1] += monoSample;
}
++stats.manualEchoMixes;
return;
}
// get the existing listener-source HRTF object, or create a new one
auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());
streamPopOutput.readSamples(_bufferSamples, AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
if (streamToAdd.getLastPopOutputLoudness() == 0.0f) {
// call renderSilent to reduce artifacts
hrtf.renderSilent(_bufferSamples, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
++stats.hrtfSilentRenders;
return;
}
if (throttle) {
// call renderSilent with actual frame data and a gain of 0.0f to reduce artifacts
hrtf.renderSilent(_bufferSamples, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, 0.0f,
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
++stats.hrtfThrottleRenders;
//.........这里部分代码省略.........
示例7: prepareMix
bool AudioMixerSlave::prepareMix(const SharedNodePointer& listener) {
AvatarAudioStream* listenerAudioStream = static_cast<AudioMixerClientData*>(listener->getLinkedData())->getAvatarAudioStream();
AudioMixerClientData* listenerData = static_cast<AudioMixerClientData*>(listener->getLinkedData());
// if we received an invalid position from this listener, then refuse to make them a mix
// because we don't know how to do it properly
if (!listenerAudioStream->hasValidPosition()) {
return false;
}
// zero out the mix for this listener
memset(_mixSamples, 0, sizeof(_mixSamples));
bool isThrottling = _throttlingRatio > 0.0f;
std::vector<std::pair<float, SharedNodePointer>> throttledNodes;
typedef void (AudioMixerSlave::*MixFunctor)(
AudioMixerClientData&, const QUuid&, const AvatarAudioStream&, const PositionalAudioStream&);
auto forAllStreams = [&](const SharedNodePointer& node, AudioMixerClientData* nodeData, MixFunctor mixFunctor) {
auto nodeID = node->getUUID();
for (auto& streamPair : nodeData->getAudioStreams()) {
auto nodeStream = streamPair.second;
(this->*mixFunctor)(*listenerData, nodeID, *listenerAudioStream, *nodeStream);
}
};
#ifdef HIFI_AUDIO_MIXER_DEBUG
auto mixStart = p_high_resolution_clock::now();
#endif
std::for_each(_begin, _end, [&](const SharedNodePointer& node) {
AudioMixerClientData* nodeData = static_cast<AudioMixerClientData*>(node->getLinkedData());
if (!nodeData) {
return;
}
if (*node == *listener) {
// only mix the echo, if requested
for (auto& streamPair : nodeData->getAudioStreams()) {
auto nodeStream = streamPair.second;
if (nodeStream->shouldLoopbackForNode()) {
mixStream(*listenerData, node->getUUID(), *listenerAudioStream, *nodeStream);
}
}
} else if (!listenerData->shouldIgnore(listener, node, _frame)) {
if (!isThrottling) {
forAllStreams(node, nodeData, &AudioMixerSlave::mixStream);
} else {
auto nodeID = node->getUUID();
// compute the node's max relative volume
float nodeVolume = 0.0f;
for (auto& streamPair : nodeData->getAudioStreams()) {
auto nodeStream = streamPair.second;
// approximate the gain
glm::vec3 relativePosition = nodeStream->getPosition() - listenerAudioStream->getPosition();
float gain = approximateGain(*listenerAudioStream, *nodeStream, relativePosition);
// modify by hrtf gain adjustment
auto& hrtf = listenerData->hrtfForStream(nodeID, nodeStream->getStreamIdentifier());
gain *= hrtf.getGainAdjustment();
auto streamVolume = nodeStream->getLastPopOutputTrailingLoudness() * gain;
nodeVolume = std::max(streamVolume, nodeVolume);
}
// max-heapify the nodes by relative volume
throttledNodes.push_back({ nodeVolume, node });
std::push_heap(throttledNodes.begin(), throttledNodes.end());
}
}
});
if (isThrottling) {
// pop the loudest nodes off the heap and mix their streams
int numToRetain = (int)(std::distance(_begin, _end) * (1 - _throttlingRatio));
for (int i = 0; i < numToRetain; i++) {
if (throttledNodes.empty()) {
break;
}
std::pop_heap(throttledNodes.begin(), throttledNodes.end());
auto& node = throttledNodes.back().second;
AudioMixerClientData* nodeData = static_cast<AudioMixerClientData*>(node->getLinkedData());
forAllStreams(node, nodeData, &AudioMixerSlave::mixStream);
throttledNodes.pop_back();
}
// throttle the remaining nodes' streams
for (const std::pair<float, SharedNodePointer>& nodePair : throttledNodes) {
auto& node = nodePair.second;
AudioMixerClientData* nodeData = static_cast<AudioMixerClientData*>(node->getLinkedData());
forAllStreams(node, nodeData, &AudioMixerSlave::throttleStream);
}
}
#ifdef HIFI_AUDIO_MIXER_DEBUG
//.........这里部分代码省略.........
