当前位置: 首页>>代码示例>>C++>>正文


C++ AnyType::getCacheMemoryContext方法代码示例

本文整理汇总了C++中AnyType::getCacheMemoryContext方法的典型用法代码示例。如果您正苦于以下问题:C++ AnyType::getCacheMemoryContext方法的具体用法?C++ AnyType::getCacheMemoryContext怎么用?C++ AnyType::getCacheMemoryContext使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在AnyType的用法示例。


在下文中一共展示了AnyType::getCacheMemoryContext方法的2个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: run

/**
 * @brief This function learns the topics of words in a document and is the
 * main step of a Gibbs sampling iteration. The word topic counts and
 * corpus topic counts are passed to this function in the first call and
 * then transfered to the rest calls through args.mSysInfo->user_fctx for
 * efficiency.
 * @param args[0]   The unique words in the documents
 * @param args[1]   The counts of each unique words
 * @param args[2]   The topic counts and topic assignments in the document
 * @param args[3]   The model (word topic counts and corpus topic
 *                  counts)
 * @param args[4]   The Dirichlet parameter for per-document topic
 *                  multinomial, i.e. alpha
 * @param args[5]   The Dirichlet parameter for per-topic word
 *                  multinomial, i.e. beta
 * @param args[6]   The size of vocabulary
 * @param args[7]   The number of topics
 * @param args[8]   The number of iterations (=1:training, >1:prediction)
 * @return          The updated topic counts and topic assignments for
 *                  the document
 **/
AnyType lda_gibbs_sample::run(AnyType & args)
{
    ArrayHandle<int32_t> words = args[0].getAs<ArrayHandle<int32_t> >();
    ArrayHandle<int32_t> counts = args[1].getAs<ArrayHandle<int32_t> >();
    MutableArrayHandle<int32_t> doc_topic = args[2].getAs<MutableArrayHandle<int32_t> >();
    double alpha = args[4].getAs<double>();
    double beta = args[5].getAs<double>();
    int32_t voc_size = args[6].getAs<int32_t>();
    int32_t topic_num = args[7].getAs<int32_t>();
    int32_t iter_num = args[8].getAs<int32_t>();
    size_t model64_size = static_cast<size_t>(voc_size * (topic_num + 1) + 1) * sizeof(int32_t) / sizeof(int64_t);

    if(alpha <= 0)
        throw std::invalid_argument("invalid argument - alpha");
    if(beta <= 0)
        throw std::invalid_argument("invalid argument - beta");
    if(voc_size <= 0)
        throw std::invalid_argument(
            "invalid argument - voc_size");
    if(topic_num <= 0)
        throw std::invalid_argument(
            "invalid argument - topic_num");
    if(iter_num <= 0)
        throw std::invalid_argument(
            "invalid argument - iter_num");

    if(words.size() != counts.size())
        throw std::invalid_argument(
            "dimensions mismatch: words.size() != counts.size()");
    if(__min(words) < 0 || __max(words) >= voc_size)
        throw std::invalid_argument(
            "invalid values in words");
    if(__min(counts) <= 0)
        throw std::invalid_argument(
            "invalid values in counts");

    int32_t word_count = __sum(counts);
    if(doc_topic.size() != (size_t)(word_count + topic_num))
        throw std::invalid_argument(
            "invalid dimension - doc_topic.size() != word_count + topic_num");
    if(__min(doc_topic, 0, topic_num) < 0)
        throw std::invalid_argument("invalid values in topic_count");
    if(
        __min(doc_topic, topic_num, word_count) < 0 ||
        __max(doc_topic, topic_num, word_count) >= topic_num)
        throw std::invalid_argument( "invalid values in topic_assignment");

    if (!args.getUserFuncContext()) {
        ArrayHandle<int64_t> model64 = args[3].getAs<ArrayHandle<int64_t> >();
        if (model64.size() != model64_size) {
            std::stringstream ss;
            ss << "invalid dimension: model64.size() = " << model64.size();
            throw std::invalid_argument(ss.str());
        }
        if (__min(model64) < 0) {
            throw std::invalid_argument("invalid topic counts in model");
        }

        int32_t *context =
            static_cast<int32_t *>(
                MemoryContextAllocZero(
                    args.getCacheMemoryContext(),
                    model64.size() * sizeof(int64_t)
                        + topic_num * sizeof(int64_t)));
        memcpy(context, model64.ptr(), model64.size() * sizeof(int64_t));
        int32_t *model = context;

        int64_t *running_topic_counts = reinterpret_cast<int64_t *>(
                context + model64_size * sizeof(int64_t) / sizeof(int32_t));
        for (int i = 0; i < voc_size; i ++) {
            for (int j = 0; j < topic_num; j ++) {
                running_topic_counts[j] += model[i * (topic_num + 1) + j];
            }
        }

        args.setUserFuncContext(context);
    }

    int32_t *context = static_cast<int32_t *>(args.getUserFuncContext());
//.........这里部分代码省略.........
开发者ID:BruceZhou2012,项目名称:incubator-madlib,代码行数:101,代码来源:lda.cpp

