本文整理汇总了C++中Asm::frontier方法的典型用法代码示例。如果您正苦于以下问题:C++ Asm::frontier方法的具体用法?C++ Asm::frontier怎么用?C++ Asm::frontier使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类Asm
的用法示例。
在下文中一共展示了Asm::frontier方法的7个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: emitCallToExit
TCA emitCallToExit(CodeBlock& cb) {
Asm a { cb };
// Emit a byte of padding. This is a kind of hacky way to avoid
// hitting an assert in recordGdbStub when we call it with stub - 1
// as the start address.
a.emitNop(1);
auto const start = a.frontier();
if (RuntimeOption::EvalHHIRGenerateAsserts) {
Label ok;
a.emitImmReg(uintptr_t(enterTCExit), rax);
a.cmpq(rax, *rsp());
a.je8 (ok);
a.ud2();
asm_label(a, ok);
}
// Emulate a ret to enterTCExit without actually doing one to avoid
// unbalancing the return stack buffer. The call from enterTCHelper() that
// got us into the TC was popped off the RSB by the ret that got us to this
// stub.
a.addq(8, rsp());
a.jmp(TCA(enterTCExit));
// On a backtrace, gdb tries to locate the calling frame at address
// returnRIP-1. However, for the first VM frame, there is no code at
// returnRIP-1, since the AR was set up manually. For this frame,
// record the tracelet address as starting from this callToExit-1,
// so gdb does not barf.
return start;
}
示例2: emitTraceCall
void emitTraceCall(CodeBlock& cb, int64_t pcOff) {
// TODO(2967396) implement properly, move function
if (arch() == Arch::ARM) return;
Asm as { cb };
// call to a trace function
as.mov_imm64_reg((int64_t)as.frontier(), reg::rcx);
as.mov_reg64_reg64(rVmFp, reg::rdi);
as.mov_reg64_reg64(rVmSp, reg::rsi);
as.mov_imm64_reg(pcOff, reg::rdx);
// do the call; may use a trampoline
emitCall(as, (TCA)traceCallback);
}
示例3: emitFunctionEnterHelper
TCA emitFunctionEnterHelper(CodeBlock& cb, UniqueStubs& us) {
bool (*helper)(const ActRec*, int) = &EventHook::onFunctionCall;
Asm a { cb };
alignJmpTarget(cb);
auto const start = a.frontier();
Label skip;
PhysReg ar = rarg(0);
a. movq (rvmfp(), ar);
a. push (rvmfp());
a. movq (rsp(), rvmfp());
a. push (ar[AROFF(m_savedRip)]);
a. push (ar[AROFF(m_sfp)]);
a. movq (EventHook::NormalFunc, rarg(1));
emitCall(a, CppCall::direct(helper), arg_regs(2));
us.functionEnterHelperReturn = a.frontier();
a. testb (al, al);
a. je8 (skip);
a. addq (16, rsp());
a. pop (rvmfp());
a. ret ();
asm_label(a, skip);
// The event hook has already cleaned up the stack/actrec so that we're ready
// to continue from the original call site. Just need to grab the fp/rip
// from the original frame, and sync rvmsp() to the execution-context's copy.
a. pop (rvmfp());
a. pop (rsi);
a. addq (16, rsp()); // drop our call frame
a. loadq (rvmtl()[rds::kVmspOff], rvmsp());
a. jmp (rsi);
a. ud2 ();
return start;
}
示例4: emitEndCatchHelper
TCA emitEndCatchHelper(CodeBlock& cb, UniqueStubs& us) {
Asm a { cb };
alignJmpTarget(cb);
Label debuggerReturn;
Label resumeCppUnwind;
auto const start = a.frontier();
a. cmpq (0, rvmtl()[unwinderDebuggerReturnSPOff()]);
a. jne8 (debuggerReturn);
// Normal endCatch situation: call back to tc_unwind_resume, which returns
// the catch trace (or null) in rax and the new vmfp in rdx.
a. movq (rvmfp(), rarg(0));
a. call (TCA(tc_unwind_resume));
a. movq (rdx, rvmfp());
a. testq(rax, rax);
a. jz8 (resumeCppUnwind);
a. jmp (rax); // rdx is still live if we're going to code from llvm
asm_label(a, resumeCppUnwind);
static_assert(sizeof(tl_regState) == 1,
"The following store must match the size of tl_regState");
auto vptr = emitTLSAddr(a, tl_regState, rax);
Vasm::prefix(a, vptr).
storeb(static_cast<int32_t>(VMRegState::CLEAN), vptr.mr());
a. loadq(rvmtl()[unwinderExnOff()], rarg(0));
emitCall(a, TCA(_Unwind_Resume), arg_regs(1));
us.endCatchHelperPast = a.frontier();
a. ud2();
asm_label(a, debuggerReturn);
a. loadq (rvmtl()[unwinderDebuggerReturnSPOff()], rvmsp());
a. storeq(0, rvmtl()[unwinderDebuggerReturnSPOff()]);
svcreq::emit_persistent(a.code(), folly::none, REQ_POST_DEBUGGER_RET);
return start;
}
示例5: assert
TCA
emitServiceReqWork(CodeBlock& cb, TCA start, bool persist, SRFlags flags,
ServiceRequest req, const ServiceReqArgVec& argv) {
assert(start);
const bool align = flags & SRFlags::Align;
Asm as { cb };
/*
* Remember previous state of the code cache.
