当前位置: 首页>>代码示例>>C++>>正文


C++ ArrayScalar::dimension方法代码示例

本文整理汇总了C++中ArrayScalar::dimension方法的典型用法代码示例。如果您正苦于以下问题:C++ ArrayScalar::dimension方法的具体用法?C++ ArrayScalar::dimension怎么用?C++ ArrayScalar::dimension使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在ArrayScalar的用法示例。


在下文中一共展示了ArrayScalar::dimension方法的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: dZ

void TabulatorTri<Scalar,ArrayScalar,derivOrder>::tabulate( ArrayScalar &outputValues ,
                                                            const int deg ,
                                                            const ArrayScalar &z ) 
{
  const int np = z.dimension(0);
  const int card = outputValues.dimension(0);
  FieldContainer<Sacado::Fad::DFad<Scalar> > dZ( z.dimension(0) , z.dimension(1) );
  for (int i=0;i<np;i++) {
    for (int j=0;j<2;j++) {
      dZ(i,j) = Sacado::Fad::DFad<Scalar>( z(i,j) );
      dZ(i,j).diff(j,2);
    }
  }
  FieldContainer<Sacado::Fad::DFad<Scalar> > dResult(card,np,derivOrder+1);

  TabulatorTri<Sacado::Fad::DFad<Scalar>,FieldContainer<Sacado::Fad::DFad<Scalar> >,derivOrder-1>::tabulate(dResult ,
                                                                                                            deg ,
                                                                                                            dZ );

  for (int i=0;i<card;i++) {
    for (int j=0;j<np;j++) {
      outputValues(i,j,0) = dResult(i,j,0).dx(0);
      for (unsigned k=0;k<derivOrder;k++) {
        outputValues(i,j,k+1) = dResult(i,j,k).dx(1);
      }
    }
  }

  return;


}
开发者ID:00liujj,项目名称:trilinos,代码行数:32,代码来源:Intrepid_HGRAD_TRI_Cn_FEM_ORTHDef.hpp

示例2: cell

void Basis_HGRAD_QUAD_C2_FEM<Scalar, ArrayScalar>::getDofCoords(ArrayScalar & DofCoords) const {
#ifdef HAVE_INTREPID2_DEBUG
  // Verify rank of output array.
  TEUCHOS_TEST_FOR_EXCEPTION( !(DofCoords.rank() == 2), std::invalid_argument,
                      ">>> ERROR: (Intrepid2::Basis_HGRAD_QUAD_C2_FEM::getDofCoords) rank = 2 required for DofCoords array");
  // Verify 0th dimension of output array.
  TEUCHOS_TEST_FOR_EXCEPTION( !( static_cast<index_type>(DofCoords.dimension(0)) == static_cast<index_type>(this -> basisCardinality_) ), std::invalid_argument,
                      ">>> ERROR: (Intrepid2::Basis_HGRAD_QUAD_C2_FEM::getDofCoords) mismatch in number of DoF and 0th dimension of DofCoords array");
  // Verify 1st dimension of output array.
  TEUCHOS_TEST_FOR_EXCEPTION( !( static_cast<index_type>(DofCoords.dimension(1)) == static_cast<index_type>(this -> basisCellTopology_.getDimension()) ), std::invalid_argument,
                      ">>> ERROR: (Intrepid2::Basis_HGRAD_QUAD_C2_FEM::getDofCoords) incorrect reference cell (1st) dimension in DofCoords array");
#endif

  DofCoords(0,0) = -1.0;   DofCoords(0,1) = -1.0;
  DofCoords(1,0) =  1.0;   DofCoords(1,1) = -1.0;
  DofCoords(2,0) =  1.0;   DofCoords(2,1) =  1.0;
  DofCoords(3,0) = -1.0;   DofCoords(3,1) =  1.0;

  DofCoords(4,0) =  0.0;   DofCoords(4,1) = -1.0;
  DofCoords(5,0) =  1.0;   DofCoords(5,1) =  0.0;
  DofCoords(6,0) =  0.0;   DofCoords(6,1) =  1.0;
  DofCoords(7,0) = -1.0;   DofCoords(7,1) =  0.0;

  DofCoords(8,0) =  0.0;   DofCoords(8,1) =  0.0;

}
开发者ID:KineticTheory,项目名称:Trilinos,代码行数:26,代码来源:Intrepid2_HGRAD_QUAD_C2_FEMDef.hpp

示例3: bases

  Basis_HGRAD_QUAD_Cn_FEM<Scalar,ArrayScalar>::Basis_HGRAD_QUAD_Cn_FEM( const int orderx , const int ordery,
									const ArrayScalar &pts_x ,
									const ArrayScalar &pts_y ): 
    ptsx_( pts_x.dimension(0) , 1 ) ,
    ptsy_( pts_y.dimension(0) , 1 )
  {
    Array<Array<RCP<Basis<Scalar,ArrayScalar> > > > bases(1);
    bases[0].resize(2);
    bases[0][0] = Teuchos::rcp( new Basis_HGRAD_LINE_Cn_FEM<Scalar,ArrayScalar>( orderx , pts_x ) );
    bases[0][1] = Teuchos::rcp( new Basis_HGRAD_LINE_Cn_FEM<Scalar,ArrayScalar>( ordery , pts_y ) );
    this->setBases( bases );

