本文整理汇总了C++中AllocaInst::use_empty方法的典型用法代码示例。如果您正苦于以下问题:C++ AllocaInst::use_empty方法的具体用法?C++ AllocaInst::use_empty怎么用?C++ AllocaInst::use_empty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AllocaInst
的用法示例。
在下文中一共展示了AllocaInst::use_empty方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Values
void PromoteMem2Reg::run() {
Function &F = *DF.getRoot()->getParent();
if (AST) PointerAllocaValues.resize(Allocas.size());
AllocaDbgDeclares.resize(Allocas.size());
AllocaInfo Info;
LargeBlockInfo LBI;
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI) &&
"Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
// Remove the alloca from the Allocas list, since it has been processed
RemoveFromAllocasList(AllocaNum);
++NumDeadAlloca;
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
Info.AnalyzeAlloca(AI);
// If there is only a single store to this value, replace any loads of
// it that are directly dominated by the definition with the value stored.
if (Info.DefiningBlocks.size() == 1) {
RewriteSingleStoreAlloca(AI, Info, LBI);
// Finally, after the scan, check to see if the store is all that is left.
if (Info.UsingBlocks.empty()) {
// Record debuginfo for the store and remove the declaration's debuginfo.
if (DbgDeclareInst *DDI = Info.DbgDeclare) {
ConvertDebugDeclareToDebugValue(DDI, Info.OnlyStore);
DDI->eraseFromParent();
}
// Remove the (now dead) store and alloca.
Info.OnlyStore->eraseFromParent();
LBI.deleteValue(Info.OnlyStore);
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
LBI.deleteValue(AI);
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
++NumSingleStore;
continue;
}
}
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (Info.OnlyUsedInOneBlock) {
PromoteSingleBlockAlloca(AI, Info, LBI);
// Finally, after the scan, check to see if the stores are all that is
// left.
if (Info.UsingBlocks.empty()) {
// Remove the (now dead) stores and alloca.
while (!AI->use_empty()) {
StoreInst *SI = cast<StoreInst>(AI->use_back());
// Record debuginfo for the store before removing it.
if (DbgDeclareInst *DDI = Info.DbgDeclare)
ConvertDebugDeclareToDebugValue(DDI, SI);
SI->eraseFromParent();
LBI.deleteValue(SI);
}
if (AST) AST->deleteValue(AI);
AI->eraseFromParent();
LBI.deleteValue(AI);
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
// The alloca's debuginfo can be removed as well.
if (DbgDeclareInst *DDI = Info.DbgDeclare)
DDI->eraseFromParent();
++NumLocalPromoted;
continue;
}
}
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
unsigned ID = 0;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
//.........这里部分代码省略.........
示例2: InlineFunction
//.........这里部分代码省略.........
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
// happy with whatever the cloner can do.
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
/*ModuleLevelChanges=*/false, Returns, ".i",
&InlinedFunctionInfo, IFI.TD, TheCall);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;
// Update the callgraph if requested.
if (IFI.CG)
UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
// Update inlined instructions' line number information.
fixupLineNumbers(Caller, FirstNewBlock, TheCall);
}
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
{
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
for (BasicBlock::iterator I = FirstNewBlock->begin(),
E = FirstNewBlock->end(); I != E; ) {
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
if (AI == 0) continue;
// If the alloca is now dead, remove it. This often occurs due to code
// specialization.
if (AI->use_empty()) {
AI->eraseFromParent();
continue;
}
if (!isa<Constant>(AI->getArraySize()))
continue;
// Keep track of the static allocas that we inline into the caller.
IFI.StaticAllocas.push_back(AI);
// Scan for the block of allocas that we can move over, and move them
// all at once.
while (isa<AllocaInst>(I) &&
isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
++I;
}
// Transfer all of the allocas over in a block. Using splice means
// that the instructions aren't removed from the symbol table, then
// reinserted.
Caller->getEntryBlock().getInstList().splice(InsertPoint,
FirstNewBlock->getInstList(),
AI, I);
}
}
// Leave lifetime markers for the static alloca's, scoping them to the
// function we just inlined.
if (InsertLifetime && !IFI.StaticAllocas.empty()) {
IRBuilder<> builder(FirstNewBlock->begin());
for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
示例3: IDF
void PromoteMem2Reg::run() {
Function &F = *DT.getRoot()->getParent();
AllocaDbgDeclares.resize(Allocas.size());
AllocaInfo Info;
LargeBlockInfo LBI;
ForwardIDFCalculator IDF(DT);
for (unsigned AllocaNum = 0; AllocaNum != Allocas.size(); ++AllocaNum) {
AllocaInst *AI = Allocas[AllocaNum];
assert(isAllocaPromotable(AI) && "Cannot promote non-promotable alloca!");
assert(AI->getParent()->getParent() == &F &&
"All allocas should be in the same function, which is same as DF!");
removeLifetimeIntrinsicUsers(AI);
if (AI->use_empty()) {
// If there are no uses of the alloca, just delete it now.