示例8: computeGain
float computeGain(float masterListenerGain, const AvatarAudioStream& listeningNodeStream,
const PositionalAudioStream& streamToAdd, const glm::vec3& relativePosition, float distance, bool isEcho) {
float gain = 1.0f;
// injector: apply attenuation
if (streamToAdd.getType() == PositionalAudioStream::Injector) {
gain *= reinterpret_cast<const InjectedAudioStream*>(&streamToAdd)->getAttenuationRatio();
// avatar: apply fixed off-axis attenuation to make them quieter as they turn away
} else if (!isEcho && (streamToAdd.getType() == PositionalAudioStream::Microphone)) {
glm::vec3 rotatedListenerPosition = glm::inverse(streamToAdd.getOrientation()) * relativePosition;
// source directivity is based on angle of emission, in local coordinates
glm::vec3 direction = glm::normalize(rotatedListenerPosition);
float angleOfDelivery = fastAcosf(glm::clamp(-direction.z, -1.0f, 1.0f)); // UNIT_NEG_Z is "forward"
const float MAX_OFF_AXIS_ATTENUATION = 0.2f;
const float OFF_AXIS_ATTENUATION_STEP = (1 - MAX_OFF_AXIS_ATTENUATION) / 2.0f;
float offAxisCoefficient = MAX_OFF_AXIS_ATTENUATION + (angleOfDelivery * (OFF_AXIS_ATTENUATION_STEP / PI_OVER_TWO));
gain *= offAxisCoefficient;
// apply master gain, only to avatars
gain *= masterListenerGain;
}
auto& audioZones = AudioMixer::getAudioZones();
auto& zoneSettings = AudioMixer::getZoneSettings();
// find distance attenuation coefficient
float attenuationPerDoublingInDistance = AudioMixer::getAttenuationPerDoublingInDistance();
for (const auto& settings : zoneSettings) {
if (audioZones[settings.source].area.contains(streamToAdd.getPosition()) &&
audioZones[settings.listener].area.contains(listeningNodeStream.getPosition())) {
attenuationPerDoublingInDistance = settings.coefficient;
break;
}
}
if (attenuationPerDoublingInDistance < 0.0f) {
// translate a negative zone setting to distance limit
const float MIN_DISTANCE_LIMIT = ATTN_DISTANCE_REF + 1.0f; // silent after 1m
float distanceLimit = std::max(-attenuationPerDoublingInDistance, MIN_DISTANCE_LIMIT);
// calculate the LINEAR attenuation using the distance to this node
// reference attenuation of 0dB at distance = ATTN_DISTANCE_REF
float d = distance - ATTN_DISTANCE_REF;
gain *= std::max(1.0f - d / (distanceLimit - ATTN_DISTANCE_REF), 0.0f);
gain = std::min(gain, ATTN_GAIN_MAX);
} else {
// translate a positive zone setting to gain per log2(distance)
const float MIN_ATTENUATION_COEFFICIENT = 0.001f; // -60dB per log2(distance)
float g = glm::clamp(1.0f - attenuationPerDoublingInDistance, MIN_ATTENUATION_COEFFICIENT, 1.0f);
// calculate the LOGARITHMIC attenuation using the distance to this node
// reference attenuation of 0dB at distance = ATTN_DISTANCE_REF
float d = (1.0f / ATTN_DISTANCE_REF) * std::max(distance, HRTF_NEARFIELD_MIN);
gain *= fastExp2f(fastLog2f(g) * fastLog2f(d));
gain = std::min(gain, ATTN_GAIN_MAX);
}
return gain;
}
示例9: addStream
void AudioMixerSlave::addStream(AudioMixerClientData::MixableStream& mixableStream,
AvatarAudioStream& listeningNodeStream,
float masterListenerGain, bool isSoloing) {
++stats.totalMixes;
auto streamToAdd = mixableStream.positionalStream;
// check if this is a server echo of a source back to itself
bool isEcho = (streamToAdd == &listeningNodeStream);