    this->basisCardinality_ = (orderx+1)*(ordery+1);
    if (orderx > ordery) {
      this->basisDegree_ = orderx;
    }
    else {
      this->basisDegree_ = ordery;
    }
    this -> basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Quadrilateral<4> >() );
    this -> basisType_         = BASIS_FEM_FIAT;
    this -> basisCoordinates_  = COORDINATES_CARTESIAN;
    this -> basisTagsAreSet_   = false;

    for (int i=0;i<pts_x.dimension(0);i++)
      {
	ptsx_(i,0) = pts_x(i,0);
      }

    for (int i=0;i<pts_y.dimension(0);i++)
      {
	ptsy_(i,0) = pts_y(i,0);
      }

  }
开发者ID:jdbooth,项目名称:Trilinos,代码行数:35,代码来源:Intrepid2_HGRAD_QUAD_Cn_FEMDef.hpp

示例4: dZ

  void TabulatorTet<Scalar,ArrayScalar,1>::tabulate( ArrayScalar &outputValues ,
                                                    const int deg ,
                                                    const ArrayScalar &z ) 
  {
    const int np = z.dimension(0);
    const int card = outputValues.dimension(0);
    FieldContainer<Sacado::Fad::DFad<Scalar> > dZ( z.dimension(0) , z.dimension(1) );
    for (int i=0;i<np;i++) {
      for (int j=0;j<3;j++) {
        dZ(i,j) = Sacado::Fad::DFad<Scalar>( z(i,j) );
        dZ(i,j).diff(j,3);
      }
    }
    FieldContainer<Sacado::Fad::DFad<Scalar> > dResult(card,np);

    TabulatorTet<Sacado::Fad::DFad<Scalar>,FieldContainer<Sacado::Fad::DFad<Scalar> >,0>::tabulate( dResult ,
                                                                                                    deg ,
                                                                                                    dZ );

    for (int i=0;i<card;i++) {
      for (int j=0;j<np;j++) {
        for (int k=0;k<3;k++) {
          outputValues(i,j,k) = dResult(i,j).dx(k);
        }
      }
    }

    return;

  }
开发者ID:jdbooth,项目名称:Trilinos,代码行数:30,代码来源:Intrepid2_HGRAD_TET_Cn_FEM_ORTHDef.hpp

示例5: cell

  void Basis_HVOL_TRI_C0_FEM<Scalar, ArrayScalar>::getDofCoords(ArrayScalar & DofCoords) const {
#ifdef HAVE_INTREPID_DEBUG
    // Verify rank of output array.
    TEUCHOS_TEST_FOR_EXCEPTION( !(DofCoords.rank() == 2), std::invalid_argument,
                       ">>> ERROR: (Intrepid::Basis_HVOL_TRI_C0_FEM::getDofCoords) rank = 2 required for DofCoords array");
    // Verify 0th dimension of output array.
    TEUCHOS_TEST_FOR_EXCEPTION( !( DofCoords.dimension(0) == this -> basisCardinality_ ), std::invalid_argument,
                       ">>> ERROR: (Intrepid::Basis_HVOL_TRI_C0_FEM::getDofCoords) mismatch in number of DoF and 0th dimension of DofCoords array");
    // Verify 1st dimension of output array.
    TEUCHOS_TEST_FOR_EXCEPTION( !( DofCoords.dimension(1) == (int)(this -> basisCellTopology_.getDimension()) ), std::invalid_argument,
                       ">>> ERROR: (Intrepid::Basis_HVOL_TRI_C0_FEM::getDofCoords) incorrect reference cell (1st) dimension in DofCoords array");
    
    DofCoords(0,0) = 0.0;   DofCoords(0,1) = 0.0;
#endif
  }
开发者ID:vijaysm,项目名称:Camellia,代码行数:15,代码来源:Basis_HVOL_TRI_C0_FEMDef.hpp

示例6: pts

Basis_HGRAD_LINE_Hermite_FEM<Scalar,ArrayScalar>::Basis_HGRAD_LINE_Hermite_FEM( const ArrayScalar &pts) : 
    latticePts_( pts.dimension(0), 1 ) {

    int n = pts.dimension(0);

    this->basisCardinality_  = 2*n;                   
    this->basisDegree_       = 2*n-1;    
    this->basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Line<2> >() );
    this->basisType_         = BASIS_FEM_DEFAULT;
    this->basisCoordinates_  = COORDINATES_CARTESIAN;
    this->basisTagsAreSet_   = false;

    for( int i=0; i<n-1; ++i ) {
      TEUCHOS_TEST_FOR_EXCEPTION( pts(i,0) >= pts(i+1,0), std::runtime_error ,
        "Intrepid::Basis_HGRAD_LINE_Hermite_FEM Illegal points given to constructor" );
    }  

    // copy points int latticePts, correcting endpoints if needed
    if (std::abs(pts(0,0)+1.0) < INTREPID_TOL) {
      latticePts_(0,0) = -1.0;
    }
    else {
      latticePts_(0,0) = pts(0,0);
    }
    for (int i=1;i<n-1;i++) {
      latticePts_(i,0) = pts(i,0);
    }
    if (std::abs(pts(n-1,0)-1.0) < INTREPID_TOL) {
      latticePts_(n-1,0) = 1.0;
    }
    else {
      latticePts_(n-1,0) = pts(n-1,0);
    }  

    setupVandermonde();

