本文整理汇总了C++中AsmPrinter::getObjFileLowering方法的典型用法代码示例。如果您正苦于以下问题:C++ AsmPrinter::getObjFileLowering方法的具体用法?C++ AsmPrinter::getObjFileLowering怎么用?C++ AsmPrinter::getObjFileLowering使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AsmPrinter
的用法示例。
在下文中一共展示了AsmPrinter::getObjFileLowering方法的9个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: beginAssembly
void OcamlGCMetadataPrinter::beginAssembly(AsmPrinter &AP) {
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
EmitCamlGlobal(getModule(), AP, "code_begin");
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(getModule(), AP, "data_begin");
}
示例2: beginAssembly
void OcamlGCMetadataPrinter::beginAssembly(Module &M, GCModuleInfo &Info,
AsmPrinter &AP) {
AP.OutStreamer->SwitchSection(AP.getObjFileLowering().getTextSection());
EmitCamlGlobal(M, AP, "code_begin");
AP.OutStreamer->SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(M, AP, "data_begin");
}
示例3: finishAssembly
/// emitAssembly - Print the frametable. The ocaml frametable format is thus:
///
/// extern "C" struct align(sizeof(intptr_t)) {
/// uint16_t NumDescriptors;
/// struct align(sizeof(intptr_t)) {
/// void *ReturnAddress;
/// uint16_t FrameSize;
/// uint16_t NumLiveOffsets;
/// uint16_t LiveOffsets[NumLiveOffsets];
/// } Descriptors[NumDescriptors];
/// } caml${module}__frametable;
///
/// Note that this precludes programs from stack frames larger than 64K
/// (FrameSize and LiveOffsets would overflow). FrameTablePrinter will abort if
/// either condition is detected in a function which uses the GC.
///
void OcamlGCMetadataPrinter::finishAssembly(AsmPrinter &AP) {
unsigned IntPtrSize = AP.TM.getTargetData()->getPointerSize();
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
EmitCamlGlobal(getModule(), AP, "code_end");
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(getModule(), AP, "data_end");
// FIXME: Why does ocaml emit this??
AP.OutStreamer.EmitIntValue(0, IntPtrSize, 0);
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(getModule(), AP, "frametable");
for (iterator I = begin(), IE = end(); I != IE; ++I) {
GCFunctionInfo &FI = **I;
uint64_t FrameSize = FI.getFrameSize();
if (FrameSize >= 1<<16) {
// Very rude!
report_fatal_error("Function '" + FI.getFunction().getName() +
"' is too large for the ocaml GC! "
"Frame size " + Twine(FrameSize) + ">= 65536.\n"
"(" + Twine(uintptr_t(&FI)) + ")");
}
AP.OutStreamer.AddComment("live roots for " +
Twine(FI.getFunction().getName()));
AP.OutStreamer.AddBlankLine();
for (GCFunctionInfo::iterator J = FI.begin(), JE = FI.end(); J != JE; ++J) {
size_t LiveCount = FI.live_size(J);
if (LiveCount >= 1<<16) {
// Very rude!
report_fatal_error("Function '" + FI.getFunction().getName() +
"' is too large for the ocaml GC! "
"Live root count "+Twine(LiveCount)+" >= 65536.");
}
AP.OutStreamer.EmitSymbolValue(J->Label, IntPtrSize, 0);
AP.EmitInt16(FrameSize);
AP.EmitInt16(LiveCount);
for (GCFunctionInfo::live_iterator K = FI.live_begin(J),
KE = FI.live_end(J); K != KE; ++K) {
assert(K->StackOffset < 1<<16 &&
"GC root stack offset is outside of fixed stack frame and out "
"of range for ocaml GC!");
AP.EmitInt32(K->StackOffset);
}
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
}
}
}
示例4: emit
// Emit addresses into the section given.
void AddressPool::emit(AsmPrinter &Asm, MCSection *AddrSection) {
if (Pool.empty())
return;
// Start the dwarf addr section.