AI->eraseFromParent();
// Remove the alloca from the Allocas list, since it has been processed
RemoveFromAllocasList(AllocaNum);
++NumDeadAlloca;
continue;
}
// Calculate the set of read and write-locations for each alloca. This is
// analogous to finding the 'uses' and 'definitions' of each variable.
Info.AnalyzeAlloca(AI);
// If there is only a single store to this value, replace any loads of
// it that are directly dominated by the definition with the value stored.
if (Info.DefiningBlocks.size() == 1) {
if (rewriteSingleStoreAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
++NumSingleStore;
continue;
}
}
// If the alloca is only read and written in one basic block, just perform a
// linear sweep over the block to eliminate it.
if (Info.OnlyUsedInOneBlock &&
promoteSingleBlockAlloca(AI, Info, LBI, SQ.DL, DT, AC)) {
// The alloca has been processed, move on.
RemoveFromAllocasList(AllocaNum);
continue;
}
// If we haven't computed a numbering for the BB's in the function, do so
// now.
if (BBNumbers.empty()) {
unsigned ID = 0;
for (auto &BB : F)
BBNumbers[&BB] = ID++;
}
// Remember the dbg.declare intrinsic describing this alloca, if any.
if (!Info.DbgDeclares.empty())
AllocaDbgDeclares[AllocaNum] = Info.DbgDeclares;
// Keep the reverse mapping of the 'Allocas' array for the rename pass.
AllocaLookup[Allocas[AllocaNum]] = AllocaNum;
// At this point, we're committed to promoting the alloca using IDF's, and
// the standard SSA construction algorithm. Determine which blocks need PHI
// nodes and see if we can optimize out some work by avoiding insertion of
// dead phi nodes.
// Unique the set of defining blocks for efficient lookup.
SmallPtrSet<BasicBlock *, 32> DefBlocks;
DefBlocks.insert(Info.DefiningBlocks.begin(), Info.DefiningBlocks.end());
// Determine which blocks the value is live in. These are blocks which lead
// to uses.
SmallPtrSet<BasicBlock *, 32> LiveInBlocks;
ComputeLiveInBlocks(AI, Info, DefBlocks, LiveInBlocks);
// At this point, we're committed to promoting the alloca using IDF's, and
// the standard SSA construction algorithm. Determine which blocks need phi
// nodes and see if we can optimize out some work by avoiding insertion of
// dead phi nodes.
IDF.setLiveInBlocks(LiveInBlocks);
IDF.setDefiningBlocks(DefBlocks);
SmallVector<BasicBlock *, 32> PHIBlocks;
IDF.calculate(PHIBlocks);
if (PHIBlocks.size() > 1)
llvm::sort(PHIBlocks, [this](BasicBlock *A, BasicBlock *B) {
return BBNumbers.lookup(A) < BBNumbers.lookup(B);
});
unsigned CurrentVersion = 0;
for (BasicBlock *BB : PHIBlocks)
QueuePhiNode(BB, AllocaNum, CurrentVersion);
}
if (Allocas.empty())
//.........这里部分代码省略.........
示例4: InlineFunction
//.........这里部分代码省略.........
VMap[I] = ActualArg;
}
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
// happy with whatever the cloner can do.
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap, Returns, ".i",
&InlinedFunctionInfo, IFI.TD, TheCall);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;
// Update the callgraph if requested.
if (IFI.CG)
UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
}
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
//
{
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
for (BasicBlock::iterator I = FirstNewBlock->begin(),
E = FirstNewBlock->end(); I != E; ) {
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
if (AI == 0) continue;
// If the alloca is now dead, remove it. This often occurs due to code
// specialization.
if (AI->use_empty()) {
AI->eraseFromParent();
continue;
}
if (!isa<Constant>(AI->getArraySize()))
continue;
// Keep track of the static allocas that we inline into the caller if the
// StaticAllocas pointer is non-null.
IFI.StaticAllocas.push_back(AI);
// Scan for the block of allocas that we can move over, and move them
// all at once.
while (isa<AllocaInst>(I) &&
isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
++I;
}
// Transfer all of the allocas over in a block. Using splice means
// that the instructions aren't removed from the symbol table, then
// reinserted.
Caller->getEntryBlock().getInstList().splice(InsertPoint,
FirstNewBlock->getInstList(),
AI, I);
}
}
// If the inlined code contained dynamic alloca instructions, wrap the inlined
// code with llvm.stacksave/llvm.stackrestore intrinsics.
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
Module *M = Caller->getParent();