} // Constructor with points given
开发者ID:brian-kelley,项目名称:Trilinos,代码行数:37,代码来源:Intrepid_HGRAD_LINE_Hermite_FEMDef.hpp

示例7: P

void Basis_HGRAD_LINE_Hermite_FEM<Scalar,ArrayScalar>::recurrence( ArrayScalar &P,
                                                                   ArrayScalar &Px,
                                                                   const Scalar x ) const {

  int    n = P.dimension(0);
  Scalar q = x*x-1.0;

  P (0) = 1.0;
  Px(0) = 0.0;
  
  // Loop over basis indices
  for( int j=0; j<n-1; ++j ) {
    P (j+1) =     x*P(j) + q*Px(j)/(j+1); // Compute \f$P_{j+1}(x_i)\f$
    Px(j+1) = (j+1)*P(j) + x*Px(j);       // Compute \f$P'_{j+1}(x_i)\f$
  }

} // recurrence()
开发者ID:brian-kelley,项目名称:Trilinos,代码行数:17,代码来源:Intrepid_HGRAD_LINE_Hermite_FEMDef.hpp

示例8: getBaseCellTopology

void Basis_Constant<Scalar, ArrayScalar>::getValues(ArrayScalar &        outputValues,
                                                            const ArrayScalar &  inputPoints,
                                                            const Intrepid2::EOperator      operatorType) const {
  
  // Verify arguments
#ifdef HAVE_INTREPID_DEBUG
  Intrepid2::getValues_HGRAD_Args<Scalar, ArrayScalar>(outputValues,
                                                      inputPoints,
                                                      operatorType,
                                                      this -> getBaseCellTopology(),
                                                      this -> getCardinality() );
#endif
  
  // Number of evaluation points = dim 0 of inputPoints
  int dim0 = inputPoints.dimension(0);  
  
  switch (operatorType) {
    
    case Intrepid2::OPERATOR_VALUE:
      for (int i0 = 0; i0 < dim0; i0++) {
        // outputValues is a rank-2 array with dimensions (basisCardinality_, dim0)
        outputValues(0, i0) = 1.0;
      }
      break;

    case Intrepid2::OPERATOR_GRAD:
    case Intrepid2::OPERATOR_D1:
    case Intrepid2::OPERATOR_CURL:
    case Intrepid2::OPERATOR_DIV:
    case Intrepid2::OPERATOR_D2:
    case Intrepid2::OPERATOR_D3:
    case Intrepid2::OPERATOR_D4:
    case Intrepid2::OPERATOR_D5:
    case Intrepid2::OPERATOR_D6:
    case Intrepid2::OPERATOR_D7:
    case Intrepid2::OPERATOR_D8:
    case Intrepid2::OPERATOR_D9:
    case Intrepid2::OPERATOR_D10:
    default:
      TEUCHOS_TEST_FOR_EXCEPTION( !( Intrepid2::isValidOperator(operatorType) ), std::invalid_argument,
                          ">>> ERROR (Basis_Constant): Invalid operator type");
  }
}
开发者ID:ChiahungTai,项目名称:Trilinos,代码行数:43,代码来源:Panzer_Intrepid_ConstBasis_impl.hpp

示例9: if

  Basis_HGRAD_HEX_Cn_FEM<Scalar,ArrayScalar>::Basis_HGRAD_HEX_Cn_FEM( const int orderx , 
								      const int ordery ,
								      const int orderz ,
								      const ArrayScalar &pts_x ,
								      const ArrayScalar &pts_y ,
								      const ArrayScalar &pts_z ):
    ptsx_( pts_x.dimension(0) , 1 ),
    ptsy_( pts_y.dimension(0) , 1 ),
    ptsz_( pts_z.dimension(0) , 1 )
  {
    for (int i=0;i<pts_x.dimension(0);i++)
      {
	ptsx_(i,0) = pts_x(i,0);
      }
    for (int i=0;i<pts_y.dimension(0);i++)
      {
	ptsy_(i,0) = pts_y(i,0);
      }
    for (int i=0;i<pts_z.dimension(0);i++)
      {
	ptsz_(i,0) = pts_z(i,0);
      }

    Array<Array<RCP<Basis<Scalar,ArrayScalar> > > > bases(1);
    bases[0].resize(3);

    bases[0][0] = Teuchos::rcp( new Basis_HGRAD_LINE_Cn_FEM< Scalar , ArrayScalar >( orderx , pts_x ) );
    bases[0][1] = Teuchos::rcp( new Basis_HGRAD_LINE_Cn_FEM< Scalar , ArrayScalar >( ordery , pts_y ) );
    bases[0][2] = Teuchos::rcp( new Basis_HGRAD_LINE_Cn_FEM< Scalar , ArrayScalar >( orderz , pts_z ) );

    this->setBases( bases );

    this->basisCardinality_ = (orderx+1)*(ordery+1)*(orderz+1);
    if (orderx >= ordery && orderx >= orderz ) {
      this->basisDegree_ = orderx;
    }
    else if (ordery >= orderx && ordery >= orderz) {
      this->basisDegree_ = ordery;
    }
    else {
      this->basisDegree_ = orderz;
    }
    this -> basisCellTopology_ = shards::CellTopology(shards::getCellTopologyData<shards::Hexahedron<8> >() );
    this -> basisType_         = BASIS_FEM_FIAT;
    this -> basisCoordinates_  = COORDINATES_CARTESIAN;
    this -> basisTagsAreSet_   = false;

    initializeTags();
    this->basisTagsAreSet_ = true;
  }
开发者ID:crtrott,项目名称:Trilinos,代码行数:50,代码来源:Intrepid2_HGRAD_HEX_Cn_FEMDef.hpp