*/
boost::optional<CodeCursor> maybeCc = boost::none;
if (start != as.frontier()) {
maybeCc = boost::in_place<CodeCursor>(boost::ref(as), start);
}
/* max space for moving to align, saving VM regs plus emitting args */
static const int
kVMRegSpace = 0x14,
kMovSize = 0xa,
kNumServiceRegs = sizeof(serviceReqArgRegs) / sizeof(PhysReg),
kMaxStubSpace = kJmpTargetAlign - 1 + kVMRegSpace +
kNumServiceRegs * kMovSize;
if (align) {
moveToAlign(cb);
}
TCA retval = as.frontier();
TRACE(3, "Emit Service Req @%p %s(", start, serviceReqName(req));
/*
* Move args into appropriate regs. Eager VMReg save may bash flags,
* so set the CondCode arguments first.
*/
for (int i = 0; i < argv.size(); ++i) {
assert(i < kNumServiceReqArgRegs);
auto reg = serviceReqArgRegs[i];
const auto& argInfo = argv[i];
switch(argv[i].m_kind) {
case ServiceReqArgInfo::Immediate: {
TRACE(3, "%" PRIx64 ", ", argInfo.m_imm);
as. emitImmReg(argInfo.m_imm, reg);
} break;
case ServiceReqArgInfo::CondCode: {
// Already set before VM reg save.
DEBUG_ONLY TCA start = as.frontier();
as. setcc(argInfo.m_cc, rbyte(reg));
assert(start - as.frontier() <= kMovSize);
TRACE(3, "cc(%x), ", argInfo.m_cc);
} break;
default: not_reached();
}
}
emitEagerVMRegSave(as, RegSaveFlags::SaveFP);
if (persist) {
as. emitImmReg(0, Transl::reg::rAsm);
} else {
as. emitImmReg((uint64_t)start, Transl::reg::rAsm);
}
TRACE(3, ")\n");
as. emitImmReg(req, Transl::reg::rdi);
/*
* Weird hand-shaking with enterTC: reverse-call a service routine.
*
* In the case of some special stubs (m_callToExit, m_retHelper), we
* have already unbalanced the return stack by doing a ret to
* something other than enterTCHelper. In that case
* SRJmpInsteadOfRet indicates to fake the return.
*/
if (flags & SRFlags::JmpInsteadOfRet) {
as. pop(Transl::reg::rax);
as. jmp(Transl::reg::rax);
} else {
as. ret();
}
// TODO(2796856): we should record an OpServiceRequest pseudo-bytecode here.
translator_not_reached(as);
if (!persist) {
/*
* Recycled stubs need to be uniformly sized. Make space for the
* maximal possible service requests.
*/
assert(as.frontier() - start <= kMaxStubSpace);
as.emitNop(start + kMaxStubSpace - as.frontier());
assert(as.frontier() - start == kMaxStubSpace);
}
return retval;
}
示例6: emitMagicFuncPrologue
SrcKey emitMagicFuncPrologue(Func* func, uint32_t nPassed, TCA& start) {
assert(func->isMagic());
assert(func->numParams() == 2);
assert(!func->hasVariadicCaptureParam());
using namespace reg;
using MkPacked = ArrayData* (*)(uint32_t, const TypedValue*);
Asm a { mcg->code.main() };
Label not_magic_call;
auto const rInvName = r13;
assert(!kSpecialCrossTraceRegs.contains(r13));
auto skFuncBody = SrcKey {};
auto callFixup = TCA { nullptr };
/*
* If nPassed is not 2, we need to generate a non-magic prologue
* that can be used if there is no invName on the ActRec.
* (I.e. someone called __call directly.) In the case where nPassed
* is 2, whether it's magic or not the prologue we generate at the
* end will work.
*
* This is placed in a ahead of the actual prologue entry point, but
* only because emitPrologueWork can't easily go to astubs right now.
*/
if (nPassed != 2) {
asm_label(a, not_magic_call);
skFuncBody = emitPrologueWork(func, nPassed);
// There is a REQ_BIND_JMP at the end of emitPrologueWork.
}
// Main prologue entry point is here.
start = emitFuncGuard(a, func);
if (RuntimeOption::EvalJitTransCounters) emitTransCounterInc(a);
a. pop (rStashedAR[AROFF(m_savedRip)]);
maybeEmitStackCheck(a, func);
/*
* Detect if this was actually a magic call (i.e. the ActRec has an
* invName), and shuffle the magic call arguments into a packed
* array.
*
* If it's not a magic call, we jump backward to a normal function
* prologue (see above) for nPassed. Except if nPassed is 2, we'll
* be jumping over the magic call shuffle, to the prologue for 2
* args below.
