本文整理汇总了C++中AliasSet::empty方法的典型用法代码示例。如果您正苦于以下问题:C++ AliasSet::empty方法的具体用法?C++ AliasSet::empty怎么用?C++ AliasSet::empty使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在类AliasSet
的用法示例。
在下文中一共展示了AliasSet::empty方法的4个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: remove
/// remove - Remove the specified (potentially non-empty) alias set from the
/// tracker.
void AliasSetTracker::remove(AliasSet &AS) {
// Drop all call sites.
AS.UnknownInsts.clear();
// Clear the alias set.
unsigned NumRefs = 0;
while (!AS.empty()) {
AliasSet::PointerRec *P = AS.PtrList;
Value *ValToRemove = P->getValue();
// Unlink and delete entry from the list of values.
P->eraseFromList();
// Remember how many references need to be dropped.
++NumRefs;
// Finally, remove the entry.
PointerMap.erase(ValToRemove);
}
// Stop using the alias set, removing it.
AS.RefCount -= NumRefs;
if (AS.RefCount == 0)
AS.removeFromTracker(*this);
}
示例2: remove
/// remove - Remove the specified (potentially non-empty) alias set from the
/// tracker.
void AliasSetTracker::remove(AliasSet &AS) {
// Drop all call sites.
AS.CallSites.clear();
// Clear the alias set.
unsigned NumRefs = 0;
while (!AS.empty()) {
AliasSet::HashNodePair *P = AS.PtrList;
// Unlink from the list of values.
P->second.removeFromList();
// Remember how many references need to be dropped.
++NumRefs;
// Finally, remove the entry.
Value *Remove = P->first; // Take a copy because it is invalid to pass
PointerMap.erase(Remove); // a reference to the data being erased.
}
// Stop using the alias set, removing it.
AS.RefCount -= NumRefs;
if (AS.RefCount == 0)
AS.removeFromTracker(*this);
}
示例3: PromoteAliasSet
/// PromoteAliasSet - Try to promote memory values to scalars by sinking
/// stores out of the loop and moving loads to before the loop. We do this by
/// looping over the stores in the loop, looking for stores to Must pointers
/// which are loop invariant.
///
void LICM::PromoteAliasSet(AliasSet &AS) {
// We can promote this alias set if it has a store, if it is a "Must" alias
// set, if the pointer is loop invariant, and if we are not eliminating any
// volatile loads or stores.
if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
return;
assert(!AS.empty() &&
"Must alias set should have at least one pointer element in it!");
Value *SomePtr = AS.begin()->getValue();
// It isn't safe to promote a load/store from the loop if the load/store is
// conditional. For example, turning:
//
// for () { if (c) *P += 1; }
//
// into:
//
// tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
//
// is not safe, because *P may only be valid to access if 'c' is true.
//
// It is safe to promote P if all uses are direct load/stores and if at
// least one is guaranteed to be executed.
bool GuaranteedToExecute = false;
SmallVector<Instruction*, 64> LoopUses;
SmallPtrSet<Value*, 4> PointerMustAliases;
// We start with an alignment of one and try to find instructions that allow
// us to prove better alignment.
unsigned Alignment = 1;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
if (SomePtr->getType() != ASIV->getType())
return;
for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
UI != UE; ++UI) {
// Ignore instructions that are outside the loop.
Instruction *Use = dyn_cast<Instruction>(*UI);
if (!Use || !CurLoop->contains(Use))
continue;
// If there is an non-load/store instruction in the loop, we can't promote
// it.
if (LoadInst *load = dyn_cast<LoadInst>(Use)) {
assert(!load->isVolatile() && "AST broken");
if (!load->isSimple())
return;
} else if (StoreInst *store = dyn_cast<StoreInst>(Use)) {
// Stores *of* the pointer are not interesting, only stores *to* the
// pointer.
if (Use->getOperand(1) != ASIV)
continue;
assert(!store->isVolatile() && "AST broken");
if (!store->isSimple())
return;
// Note that we only check GuaranteedToExecute inside the store case
// so that we do not introduce stores where they did not exist before
// (which would break the LLVM concurrency model).
// If the alignment of this instruction allows us to specify a more
// restrictive (and performant) alignment and if we are sure this
// instruction will be executed, update the alignment.