示例10: getBaseCellTopology

void Basis_HCURL_TRI_I1_FEM<Scalar, ArrayScalar>::getValues(ArrayScalar &        outputValues,
                                                            const ArrayScalar &  inputPoints,
                                                            const EOperator      operatorType) const {

// Verify arguments
#ifdef HAVE_INTREPID_DEBUG
  Intrepid::getValues_HCURL_Args<Scalar, ArrayScalar>(outputValues,
                                                      inputPoints,
                                                      operatorType,
                                                      this -> getBaseCellTopology(),
                                                      this -> getCardinality() );
#endif
  
 // Number of evaluation points = dim 0 of inputPoints
  int dim0 = inputPoints.dimension(0);

  // Temporaries: (x,y) coordinates of the evaluation point
  Scalar x = 0.0;                                    
  Scalar y = 0.0;                                    
  
  switch (operatorType) {
    case OPERATOR_VALUE:
      for (int i0 = 0; i0 < dim0; i0++) {
        x = inputPoints(i0, 0);
        y = inputPoints(i0, 1);
        
        // outputValues is a rank-3 array with dimensions (basisCardinality_, dim0, spaceDim)
        outputValues(0, i0, 0) =  1.0 - y;
        outputValues(0, i0, 1) =  x;

        outputValues(1, i0, 0) = -y;
        outputValues(1, i0, 1) =  x;

        outputValues(2, i0, 0) = -y;
        outputValues(2, i0, 1) = -1.0 + x;
      }
      break;
      
    case OPERATOR_CURL:
      for (int i0 = 0; i0 < dim0; i0++) {
        x = inputPoints(i0, 0);
        y = inputPoints(i0, 1);
        
        // outputValues is a rank-2 array with dimensions (basisCardinality_, dim0)
        outputValues(0, i0) = 2.0;
        outputValues(1, i0) = 2.0;
        outputValues(2, i0) = 2.0;
      }
      break;
      
    case OPERATOR_DIV:
       TEST_FOR_EXCEPTION( (operatorType == OPERATOR_DIV), std::invalid_argument,
                          ">>> ERROR (Basis_HCURL_TRI_I1_FEM): DIV is invalid operator for HCURL Basis Functions");
      break;
      
    case OPERATOR_GRAD:
       TEST_FOR_EXCEPTION( (operatorType == OPERATOR_GRAD), std::invalid_argument,
                          ">>> ERROR (Basis_HCURL_TRI_I1_FEM): GRAD is invalid operator for HCURL Basis Functions");
      break;

    case OPERATOR_D1:
    case OPERATOR_D2:
    case OPERATOR_D3:
    case OPERATOR_D4:
    case OPERATOR_D5:
    case OPERATOR_D6:
    case OPERATOR_D7:
    case OPERATOR_D8:
    case OPERATOR_D9:
    case OPERATOR_D10:
      TEST_FOR_EXCEPTION( ( (operatorType == OPERATOR_D1)    ||
                            (operatorType == OPERATOR_D2)    ||
                            (operatorType == OPERATOR_D3)    ||
                            (operatorType == OPERATOR_D4)    ||
                            (operatorType == OPERATOR_D5)    ||
                            (operatorType == OPERATOR_D6)    ||
                            (operatorType == OPERATOR_D7)    ||
                            (operatorType == OPERATOR_D8)    ||
                            (operatorType == OPERATOR_D9)    ||
                            (operatorType == OPERATOR_D10) ),
                          std::invalid_argument,
                          ">>> ERROR (Basis_HCURL_TRI_I1_FEM): Invalid operator type");
      break;

    default:
      TEST_FOR_EXCEPTION( ( (operatorType != OPERATOR_VALUE) &&
                            (operatorType != OPERATOR_GRAD)  &&
                            (operatorType != OPERATOR_CURL)  &&
                            (operatorType != OPERATOR_DIV)   &&
                            (operatorType != OPERATOR_D1)    &&
                            (operatorType != OPERATOR_D2)    &&
                            (operatorType != OPERATOR_D3)    &&
                            (operatorType != OPERATOR_D4)    &&
                            (operatorType != OPERATOR_D5)    &&
                            (operatorType != OPERATOR_D6)    &&
                            (operatorType != OPERATOR_D7)    &&
                            (operatorType != OPERATOR_D8)    &&
                            (operatorType != OPERATOR_D9)    &&
                            (operatorType != OPERATOR_D10) ),
                          std::invalid_argument,
//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,代码来源:Intrepid_HCURL_TRI_I1_FEMDef.hpp

示例11: getBaseCellTopology

void Basis_HGRAD_WEDGE_C1_FEM<Scalar, ArrayScalar>::getValues(ArrayScalar &    outputValues,
                                                             const ArrayScalar &  inputPoints,
                                                             const EOperator      operatorType) const {
  
