当前位置: 首页>>代码示例>>C++>>正文


C++ AbstractLinAlgPack::combined_nu_comp_err方法代码示例

本文整理汇总了C++中AbstractLinAlgPack::combined_nu_comp_err方法的典型用法代码示例。如果您正苦于以下问题:C++ AbstractLinAlgPack::combined_nu_comp_err方法的具体用法?C++ AbstractLinAlgPack::combined_nu_comp_err怎么用?C++ AbstractLinAlgPack::combined_nu_comp_err使用的例子?那么, 这里精选的方法代码示例或许可以为您提供帮助。您也可以进一步了解该方法所在AbstractLinAlgPack的用法示例。


在下文中一共展示了AbstractLinAlgPack::combined_nu_comp_err方法的1个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: Converged

bool CheckConvergenceStd_Strategy::Converged(
  Algorithm& _algo
  )
  {
  using AbstractLinAlgPack::assert_print_nan_inf;
  using AbstractLinAlgPack::combined_nu_comp_err;
  
  NLPAlgo        &algo = rsqp_algo(_algo);
  NLPAlgoState   &s    = algo.rsqp_state();
  NLP            &nlp  = algo.nlp();

  EJournalOutputLevel olevel = algo.algo_cntr().journal_output_level();
  std::ostream& out = algo.track().journal_out();

  const size_type
    n  = nlp.n(),
    m  = nlp.m(),
    nb = nlp.num_bounded_x();

  // Get the iteration quantities
  IterQuantityAccess<value_type>
    &opt_kkt_err_iq  = s.opt_kkt_err(),
    &feas_kkt_err_iq = s.feas_kkt_err(),
      &comp_kkt_err_iq = s.comp_kkt_err();
  
  IterQuantityAccess<VectorMutable>
    &x_iq       = s.x(),
    &d_iq       = s.d(),
    &Gf_iq      = s.Gf(),
    *c_iq       = m     ? &s.c()      : NULL,
    *rGL_iq     = n > m ? &s.rGL()    : NULL,
    *GL_iq      = n > m ? &s.GL()     : NULL,
    *nu_iq      = n > m ? &s.nu()     : NULL;

  // opt_err = (||rGL||inf or ||GL||) / (||Gf|| + scale_kkt_factor)
  value_type 
    norm_inf_Gf_k = 0.0,
    norm_inf_GLrGL_k = 0.0;

  if( n > m && scale_opt_error_by_Gf() && Gf_iq.updated_k(0) ) {
    assert_print_nan_inf(
      norm_inf_Gf_k = Gf_iq.get_k(0).norm_inf(),
      "||Gf_k||inf",true,&out
      );
  }

  // NOTE:
  // The strategy object CheckConvergenceIP_Strategy assumes
  // that this will always be the gradient of the lagrangian
  // of the original problem, not the gradient of the lagrangian
  // for psi. (don't use augmented nlp info here)
  if( n > m ) {
    if( opt_error_check() == OPT_ERROR_REDUCED_GRADIENT_LAGR ) {
      assert_print_nan_inf( norm_inf_GLrGL_k = rGL_iq->get_k(0).norm_inf(),
                  "||rGL_k||inf",true,&out);
    }
    else {
      assert_print_nan_inf( norm_inf_GLrGL_k = GL_iq->get_k(0).norm_inf(),
                  "||GL_k||inf",true,&out);
    }
  }

  const value_type
    opt_scale_factor = 1.0 + norm_inf_Gf_k,
    opt_err = norm_inf_GLrGL_k / opt_scale_factor;
  
  // feas_err
  const value_type feas_err = ( ( m ? c_iq->get_k(0).norm_inf() : 0.0 ) );

  // comp_err
  value_type comp_err = 0.0;
  if ( n > m ) {
    if (nb > 0) {
      comp_err = combined_nu_comp_err(nu_iq->get_k(0), x_iq.get_k(0), nlp.xl(), nlp.xu());
    }
    if(m) {
      assert_print_nan_inf( feas_err,"||c_k||inf",true,&out);
    }
  }

  // scaling factors
  const value_type 
    scale_opt_factor = CalculateScalingFactor(s, scale_opt_error_by()),
    scale_feas_factor = CalculateScalingFactor(s, scale_feas_error_by()),
    scale_comp_factor = CalculateScalingFactor(s, scale_comp_error_by());
  
  // kkt_err
  const value_type
    opt_kkt_err_k  = opt_err/scale_opt_factor,
     feas_kkt_err_k = feas_err/scale_feas_factor,
    comp_kkt_err_k = comp_err/scale_comp_factor;

  // update the iteration quantities
  if(n > m) opt_kkt_err_iq.set_k(0) = opt_kkt_err_k;
  feas_kkt_err_iq.set_k(0) = feas_kkt_err_k;
  comp_kkt_err_iq.set_k(0) = comp_kkt_err_k;

  // step_err
  value_type step_err = 0.0;
  if( d_iq.updated_k(0) ) {
//.........这里部分代码省略.........
开发者ID:haripandey,项目名称:trilinos,代码行数:101,代码来源:MoochoPack_CheckConvergenceStd_Strategy.cpp


注:本文中的AbstractLinAlgPack::combined_nu_comp_err方法示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。