glm::vec3 relativePosition = streamToAdd->getPosition() - listeningNodeStream.getPosition();
float distance = glm::max(glm::length(relativePosition), EPSILON);
float azimuth = isEcho ? 0.0f : computeAzimuth(listeningNodeStream, listeningNodeStream, relativePosition);
float gain = masterListenerGain;
if (!isSoloing) {
gain = computeGain(masterListenerGain, listeningNodeStream, *streamToAdd, relativePosition, distance, isEcho);
}
const int HRTF_DATASET_INDEX = 1;
if (!streamToAdd->lastPopSucceeded()) {
bool forceSilentBlock = true;
if (!streamToAdd->getLastPopOutput().isNull()) {
bool isInjector = dynamic_cast<const InjectedAudioStream*>(streamToAdd);
// in an injector, just go silent - the injector has likely ended
// in other inputs (microphone, &c.), repeat with fade to avoid the harsh jump to silence
if (!isInjector) {
// calculate its fade factor, which depends on how many times it's already been repeated.
float fadeFactor = calculateRepeatedFrameFadeFactor(streamToAdd->getConsecutiveNotMixedCount() - 1);
if (fadeFactor > 0.0f) {
// apply the fadeFactor to the gain
gain *= fadeFactor;
forceSilentBlock = false;
}
}
}
if (forceSilentBlock) {
// call renderSilent with a forced silent block to reduce artifacts
// (this is not done for stereo streams since they do not go through the HRTF)
if (!streamToAdd->isStereo() && !isEcho) {
static int16_t silentMonoBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL] = {};
mixableStream.hrtf->render(silentMonoBlock, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
++stats.hrtfRenders;
}
return;
}
}
// grab the stream from the ring buffer
AudioRingBuffer::ConstIterator streamPopOutput = streamToAdd->getLastPopOutput();
// stereo sources are not passed through HRTF
if (streamToAdd->isStereo()) {
// apply the avatar gain adjustment
gain *= mixableStream.hrtf->getGainAdjustment();
const float scale = 1 / 32768.0f; // int16_t to float
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL; i++) {
_mixSamples[2*i+0] += (float)streamPopOutput[2*i+0] * gain * scale;
_mixSamples[2*i+1] += (float)streamPopOutput[2*i+1] * gain * scale;
}
++stats.manualStereoMixes;
} else if (isEcho) {
// echo sources are not passed through HRTF
const float scale = 1/32768.0f; // int16_t to float
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL; i++) {
float sample = (float)streamPopOutput[i] * gain * scale;
_mixSamples[2*i+0] += sample;
_mixSamples[2*i+1] += sample;
}
++stats.manualEchoMixes;
} else {
streamPopOutput.readSamples(_bufferSamples, AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
mixableStream.hrtf->render(_bufferSamples, _mixSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
++stats.hrtfRenders;
}
}
示例10: addStreamToMixForListeningNodeWithStream
void AudioMixer::addStreamToMixForListeningNodeWithStream(AudioMixerClientData& listenerNodeData,
const PositionalAudioStream& streamToAdd,
const QUuid& sourceNodeID,
const AvatarAudioStream& listeningNodeStream) {
// to reduce artifacts we calculate the gain and azimuth for every source for this listener
// even if we are not going to end up mixing in this source
++_totalMixes;
// this ensures that the tail of any previously mixed audio or the first block of new audio sounds correct