  // Verify arguments
#ifdef HAVE_INTREPID_DEBUG
  Intrepid2::getValues_HGRAD_Args<Scalar, ArrayScalar>(outputValues,
                                                      inputPoints,
                                                      operatorType,
                                                      this -> getBaseCellTopology(),
                                                      this -> getCardinality() );
#endif
  
  // Number of evaluation points = dim 0 of inputPoints
  int dim0 = inputPoints.dimension(0);  
  
  // Temporaries: (x,y,z) coordinates of the evaluation point
  Scalar x = 0.0;                                    
  Scalar y = 0.0;   
  Scalar z = 0.0;
  
  switch (operatorType) {
    
    case OPERATOR_VALUE:
      for (int i0 = 0; i0 < dim0; i0++) {
        x = inputPoints(i0, 0);
        y = inputPoints(i0, 1);
        z = inputPoints(i0, 2);
        
        // outputValues is a rank-2 array with dimensions (basisCardinality_, dim0)
        outputValues(0, i0) = (1.0 - x - y)*(1.0 - z)/2.0;
        outputValues(1, i0) = x*(1.0 - z)/2.0;
        outputValues(2, i0) = y*(1.0 - z)/2.0;
        outputValues(3, i0) = (1.0 - x - y)*(1.0 + z)/2.0;
        outputValues(4, i0) = x*(1.0 + z)/2.0;
        outputValues(5, i0) = y*(1.0 + z)/2.0;
      }
      break;
      
    case OPERATOR_GRAD:
    case OPERATOR_D1:
      for (int i0 = 0; i0 < dim0; i0++) {
        x = inputPoints(i0,0);
        y = inputPoints(i0,1);
        z = inputPoints(i0, 2);
        
        // outputValues is a rank-3 array with dimensions (basisCardinality_, dim0, spaceDim)
        outputValues(0, i0, 0) = -(1.0 - z)/2.0;
        outputValues(0, i0, 1) = -(1.0 - z)/2.0;
        outputValues(0, i0, 2) = -(1.0 - x - y)/2.0;
        
        outputValues(1, i0, 0) =  (1.0 - z)/2.0;
        outputValues(1, i0, 1) =  0.0;
        outputValues(1, i0, 2) = -x/2.0;
        
        outputValues(2, i0, 0) =  0.0;
        outputValues(2, i0, 1) =  (1.0 - z)/2.0;
        outputValues(2, i0, 2) = -y/2.0;
  
        
        outputValues(3, i0, 0) = -(1.0 + z)/2.0;
        outputValues(3, i0, 1) = -(1.0 + z)/2.0;
        outputValues(3, i0, 2) =  (1.0 - x - y)/2.0;
        
        outputValues(4, i0, 0) =  (1.0 + z)/2.0;
        outputValues(4, i0, 1) =  0.0;
        outputValues(4, i0, 2) =  x/2.0;
        
        outputValues(5, i0, 0) =  0.0;
        outputValues(5, i0, 1) =  (1.0 + z)/2.0;
        outputValues(5, i0, 2) =  y/2.0;
      }
      break;
      
    case OPERATOR_CURL:
      TEUCHOS_TEST_FOR_EXCEPTION( (operatorType == OPERATOR_CURL), std::invalid_argument,
                          ">>> ERROR (Basis_HGRAD_WEDGE_C1_FEM): CURL is invalid operator for rank-0 (scalar) functions in 3D");
      break;
      
    case OPERATOR_DIV:
      TEUCHOS_TEST_FOR_EXCEPTION( (operatorType == OPERATOR_DIV), std::invalid_argument,
                          ">>> ERROR (Basis_HGRAD_WEDGE_C1_FEM): DIV is invalid operator for rank-0 (scalar) functions in 3D");
      break;
      
    case OPERATOR_D2:
      for (int i0 = 0; i0 < dim0; i0++) {
        outputValues(0, i0, 0) = 0.0;     outputValues(3, i0, 0) = 0.0; 
        outputValues(0, i0, 1) = 0.0;     outputValues(3, i0, 1) = 0.0;
        outputValues(0, i0, 2) = 0.5;     outputValues(3, i0, 2) =-0.5; 
        outputValues(0, i0, 3) = 0.0;     outputValues(3, i0, 3) = 0.0;
        outputValues(0, i0, 4) = 0.5;     outputValues(3, i0, 4) =-0.5;
        outputValues(0, i0, 5) = 0.0;     outputValues(3, i0, 5) = 0.0;
        
        outputValues(1, i0, 0) = 0.0;     outputValues(4, i0, 0) = 0.0; 
        outputValues(1, i0, 1) = 0.0;     outputValues(4, i0, 1) = 0.0; 
        outputValues(1, i0, 2) =-0.5;     outputValues(4, i0, 2) = 0.5;
        outputValues(1, i0, 3) = 0.0;     outputValues(4, i0, 3) = 0.0;
        outputValues(1, i0, 4) = 0.0;     outputValues(4, i0, 4) = 0.0;
        outputValues(1, i0, 5) = 0.0;     outputValues(4, i0, 5) = 0.0;
        