Asm.OutStreamer->SwitchSection(AddrSection);
// Order the address pool entries by ID
SmallVector<const MCExpr *, 64> Entries(Pool.size());
for (const auto &I : Pool)
Entries[I.second.Number] =
I.second.TLS
? Asm.getObjFileLowering().getDebugThreadLocalSymbol(I.first)
: MCSymbolRefExpr::Create(I.first, Asm.OutContext);
for (const MCExpr *Entry : Entries)
Asm.OutStreamer->EmitValue(Entry, Asm.getDataLayout().getPointerSize());
}
示例5: finishAssembly
void ErlangGCPrinter::finishAssembly(Module &M, GCModuleInfo &Info,
AsmPrinter &AP) {
MCStreamer &OS = *AP.OutStreamer;
unsigned IntPtrSize = M.getDataLayout().getPointerSize();
// Put this in a custom .note section.
OS.SwitchSection(
AP.getObjFileLowering().getContext().getELFSection(".note.gc",
ELF::SHT_PROGBITS, 0));
// For each function...
for (GCModuleInfo::FuncInfoVec::iterator FI = Info.funcinfo_begin(),
IE = Info.funcinfo_end();
FI != IE; ++FI) {
GCFunctionInfo &MD = **FI;
if (MD.getStrategy().getName() != getStrategy().getName())
// this function is managed by some other GC
continue;
/** A compact GC layout. Emit this data structure:
*
* struct {
* int16_t PointCount;
* void *SafePointAddress[PointCount];
* int16_t StackFrameSize; (in words)
* int16_t StackArity;
* int16_t LiveCount;
* int16_t LiveOffsets[LiveCount];
* } __gcmap_<FUNCTIONNAME>;
**/
// Align to address width.
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
// Emit PointCount.
OS.AddComment("safe point count");
AP.EmitInt16(MD.size());
// And each safe point...
for (GCFunctionInfo::iterator PI = MD.begin(), PE = MD.end(); PI != PE;
++PI) {
// Emit the address of the safe point.
OS.AddComment("safe point address");
MCSymbol *Label = PI->Label;
AP.EmitLabelPlusOffset(Label /*Hi*/, 0 /*Offset*/, 4 /*Size*/);
}
// Stack information never change in safe points! Only print info from the
// first call-site.
GCFunctionInfo::iterator PI = MD.begin();
// Emit the stack frame size.
OS.AddComment("stack frame size (in words)");
AP.EmitInt16(MD.getFrameSize() / IntPtrSize);
// Emit stack arity, i.e. the number of stacked arguments.
unsigned RegisteredArgs = IntPtrSize == 4 ? 5 : 6;
unsigned StackArity = MD.getFunction().arg_size() > RegisteredArgs
? MD.getFunction().arg_size() - RegisteredArgs
: 0;
OS.AddComment("stack arity");
AP.EmitInt16(StackArity);
// Emit the number of live roots in the function.
OS.AddComment("live root count");
AP.EmitInt16(MD.live_size(PI));
// And for each live root...
for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
LE = MD.live_end(PI);
LI != LE; ++LI) {
// Emit live root's offset within the stack frame.
OS.AddComment("stack index (offset / wordsize)");
AP.EmitInt16(LI->StackOffset / IntPtrSize);
}
}
}
示例6: finishAssembly
/// emitAssembly - Print the frametable. The ocaml frametable format is thus:
///
/// extern "C" struct align(sizeof(intptr_t)) {
/// uint16_t NumDescriptors;
/// struct align(sizeof(intptr_t)) {
/// void *ReturnAddress;
/// uint16_t FrameSize;
/// uint16_t NumLiveOffsets;
/// uint16_t LiveOffsets[NumLiveOffsets];
/// } Descriptors[NumDescriptors];
/// } caml${module}__frametable;
///
/// Note that this precludes programs from stack frames larger than 64K
/// (FrameSize and LiveOffsets would overflow). FrameTablePrinter will abort if
/// either condition is detected in a function which uses the GC.
///
void OcamlGCMetadataPrinter::finishAssembly(AsmPrinter &AP) {
unsigned IntPtrSize = AP.TM.getTargetData()->getPointerSize();
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getTextSection());
EmitCamlGlobal(getModule(), AP, "code_end");
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(getModule(), AP, "data_end");
// FIXME: Why does ocaml emit this??