示例2: run

/**
 * @brief This function learns the topics of words in a document and is the
 * main step of a Gibbs sampling iteration. The word topic counts and
 * corpus topic counts are passed to this function in the first call and
 * then transfered to the rest calls through args.mSysInfo->user_fctx for
 * efficiency. 
 * @param args[0]   The unique words in the documents
 * @param args[1]   The counts of each unique words
 * @param args[2]   The topic counts and topic assignments in the document
 * @param args[3]   The model (word topic counts and corpus topic
 *                  counts)
 * @param args[4]   The Dirichlet parameter for per-document topic
 *                  multinomial, i.e. alpha
 * @param args[5]   The Dirichlet parameter for per-topic word
 *                  multinomial, i.e. beta
 * @param args[6]   The size of vocabulary
 * @param args[7]   The number of topics
 * @param args[8]   The number of iterations (=1:training, >1:prediction)
 * @return          The updated topic counts and topic assignments for
 *                  the document
 **/
AnyType lda_gibbs_sample::run(AnyType & args)
{
    ArrayHandle<int32_t> words = args[0].getAs<ArrayHandle<int32_t> >();
    ArrayHandle<int32_t> counts = args[1].getAs<ArrayHandle<int32_t> >();
    MutableArrayHandle<int32_t> doc_topic = args[2].getAs<MutableArrayHandle<int32_t> >();
    double alpha = args[4].getAs<double>();
    double beta = args[5].getAs<double>();
    int32_t voc_size = args[6].getAs<int32_t>();
    int32_t topic_num = args[7].getAs<int32_t>();
    int32_t iter_num = args[8].getAs<int32_t>();

    if(alpha <= 0)
        throw std::invalid_argument("invalid argument - alpha");
    if(beta <= 0)
        throw std::invalid_argument("invalid argument - beta");
    if(voc_size <= 0)
        throw std::invalid_argument(
            "invalid argument - voc_size");
    if(topic_num <= 0)
        throw std::invalid_argument(
            "invalid argument - topic_num");
    if(iter_num <= 0)
        throw std::invalid_argument(
            "invalid argument - iter_num");

    if(words.size() != counts.size())
        throw std::invalid_argument(
            "dimensions mismatch: words.size() != counts.size()");
    if(__min(words) < 0 || __max(words) >= voc_size)
        throw std::invalid_argument(
            "invalid values in words");
    if(__min(counts) <= 0)
        throw std::invalid_argument(
            "invalid values in counts");

    int32_t word_count = __sum(counts);
    if(doc_topic.size() != (size_t)(word_count + topic_num))
        throw std::invalid_argument(
            "invalid dimension - doc_topic.size() != word_count + topic_num");
    if(__min(doc_topic, 0, topic_num) < 0)
        throw std::invalid_argument("invalid values in topic_count");
    if(
        __min(doc_topic, topic_num, word_count) < 0 ||
        __max(doc_topic, topic_num, word_count) >= topic_num)
        throw std::invalid_argument( "invalid values in topic_assignment");

    if (!args.getUserFuncContext())
    {
        if(args[3].isNull())
            throw std::invalid_argument("invalid argument - the model \
            parameter should not be null for the first call");
        ArrayHandle<int64_t> model = args[3].getAs<ArrayHandle<int64_t> >();
        if(model.size() != (size_t)((voc_size + 1) * topic_num))
            throw std::invalid_argument(
                "invalid dimension - model.size() != (voc_size + 1) * topic_num");
        if(__min(model) < 0)
            throw std::invalid_argument("invalid topic counts in model");

        int64_t * state = 
            static_cast<int64_t *>(
                MemoryContextAllocZero(
                    args.getCacheMemoryContext(), 
                    model.size() * sizeof(int64_t)));
        memcpy(state, model.ptr(), model.size() * sizeof(int64_t));
        args.setUserFuncContext(state);
    }

    int64_t * state = static_cast<int64_t *>(args.getUserFuncContext());
    if(NULL == state){
        throw std::runtime_error("args.mSysInfo->user_fctx is null");
    }

    int32_t unique_word_count = static_cast<int32_t>(words.size());
    for(int32_t it = 0; it < iter_num; it++){
        int32_t word_index = topic_num;
        for(int32_t i = 0; i < unique_word_count; i++) {
            int32_t wordid = words[i];
            for(int32_t j = 0; j < counts[i]; j++){
                int32_t topic = doc_topic[word_index];
//.........这里部分代码省略.........
开发者ID:adirastogi,项目名称:madlib,代码行数:101,代码来源:lda.cpp


注:本文中的AnyType::getCacheMemoryContext方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。