//.........这里部分代码省略.........
开发者ID:jdbooth,项目名称:Trilinos,代码行数:101,代码来源:Intrepid2_HGRAD_WEDGE_C1_FEMDef.hpp

示例12: getBaseCellTopology

  void Basis_HCURL_QUAD_In_FEM<Scalar, ArrayScalar>::getValues(ArrayScalar &        outputValues,
							      const ArrayScalar &  inputPoints,
							      const EOperator      operatorType) const {
    
    // Verify arguments
#ifdef HAVE_INTREPID_DEBUG
    Intrepid2::getValues_HCURL_Args<Scalar, ArrayScalar>(outputValues,
						       inputPoints,
						       operatorType,
						       this -> getBaseCellTopology(),
						       this -> getCardinality() );
#endif
    
    // Number of evaluation points = dim 0 of inputPoints
    int dim0 = inputPoints.dimension(0);
    
    // separate out points
    FieldContainer<Scalar> xPoints(dim0,1);
    FieldContainer<Scalar> yPoints(dim0,1);
    
    for (int i=0;i<dim0;i++) {
      xPoints(i,0) = inputPoints(i,0);
      yPoints(i,0) = inputPoints(i,1);
    }
    
    switch (operatorType) {
    case OPERATOR_VALUE:
      {
	FieldContainer<Scalar> closedBasisValsXPts( closedBasis_.getCardinality() , dim0 );
	FieldContainer<Scalar> closedBasisValsYPts( closedBasis_.getCardinality() , dim0 );
	FieldContainer<Scalar> openBasisValsXPts( openBasis_.getCardinality() , dim0 );
	FieldContainer<Scalar> openBasisValsYPts( openBasis_.getCardinality() , dim0 );
	
	closedBasis_.getValues( closedBasisValsXPts , xPoints , OPERATOR_VALUE );
	closedBasis_.getValues( closedBasisValsYPts , yPoints , OPERATOR_VALUE );
	openBasis_.getValues( openBasisValsXPts , xPoints , OPERATOR_VALUE );
	openBasis_.getValues( openBasisValsYPts , yPoints , OPERATOR_VALUE );
	
	int bfcur = 0;
	// x component bfs are (open(x) closed(y),0)
	for (int j=0;j<closedBasis_.getCardinality();j++) 
	  {
	    for (int i=0;i<openBasis_.getCardinality();i++) 
	      {
		for (int l=0;l<dim0;l++) 
		  {
		    outputValues(bfcur,l,0) = closedBasisValsYPts(j,l) * openBasisValsXPts(i,l);
		    outputValues(bfcur,l,1) = 0.0;
		  }
		bfcur++;
	      }
	  }
	
	// y component bfs are (0,closed(x) open(y))
	for (int j=0;j<openBasis_.getCardinality();j++) 
	  {
	    for (int i=0;i<closedBasis_.getCardinality();i++) 
	      {
		for (int l=0;l<dim0;l++) 
		  {
		    outputValues(bfcur,l,0) = 0.0;
		    outputValues(bfcur,l,1) = openBasisValsYPts(j,l) * closedBasisValsXPts(i,l);
		  }
		bfcur++;
	      }
	  }
      }
      break;
    case OPERATOR_CURL:
      {
	FieldContainer<Scalar> closedBasisDerivsXPts( closedBasis_.getCardinality() , dim0 , 1 );
	FieldContainer<Scalar> closedBasisDerivsYPts( closedBasis_.getCardinality() , dim0 , 1 );
	FieldContainer<Scalar> openBasisValsXPts( openBasis_.getCardinality() , dim0 );
	FieldContainer<Scalar> openBasisValsYPts( openBasis_.getCardinality() , dim0 );
	
	closedBasis_.getValues( closedBasisDerivsXPts , xPoints , OPERATOR_D1 );
	closedBasis_.getValues( closedBasisDerivsYPts , yPoints , OPERATOR_D1 );
	openBasis_.getValues( openBasisValsXPts , xPoints , OPERATOR_VALUE );
	openBasis_.getValues( openBasisValsYPts , yPoints , OPERATOR_VALUE );
	
	int bfcur = 0;
	
	// x component basis functions first
	for (int j=0;j<closedBasis_.getCardinality();j++) 
	  {
	    for (int i=0;i<openBasis_.getCardinality();i++) 
	      {
		for (int l=0;l<dim0;l++) {
		  outputValues(bfcur,l) = -closedBasisDerivsYPts(j,l,0) * openBasisValsXPts(i,l);
		}
		bfcur++;
	      }
	  }
	
	// now y component basis functions
	for (int j=0;j<openBasis_.getCardinality();j++) 
	  {
	    for (int i=0;i<closedBasis_.getCardinality();i++) 
	      {
		for (int l=0;l<dim0;l++) 
//.........这里部分代码省略.........
开发者ID:rainiscold,项目名称:trilinos,代码行数:101,代码来源:Intrepid2_HCURL_QUAD_In_FEMDef.hpp

示例13: phisCur

  void Basis_HGRAD_LINE_Cn_FEM<Scalar, ArrayScalar>::getValues(ArrayScalar &        outputValues,
                                                              const ArrayScalar &  inputPoints,
                                                              const EOperator      operatorType) const {
  