AP.OutStreamer.EmitIntValue(0, IntPtrSize, 0);
AP.OutStreamer.SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(getModule(), AP, "frametable");
int NumDescriptors = 0;
for (iterator I = begin(), IE = end(); I != IE; ++I) {
GCFunctionInfo &FI = **I;
for (GCFunctionInfo::iterator J = FI.begin(), JE = FI.end(); J != JE; ++J) {
NumDescriptors++;
}
}
if (NumDescriptors >= 1<<16) {
// Very rude!
report_fatal_error(" Too much descriptor for ocaml GC");
}
AP.EmitInt16(NumDescriptors);
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
const MCRegisterInfo &MRI = AP.OutStreamer.getContext().getRegisterInfo();
for (iterator I = begin(), IE = end(); I != IE; ++I) {
GCFunctionInfo &FI = **I;
uint64_t FrameSize = FI.getFrameSize();
if (FrameSize >= 1<<16) {
// Very rude!
report_fatal_error("Function '" + FI.getFunction().getName() +
"' is too large for the ocaml GC! "
"Frame size " + Twine(FrameSize) + ">= 65536.\n"
"(" + Twine(uintptr_t(&FI)) + ")");
}
AP.OutStreamer.AddComment("live roots for " +
Twine(FI.getFunction().getName()));
AP.OutStreamer.AddBlankLine();
for (unsigned PI = 0, PE = FI.size(); PI != PE; ++PI) {
size_t LiveCount = FI.live_size(PI);
if (LiveCount >= 1<<16) {
// Very rude!
report_fatal_error("Function '" + FI.getFunction().getName() +
"' is too large for the ocaml GC! "
"Live root count "+Twine(LiveCount)+" >= 65536.");
}
GCPoint &Point = FI.getPoint(PI);
AP.OutStreamer.EmitSymbolValue(Point.Label, IntPtrSize, 0);
AP.EmitInt16(FrameSize);
AP.EmitInt16(LiveCount);
for (GCFunctionInfo::live_iterator K = FI.live_begin(PI),
KE = FI.live_end(PI); K != KE; ++K) {
if (K->isReg()) {
AP.OutStreamer.AddComment("register root at " +
Twine(MRI.getName(K->Loc.PhysReg)));
AP.OutStreamer.AddBlankLine();
continue;
}
if (K->Loc.StackOffset >= 1<<16) {
// Very rude!
report_fatal_error(
"GC root stack offset is outside of fixed stack frame and out "
"of range for ocaml GC!");
}
AP.EmitInt16(K->Loc.StackOffset);
}
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
}
}
}
示例7: finishAssembly
void RgcPrinter::finishAssembly(Module &M, GCModuleInfo &Info, AsmPrinter &AP) {
MCStreamer &OS = AP.OutStreamer;
unsigned IntPtrSize = AP.TM.getSubtargetImpl()->getDataLayout()->getPointerSize();
// Put this in the data section.
OS.SwitchSection(AP.getObjFileLowering().getDataSection());
// For each function...
for (GCModuleInfo::FuncInfoVec::iterator FI = Info.funcinfo_begin(),
FE = Info.funcinfo_end(); FI != FE; ++FI) {
GCFunctionInfo &MD = **FI;
// A compact GC layout. Emit this data structure:
//
// struct {
// int32_t PointCount;
// void *SafePointAddress[PointCount];
// int32_t StackFrameSize; // in words
// int32_t StackArity;
// int32_t LiveCount;
// int32_t LiveOffsets[LiveCount];
// } __gcmap_<FUNCTIONNAME>;
// Align to address width.
// AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
// Emit PointCount.
OS.AddComment("safe point count");
AP.EmitInt32(MD.size());
// And each safe point...
for (GCFunctionInfo::iterator PI = MD.begin(),
PE = MD.end(); PI != PE; ++PI) {
// Emit the address of the safe point.
OS.AddComment("safe point address");
MCSymbol *Label = PI->Label;
AP.EmitLabelPlusOffset(Label/*Hi*/, 0/*Offset*/, 4/*Size*/);
}
// Stack information never change in safe points! Only print info from the
// first call-site.
GCFunctionInfo::iterator PI = MD.begin();
// Emit the stack frame size.
OS.AddComment("stack frame size (in words)");
AP.EmitInt32(MD.getFrameSize() / IntPtrSize);
// Emit stack arity, i.e. the number of stacked arguments.
unsigned RegisteredArgs = IntPtrSize == 4 ? 5 : 6;
unsigned StackArity = MD.getFunction().arg_size() > RegisteredArgs ?