*/
a. loadq (rStashedAR[AROFF(m_invName)], rInvName);
a. testb (1, rbyte(rInvName));
if (nPassed == 2) {
a. jz8 (not_magic_call);
} else {
not_magic_call.jccAuto(a, CC_Z);
}
a. decq (rInvName);
a. storeq (0, rStashedAR[AROFF(m_varEnv)]);
if (nPassed != 0) { // for zero args, we use the empty array
a. movq (rStashedAR, argNumToRegName[0]);
a. subq (rVmSp, argNumToRegName[0]);
a. shrq (0x4, argNumToRegName[0]);
a. movq (rVmSp, argNumToRegName[1]);
emitCall(a, reinterpret_cast<CodeAddress>(
MkPacked{MixedArray::MakePacked}));
callFixup = a.frontier();
}
if (nPassed != 2) {
a. storel (2, rStashedAR[AROFF(m_numArgsAndGenCtorFlags)]);
}
if (debug) { // "assertion": the emitPrologueWork path fixes up rVmSp.
a. movq (0, rVmSp);
}
// Magic calls expect two arguments---first the name of the called
// function, and then a packed array of the arguments to the
// function. These are where these two TV's will be.
auto const strTV = rStashedAR - cellsToBytes(1);
auto const arrayTV = rStashedAR - cellsToBytes(2);
// Store the two arguments for the magic call.
emitStoreTVType(a, KindOfString, strTV[TVOFF(m_type)]);
a. storeq (rInvName, strTV[TVOFF(m_data)]);
emitStoreTVType(a, KindOfArray, arrayTV[TVOFF(m_type)]);
if (nPassed == 0) {
emitImmStoreq(a, staticEmptyArray(), arrayTV[TVOFF(m_data)]);
} else {
a. storeq (rax, arrayTV[TVOFF(m_data)]);
}
// Every magic call prologue has a case for nPassed == 2, because
// this is how it works when the call is actually magic.
if (nPassed == 2) asm_label(a, not_magic_call);
auto const skFor2Args = emitPrologueWork(func, 2);
if (nPassed == 2) skFuncBody = skFor2Args;
if (RuntimeOption::HHProfServerEnabled && callFixup) {
mcg->fixupMap().recordFixup(
callFixup,
Fixup { skFuncBody.offset() - func->base(), func->numSlotsInFrame() }
);
}
//.........这里部分代码省略.........
示例7: emitFreeLocalsHelpers
TCA emitFreeLocalsHelpers(CodeBlock& cb, UniqueStubs& us) {
Label doRelease;
Label release;
Label loopHead;
auto const rData = rarg(0); // not live coming in, but used
// for destructor calls
auto const rIter = rarg(1); // live coming in
auto const rFinished = rdx;
auto const rType = ecx;
int const tvSize = sizeof(TypedValue);
Asm a { cb };
align(cb, Alignment::CacheLine, AlignContext::Dead);
auto const start = a.frontier();
asm_label(a, release);
a. loadq (rIter[TVOFF(m_data)], rData);
a. cmpl (1, rData[FAST_REFCOUNT_OFFSET]);
jccBlock<CC_L>(a, [&] {
a. jz8 (doRelease);
a. decl (rData[FAST_REFCOUNT_OFFSET]);
});
a. ret ();
asm_label(a, doRelease);
a. push (rIter);
a. push (rFinished);
a. call (lookupDestructor(a, PhysReg(rType)));
// Three quads between where %rsp is now and the saved RIP of the call into
// the stub: two from the pushes above, and one for the saved RIP of the call
// to `release' done below (e.g., in emitDecLocal).
mcg->fixupMap().recordFixup(a.frontier(), makeIndirectFixup(3));
a. pop (rFinished);
a. pop (rIter);
a. ret ();
auto emitDecLocal = [&]() {
Label skipDecRef;
// Zero-extend the type while loading so it can be used as an array index
// to lookupDestructor() above.
emitLoadTVType(a, rIter[TVOFF(m_type)], rType);
emitCmpTVType(a, KindOfRefCountThreshold, rbyte(rType));
a. jle8 (skipDecRef);
a. call (release);
asm_label(a, skipDecRef);
};
alignJmpTarget(cb);
us.freeManyLocalsHelper = a.frontier();
a. lea (rvmfp()[-(jit::kNumFreeLocalsHelpers * sizeof(Cell))],
rFinished);
// Loop for the first few locals, but unroll the final kNumFreeLocalsHelpers.
asm_label(a, loopHead);
emitDecLocal();
a. addq (tvSize, rIter);
a. cmpq (rIter, rFinished);
a. jnz8 (loopHead);
for (int i = 0; i < kNumFreeLocalsHelpers; ++i) {
us.freeLocalsHelpers[kNumFreeLocalsHelpers - i - 1] = a.frontier();
emitDecLocal();
if (i != kNumFreeLocalsHelpers - 1) {
a.addq (tvSize, rIter);
}
}
a. ret ();
// Keep me small!
always_assert(Stats::enabled() ||
(a.frontier() - start <= 4 * kX64CacheLineSize));
return start;
}