// Larger is better, with the exception of 0 being the best alignment.
unsigned InstAlignment = store->getAlignment();
if ((InstAlignment > Alignment || InstAlignment == 0)
&& (Alignment != 0))
if (isGuaranteedToExecute(*Use)) {
GuaranteedToExecute = true;
Alignment = InstAlignment;
}
if (!GuaranteedToExecute)
GuaranteedToExecute = isGuaranteedToExecute(*Use);
} else
return; // Not a load or store.
LoopUses.push_back(Use);
}
}
//.........这里部分代码省略.........
示例4: PromoteAliasSet
/// PromoteAliasSet - Try to promote memory values to scalars by sinking
/// stores out of the loop and moving loads to before the loop. We do this by
/// looping over the stores in the loop, looking for stores to Must pointers
/// which are loop invariant.
///
void LICM::PromoteAliasSet(AliasSet &AS) {
// We can promote this alias set if it has a store, if it is a "Must" alias
// set, if the pointer is loop invariant, and if we are not eliminating any
// volatile loads or stores.
if (AS.isForwardingAliasSet() || !AS.isMod() || !AS.isMustAlias() ||
AS.isVolatile() || !CurLoop->isLoopInvariant(AS.begin()->getValue()))
return;
assert(!AS.empty() &&
"Must alias set should have at least one pointer element in it!");
Value *SomePtr = AS.begin()->getValue();
// It isn't safe to promote a load/store from the loop if the load/store is
// conditional. For example, turning:
//
// for () { if (c) *P += 1; }
//
// into:
//
// tmp = *P; for () { if (c) tmp +=1; } *P = tmp;
//
// is not safe, because *P may only be valid to access if 'c' is true.
//
// It is safe to promote P if all uses are direct load/stores and if at
// least one is guaranteed to be executed.
bool GuaranteedToExecute = false;
SmallVector<Instruction*, 64> LoopUses;
SmallPtrSet<Value*, 4> PointerMustAliases;
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
for (AliasSet::iterator ASI = AS.begin(), E = AS.end(); ASI != E; ++ASI) {
Value *ASIV = ASI->getValue();
PointerMustAliases.insert(ASIV);
// Check that all of the pointers in the alias set have the same type. We
// cannot (yet) promote a memory location that is loaded and stored in
// different sizes.
if (SomePtr->getType() != ASIV->getType())
return;
for (Value::use_iterator UI = ASIV->use_begin(), UE = ASIV->use_end();
UI != UE; ++UI) {
// Ignore instructions that are outside the loop.
Instruction *Use = dyn_cast<Instruction>(*UI);
if (!Use || !CurLoop->contains(Use))
continue;
// If there is an non-load/store instruction in the loop, we can't promote
// it.
if (isa<LoadInst>(Use))
assert(!cast<LoadInst>(Use)->isVolatile() && "AST broken");
else if (isa<StoreInst>(Use)) {
assert(!cast<StoreInst>(Use)->isVolatile() && "AST broken");
if (Use->getOperand(0) == ASIV) return;
} else
return; // Not a load or store.
if (!GuaranteedToExecute)
GuaranteedToExecute = isSafeToExecuteUnconditionally(*Use);
LoopUses.push_back(Use);
}
}
// If there isn't a guaranteed-to-execute instruction, we can't promote.
if (!GuaranteedToExecute)
return;
// Otherwise, this is safe to promote, lets do it!
DEBUG(dbgs() << "LICM: Promoting value stored to in loop: " <<*SomePtr<<'\n');
Changed = true;
++NumPromoted;
// We use the SSAUpdater interface to insert phi nodes as required.
SmallVector<PHINode*, 16> NewPHIs;
SSAUpdater SSA(&NewPHIs);
// It wants to know some value of the same type as what we'll be inserting.
Value *SomeValue;
if (isa<LoadInst>(LoopUses[0]))
SomeValue = LoopUses[0];
else
SomeValue = cast<StoreInst>(LoopUses[0])->getOperand(0);
SSA.Initialize(SomeValue->getType(), SomeValue->getName());
// First step: bucket up uses of the pointers by the block they occur in.
// This is important because we have to handle multiple defs/uses in a block
// ourselves: SSAUpdater is purely for cross-block references.
// FIXME: Want a TinyVector<Instruction*> since there is usually 0/1 element.
DenseMap<BasicBlock*, std::vector<Instruction*> > UsesByBlock;
for (unsigned i = 0, e = LoopUses.size(); i != e; ++i) {
Instruction *User = LoopUses[i];
//.........这里部分代码省略.........