    // Verify arguments
#ifdef HAVE_INTREPID2_DEBUG
    Intrepid2::getValues_HGRAD_Args<Scalar, ArrayScalar>(outputValues,
                                                        inputPoints,
                                                        operatorType,
                                                        this -> getBaseCellTopology(),
                                                        this -> getCardinality() );
#endif
    const int numPts = inputPoints.dimension(0);
    const int numBf = this->getCardinality();

    try {
      switch (operatorType) {
      case OPERATOR_VALUE:
        {
          ArrayScalar phisCur( numBf , numPts );
          Phis_.getValues( phisCur , inputPoints , operatorType );
          for (int i=0;i<outputValues.dimension(0);i++) {
            for (int j=0;j<outputValues.dimension(1);j++) {
              outputValues(i,j) = 0.0;
              for (int k=0;k<this->getCardinality();k++) {
                outputValues(i,j) += this->Vinv_(k,i) * phisCur(k,j);
              }
            }
          }
        }
        break;
      case OPERATOR_GRAD:
      case OPERATOR_D1:
      case OPERATOR_D2:
      case OPERATOR_D3:
      case OPERATOR_D4:
      case OPERATOR_D5:
      case OPERATOR_D6:
      case OPERATOR_D7:
      case OPERATOR_D8:
      case OPERATOR_D9:
      case OPERATOR_D10:
        {
          const int dkcard = 
            (operatorType == OPERATOR_GRAD)? getDkCardinality(OPERATOR_D1,1): getDkCardinality(operatorType,1);
          
          ArrayScalar phisCur( numBf , numPts , dkcard );
          Phis_.getValues( phisCur , inputPoints , operatorType );

          for (int i=0;i<outputValues.dimension(0);i++) {
            for (int j=0;j<outputValues.dimension(1);j++) {
              for (int k=0;k<outputValues.dimension(2);k++) {
                outputValues(i,j,k) = 0.0;
                for (int l=0;l<this->getCardinality();l++) {
                  outputValues(i,j,k) += this->Vinv_(l,i) * phisCur(l,j,k);
                }
              }
            }
          }
        }
        break;
      default:
        TEUCHOS_TEST_FOR_EXCEPTION( true , std::invalid_argument,
                            ">>> ERROR (Basis_HGRAD_LINE_Cn_FEM): Operator type not implemented" );
        break;
      }
    }
    catch (std::invalid_argument &exception){
      TEUCHOS_TEST_FOR_EXCEPTION( true , std::invalid_argument,
                          ">>> ERROR (Basis_HGRAD_LINE_Cn_FEM): Operator failed");    
    }

  }
开发者ID:ChiahungTai,项目名称:Trilinos,代码行数:73,代码来源:Intrepid2_HGRAD_LINE_Cn_FEMDef.hpp

示例14: outputValues

void TabulatorTri<Scalar,ArrayScalar,0>::tabulate(ArrayScalar &outputValues ,
                                                  const int deg ,
                                                  const ArrayScalar &z )
{
  const int np = z.dimension( 0 );
  
  // each point needs to be transformed from Pavel's element
  // z(i,0) --> (2.0 * z(i,0) - 1.0)
  // z(i,1) --> (2.0 * z(i,1) - 1.0)
  
  // set up constant term
  int idx_cur = TabulatorTri<Scalar,ArrayScalar,0>::idx(0,0);
  int idx_curp1,idx_curm1;
  
  // set D^{0,0} = 1.0
  for (int i=0;i<np;i++) {
    outputValues(idx_cur,i) = Scalar( 1.0 ) + z(i,0) - z(i,0) + z(i,1) - z(i,1);
  }
  

  if (deg > 0) {
    Teuchos::Array<Scalar> f1(np),f2(np),f3(np);
    
    for (int i=0;i<np;i++) {
      f1[i] = 0.5 * (1.0+2.0*(2.0*z(i,0)-1.0)+(2.0*z(i,1)-1.0));
      f2[i] = 0.5 * (1.0-(2.0*z(i,1)-1.0));
      f3[i] = f2[i] * f2[i];
    }
    
    // set D^{1,0} = f1
    idx_cur = TabulatorTri<Scalar,ArrayScalar,0>::idx(1,0);
    for (int i=0;i<np;i++) {
      outputValues(idx_cur,i) = f1[i];
    }
    
    // recurrence in p
    for (int p=1;p<deg;p++) {
      idx_cur = TabulatorTri<Scalar,ArrayScalar,0>::idx(p,0);
      idx_curp1 = TabulatorTri<Scalar,ArrayScalar,0>::idx(p+1,0);
      idx_curm1 = TabulatorTri<Scalar,ArrayScalar,0>::idx(p-1,0);
      Scalar a = (2.0*p+1.0)/(1.0+p);
      Scalar b = p / (p+1.0);
      
      for (int i=0;i<np;i++) {
        outputValues(idx_curp1,i) = a * f1[i] * outputValues(idx_cur,i)
          - b * f3[i] * outputValues(idx_curm1,i);
      }
    }
    
    // D^{p,1}
    for (int p=0;p<deg;p++) {
      int idxp0 = TabulatorTri<Scalar,ArrayScalar,0>::idx(p,0);
      int idxp1 = TabulatorTri<Scalar,ArrayScalar,0>::idx(p,1);
      for (int i=0;i<np;i++) {
        outputValues(idxp1,i) = outputValues(idxp0,i)
          *0.5*(1.0+2.0*p+(3.0+2.0*p)*(2.0*z(i,1)-1.0));
      }
    }
    