MD.getFunction().arg_size() - RegisteredArgs : 0;
OS.AddComment("stack arity");
AP.EmitInt32(StackArity);
// Emit the number of live roots in the function.
OS.AddComment("live root count");
AP.EmitInt32(MD.live_size(PI));
// And for each live root...
for (GCFunctionInfo::live_iterator LI = MD.live_begin(PI),
LE = MD.live_end(PI);
LI != LE; ++LI) {
// Emit live root's offset within the stack frame.
OS.AddComment("stack index (offset / wordsize)");
AP.EmitInt32(LI->StackOffset);
}
}
}
示例8: finishAssembly
/// emitAssembly - Print the frametable. The ocaml frametable format is thus:
///
/// extern "C" struct align(sizeof(intptr_t)) {
/// uint16_t NumDescriptors;
/// struct align(sizeof(intptr_t)) {
/// void *ReturnAddress;
/// uint16_t FrameSize;
/// uint16_t NumLiveOffsets;
/// uint16_t LiveOffsets[NumLiveOffsets];
/// } Descriptors[NumDescriptors];
/// } caml${module}__frametable;
///
/// Note that this precludes programs from stack frames larger than 64K
/// (FrameSize and LiveOffsets would overflow). FrameTablePrinter will abort if
/// either condition is detected in a function which uses the GC.
///
void OcamlGCMetadataPrinter::finishAssembly(Module &M, GCModuleInfo &Info,
AsmPrinter &AP) {
unsigned IntPtrSize = M.getDataLayout().getPointerSize();
AP.OutStreamer->SwitchSection(AP.getObjFileLowering().getTextSection());
EmitCamlGlobal(M, AP, "code_end");
AP.OutStreamer->SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(M, AP, "data_end");
// FIXME: Why does ocaml emit this??
AP.OutStreamer->EmitIntValue(0, IntPtrSize);
AP.OutStreamer->SwitchSection(AP.getObjFileLowering().getDataSection());
EmitCamlGlobal(M, AP, "frametable");
int NumDescriptors = 0;
for (GCModuleInfo::FuncInfoVec::iterator I = Info.funcinfo_begin(),
IE = Info.funcinfo_end();
I != IE; ++I) {
GCFunctionInfo &FI = **I;
if (FI.getStrategy().getName() != getStrategy().getName())
// this function is managed by some other GC
continue;
for (GCFunctionInfo::iterator J = FI.begin(), JE = FI.end(); J != JE; ++J) {
NumDescriptors++;
}
}
if (NumDescriptors >= 1 << 16) {
// Very rude!
report_fatal_error(" Too much descriptor for ocaml GC");
}
AP.emitInt16(NumDescriptors);
AP.EmitAlignment(IntPtrSize == 4 ? 2 : 3);
for (GCModuleInfo::FuncInfoVec::iterator I = Info.funcinfo_begin(),
IE = Info.funcinfo_end();
I != IE; ++I) {
GCFunctionInfo &FI = **I;
if (FI.getStrategy().getName() != getStrategy().getName())
// this function is managed by some other GC
continue;
uint64_t FrameSize = FI.getFrameSize();
if (FrameSize >= 1 << 16) {
// Very rude!
report_fatal_error("Function '" + FI.getFunction().getName() +
"' is too large for the ocaml GC! "
"Frame size " +
Twine(FrameSize) + ">= 65536.\n"
"(" +
Twine(uintptr_t(&FI)) + ")");
}
AP.OutStreamer->AddComment("live roots for " +
Twine(FI.getFunction().getName()));
AP.OutStreamer->AddBlankLine();
for (GCFunctionInfo::iterator J = FI.begin(), JE = FI.end(); J != JE; ++J) {
size_t LiveCount = FI.live_size(J);
if (LiveCount >= 1 << 16) {
// Very rude!
report_fatal_error("Function '" + FI.getFunction().getName() +
"' is too large for the ocaml GC! "
"Live root count " +
Twine(LiveCount) + " >= 65536.");
}
AP.OutStreamer->EmitSymbolValue(J->Label, IntPtrSize);
AP.emitInt16(FrameSize);
AP.emitInt16(LiveCount);
for (GCFunctionInfo::live_iterator K = FI.live_begin(J),
KE = FI.live_end(J);
K != KE; ++K) {
if (K->StackOffset >= 1 << 16) {
// Very rude!
report_fatal_error(
"GC root stack offset is outside of fixed stack frame and out "
"of range for ocaml GC!");
}
AP.emitInt16(K->StackOffset);
}
//.........这里部分代码省略.........