// check if this is a server echo of a source back to itself
bool isEcho = (&streamToAdd == &listeningNodeStream);
glm::vec3 relativePosition = streamToAdd.getPosition() - listeningNodeStream.getPosition();
// figure out the distance between source and listener
float distance = glm::max(glm::length(relativePosition), EPSILON);
// figure out the gain for this source at the listener
float gain = gainForSource(streamToAdd, listeningNodeStream, relativePosition, isEcho);
// figure out the azimuth to this source at the listener
float azimuth = isEcho ? 0.0f : azimuthForSource(streamToAdd, listeningNodeStream, relativePosition);
float repeatedFrameFadeFactor = 1.0f;
static const int HRTF_DATASET_INDEX = 1;
if (!streamToAdd.lastPopSucceeded()) {
bool forceSilentBlock = true;
if (_streamSettings._repetitionWithFade && !streamToAdd.getLastPopOutput().isNull()) {
// reptition with fade is enabled, and we do have a valid previous frame to repeat
// so we mix the previously-mixed block
// this is preferable to not mixing it at all to avoid the harsh jump to silence
// we'll repeat the last block until it has a block to mix
// and we'll gradually fade that repeated block into silence.
// calculate its fade factor, which depends on how many times it's already been repeated.
repeatedFrameFadeFactor = calculateRepeatedFrameFadeFactor(streamToAdd.getConsecutiveNotMixedCount() - 1);
if (repeatedFrameFadeFactor > 0.0f) {
// apply the repeatedFrameFadeFactor to the gain
gain *= repeatedFrameFadeFactor;
forceSilentBlock = false;
}
}
if (forceSilentBlock) {
// we're deciding not to repeat either since we've already done it enough times or repetition with fade is disabled
// in this case we will call renderSilent with a forced silent block
// this ensures the correct tail from the previously mixed block and the correct spatialization of first block
// of any upcoming audio
if (!streamToAdd.isStereo() && !isEcho) {
// get the existing listener-source HRTF object, or create a new one
auto& hrtf = listenerNodeData.hrtfForStream(sourceNodeID, streamToAdd.getStreamIdentifier());
// this is not done for stereo streams since they do not go through the HRTF
static int16_t silentMonoBlock[AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL] = {};
hrtf.renderSilent(silentMonoBlock, _mixedSamples, HRTF_DATASET_INDEX, azimuth, distance, gain,
AudioConstants::NETWORK_FRAME_SAMPLES_PER_CHANNEL);
++_hrtfSilentRenders;;
}
return;
}
}
// grab the stream from the ring buffer
AudioRingBuffer::ConstIterator streamPopOutput = streamToAdd.getLastPopOutput();
if (streamToAdd.isStereo() || isEcho) {
// this is a stereo source or server echo so we do not pass it through the HRTF
// simply apply our calculated gain to each sample
if (streamToAdd.isStereo()) {
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; ++i) {
_mixedSamples[i] += float(streamPopOutput[i] * gain / AudioConstants::MAX_SAMPLE_VALUE);
}
++_manualStereoMixes;
} else {
for (int i = 0; i < AudioConstants::NETWORK_FRAME_SAMPLES_STEREO; i += 2) {
auto monoSample = float(streamPopOutput[i / 2] * gain / AudioConstants::MAX_SAMPLE_VALUE);
_mixedSamples[i] += monoSample;
_mixedSamples[i + 1] += monoSample;
}
++_manualEchoMixes;
}
return;
//.........这里部分代码省略.........