    
    // recurrence in q
    for (int p=0;p<deg-1;p++) {
      for (int q=1;q<deg-p;q++) {
        int idxpqp1=TabulatorTri<Scalar,ArrayScalar,0>::idx(p,q+1);
        int idxpq=TabulatorTri<Scalar,ArrayScalar,0>::idx(p,q);
        int idxpqm1=TabulatorTri<Scalar,ArrayScalar,0>::idx(p,q-1);
        Scalar a,b,c;
        TabulatorTri<Scalar,ArrayScalar,0>::jrc((Scalar)(2*p+1),(Scalar)0,q,a,b,c);
        for (int i=0;i<np;i++) {
          outputValues(idxpqp1,i)
            = (a*(2.0*z(i,1)-1.0)+b)*outputValues(idxpq,i)
            - c*outputValues(idxpqm1,i);
        }
      }
    }
  }    
  
  // orthogonalize
  for (int p=0;p<=deg;p++) {
    for (int q=0;q<=deg-p;q++) {
      for (int i=0;i<np;i++) {
        outputValues(TabulatorTri<Scalar,ArrayScalar,0>::idx(p,q),i) *= sqrt( (p+0.5)*(p+q+1.0));
      }
    }
  }
  
  return;
}
开发者ID:00liujj,项目名称:trilinos,代码行数:88,代码来源:Intrepid_HGRAD_TRI_Cn_FEM_ORTHDef.hpp

示例15: legendre

void Basis_HGRAD_LINE_Hermite_FEM<Scalar, ArrayScalar>::getValues(ArrayScalar &        outputValues,
                                                                  const ArrayScalar &  inputPoints,
                                                                  const EOperator      operatorType) const {
  
  // Verify arguments
#ifdef HAVE_INTREPID_DEBUG
  Intrepid::getValues_HGRAD_Args<Scalar, ArrayScalar>(outputValues,
                                                      inputPoints,
                                                      operatorType,
                                                      this -> getBaseCellTopology(),
                                                      this -> getCardinality() );
#endif
  // Number of evaluation points = dim 0 of inputPoints
  int nPts = inputPoints.dimension(0);  
  int nBf  = this->getCardinality();  

  int n = nBf/2;

  // Legendre polynomials and their derivatives evaluated on inputPoints
  SerialDenseMatrix legendre(nBf,nPts); 

  // Hermite interpolants evaluated on inputPoints
  SerialDenseMatrix hermite(nBf,nPts);
    
  ArrayScalar P (nBf);
  ArrayScalar Px(nBf);
         
  int derivative_order;
  int derivative_case = static_cast<int>(operatorType);

  if( derivative_case == 0 ) {
    derivative_order = 0;
  }
  else if( derivative_case > 0 && derivative_case < 5 ) {
    derivative_order = 1;
  }
  else {
    derivative_order = derivative_case - 3;
  }
  
  try {
    // GRAD,CURL,DIV, and D1 are all the first derivative
    switch (operatorType) {
      case OPERATOR_VALUE: 
      { 
        for( int i=0; i<nPts; ++i ) { 
          recurrence( P, Px, inputPoints(i,0) );
          for( int j=0; j<nBf; ++j ) {
             legendre(j,i) = P(j);
          }
        }
        break; 
      }
      case OPERATOR_GRAD:
      case OPERATOR_DIV:
      case OPERATOR_CURL:
      case OPERATOR_D1:
      {
        for( int i=0; i<nPts; ++i ) { 
          recurrence( P, Px, inputPoints(i,0) );
          for( int j=0; j<nBf; ++j ) {
             legendre(j,i) = Px(j);
          }
        }
        break;
      }  
      case OPERATOR_D2:
      case OPERATOR_D3:
      case OPERATOR_D4:
      case OPERATOR_D5:
      case OPERATOR_D6:
      case OPERATOR_D7:
      case OPERATOR_D8:
      case OPERATOR_D9:
      case OPERATOR_D10:
      {
        for( int i=0; i<nPts; ++i ) {
          legendre_d( P, Px, derivative_order, inputPoints(i,0));
          for( int j=0; j<nBf; ++j ) {
            legendre(j,i) = Px(j); 
          }
        }
        break;
      }
      default:
        TEUCHOS_TEST_FOR_EXCEPTION( !( Intrepid::isValidOperator(operatorType) ), std::invalid_argument,
                            ">>> ERROR (Basis_HGRAD_LINE_Hermite_FEM): Invalid operator type");

    } // switch(operatorType)
  }
  catch (std::invalid_argument &exception){
    TEUCHOS_TEST_FOR_EXCEPTION( true , std::invalid_argument,
                        ">>> ERROR (Basis_HGRAD_LINE_Hermite_FEM): Operator failed");    
  }

  if( !isFactored_ ) {
    solver_.factorWithEquilibration(true);
    solver_.factor();
  }

//.........这里部分代码省略.........
开发者ID:brian-kelley,项目名称:Trilinos,代码行数:101,代码来源:Intrepid_HGRAD_LINE_Hermite_FEMDef.hpp


注:本文中的ArrayScalar::dimension方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。