示例9: finishAssembly
void TartGCPrinter::finishAssembly(AsmPrinter &AP) {
unsigned nextLabel = 1;
SafePointList safePoints;
// Set up for emitting addresses.
int pointerSize = AP.TM.getTargetData()->getPointerSize();
int addressAlignLog;
if (pointerSize == sizeof(int32_t)) {
addressAlignLog = 2;
} else {
addressAlignLog = 3;
}
MCStreamer & outStream = AP.OutStreamer;
// Put this in the data section.
outStream.SwitchSection(AP.getObjFileLowering().getDataSection());
// For each function...
for (iterator FI = begin(), FE = end(); FI != FE; ++FI) {
GCFunctionInfo & gcFn = **FI;
// if (optShowGC) {
// errs() << "GCStrategy: Function: " << gcFn.getFunction().getName() << "\n";
// }
// And each safe point...
for (GCFunctionInfo::iterator sp = gcFn.begin(); sp != gcFn.end(); ++sp) {
StackTraceTable::FieldOffsetList fieldOffsets;
StackTraceTable::TraceMethodList traceMethods;
// And for each live root...
for (GCFunctionInfo::live_iterator rt = gcFn.live_begin(sp); rt != gcFn.live_end(sp); ++rt) {
int64_t offset = rt->StackOffset;
const Constant * meta = rt->Metadata;
if (meta != NULL && !meta->isNullValue()) {
// Meta is non-null, so it's a value type.
const ConstantArray * traceArray = cast<ConstantArray>(getGlobalValue(meta));
// For each trace descriptor in thre meta array...
for (ConstantArray::const_op_iterator it = traceArray->op_begin();
it != traceArray->op_end(); ++it) {
ConstantStruct * descriptor = cast<ConstantStruct>(*it);
ConstantInt * fieldCount = cast<ConstantInt>(descriptor->getOperand(1));
int64_t dscOffset = toInt(descriptor->getOperand(2), AP.TM);
if (fieldCount->isZero()) {
// A zero field count means that this is a trace method descriptor.
const Constant * traceMethod = descriptor->getOperand(3);
assert(offset > -1000 && offset < 1000);
assert(dscOffset > -1000 && dscOffset < 1000);
traceMethods.push_back(TraceMethodEntry(offset + dscOffset, traceMethod));
} else {
// Otherwise it's a field offset descriptor.
const GlobalVariable * fieldOffsetsVar = cast<GlobalVariable>(
descriptor->getOperand(3)->getOperand(0));
// Handle case where the array value is just a ConstantAggregateZero, which
// can be generated by llvm::ConstantArray::get() if the array values
// are all zero.
if (const ConstantAggregateZero * zero =
dyn_cast<ConstantAggregateZero>(fieldOffsetsVar->getInitializer())) {
// Array should never contain duplicate offsets, so an all-zero array
// can only have one entry.
(void)zero;
assert(fieldCount->isOne());
fieldOffsets.push_back(offset + dscOffset);
} else {
// Get the field offset array and add to field offsets for this
// safe point.
const ConstantArray * fieldOffsetArray = cast<ConstantArray>(
fieldOffsetsVar->getInitializer());
for (ConstantArray::const_op_iterator el = fieldOffsetArray->op_begin();
el != fieldOffsetArray->op_end(); ++el) {
fieldOffsets.push_back(
offset + dscOffset + toInt(cast<llvm::Constant>(*el), AP.TM));
}
}
}
}
} else {
// No metadata, so it's an object reference - just add the field offset.
fieldOffsets.push_back(offset);
}
}
// Nothing to trace? Then we're done.
if (fieldOffsets.empty() && traceMethods.empty()) {
continue;
}
// Create a folding set node and merge with any identical trace tables.
std::sort(fieldOffsets.begin(), fieldOffsets.end());
llvm::FoldingSetNodeID id;
StackTraceTable::ProfileEntries(id, fieldOffsets, traceMethods);
void * insertPos;
StackTraceTable * sTable = traceTables.FindNodeOrInsertPos(id, insertPos);
if (sTable == NULL) {
//.........这里部分代码省略.........