本文整理汇总了C++中zfs_alloc函数的典型用法代码示例。如果您正苦于以下问题:C++ zfs_alloc函数的具体用法?C++ zfs_alloc怎么用?C++ zfs_alloc使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了zfs_alloc函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: zfs_sort_snaps
static int
zfs_sort_snaps(zfs_handle_t *zhp, void *data)
{
avl_tree_t *avl = data;
zfs_node_t *node;
zfs_node_t search;
search.zn_handle = zhp;
node = avl_find(avl, &search, NULL);
if (node) {
/*
* If this snapshot was renamed while we were creating the
* AVL tree, it's possible that we already inserted it under
* its old name. Remove the old handle before adding the new
* one.
*/
zfs_close(node->zn_handle);
avl_remove(avl, node);
free(node);
}
node = zfs_alloc(zhp->zfs_hdl, sizeof (zfs_node_t));
node->zn_handle = zhp;
avl_add(avl, node);
return (0);
}
示例2: zpool_open_silent
/*
* Like the above, but silent on error. Used when iterating over pools (because
* the configuration cache may be out of date).
*/
int
zpool_open_silent(libzfs_handle_t *hdl, const char *pool, zpool_handle_t **ret)
{
zpool_handle_t *zhp;
boolean_t missing;
if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL)
return (-1);
zhp->zpool_hdl = hdl;
(void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name));
if (zpool_refresh_stats(zhp, &missing) != 0) {
zpool_close(zhp);
return (-1);
}
if (missing) {
zpool_close(zhp);
*ret = NULL;
return (0);
}
*ret = zhp;
return (0);
}
示例3: zpool_enable_datasets
int
zpool_enable_datasets(zpool_handle_t *zhp, const char *mntopts, int flags)
{
get_all_cb_t cb = { 0 };
libzfs_handle_t *hdl = zhp->zpool_hdl;
zfs_handle_t *zfsp;
int i, ret = -1;
int *good;
/*
* Gather all non-snap datasets within the pool.
*/
if ((zfsp = zfs_open(hdl, zhp->zpool_name, ZFS_TYPE_DATASET)) == NULL)
goto out;
libzfs_add_handle(&cb, zfsp);
if (zfs_iter_filesystems(zfsp, mount_cb, &cb) != 0)
goto out;
/*
* Sort the datasets by mountpoint.
*/
qsort(cb.cb_handles, cb.cb_used, sizeof (void *),
libzfs_dataset_cmp);
/*
* And mount all the datasets, keeping track of which ones
* succeeded or failed.
*/
if ((good = zfs_alloc(zhp->zpool_hdl,
cb.cb_used * sizeof (int))) == NULL)
goto out;
ret = 0;
for (i = 0; i < cb.cb_used; i++) {
if (zfs_mount(cb.cb_handles[i], mntopts, flags) != 0)
ret = -1;
else
good[i] = 1;
}
/*
* Then share all the ones that need to be shared. This needs
* to be a separate pass in order to avoid excessive reloading
* of the configuration. Good should never be NULL since
* zfs_alloc is supposed to exit if memory isn't available.
*/
for (i = 0; i < cb.cb_used; i++) {
if (good[i] && zfs_share(cb.cb_handles[i]) != 0)
ret = -1;
}
free(good);
out:
for (i = 0; i < cb.cb_used; i++)
zfs_close(cb.cb_handles[i]);
free(cb.cb_handles);
return (ret);
}
示例4: zfs_graph_create
/*
* Construct a new graph object. We allow the size to be specified as a
* parameter so in the future we can size the hash according to the number of
* datasets in the pool.
*/
static zfs_graph_t *
zfs_graph_create(libzfs_handle_t *hdl, size_t size)
{
zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));
if (zgp == NULL)
return (NULL);
zgp->zg_size = size;
if ((zgp->zg_hash = zfs_alloc(hdl,
size * sizeof (zfs_vertex_t *))) == NULL) {
free(zgp);
return (NULL);
}
return (zgp);
}
示例5: zfs_graph_create
/*
* Construct a new graph object. We allow the size to be specified as a
* parameter so in the future we can size the hash according to the number of
* datasets in the pool.
*/
static zfs_graph_t *
zfs_graph_create(libzfs_handle_t *hdl, const char *dataset, size_t size)
{
zfs_graph_t *zgp = zfs_alloc(hdl, sizeof (zfs_graph_t));
if (zgp == NULL)
return (NULL);
zgp->zg_size = size;
if ((zgp->zg_hash = zfs_alloc(hdl,
size * sizeof (zfs_vertex_t *))) == NULL) {
free(zgp);
return (NULL);
}
zgp->zg_root = dataset;
zgp->zg_clone_count = 0;
return (zgp);
}
示例6: zfs_edge_create
/*
* Allocate a new edge pointing to the target vertex.
*/
static zfs_edge_t *
zfs_edge_create(libzfs_handle_t *hdl, zfs_vertex_t *dest)
{
zfs_edge_t *zep = zfs_alloc(hdl, sizeof (zfs_edge_t));
if (zep == NULL)
return (NULL);
zep->ze_dest = dest;
return (zep);
}
示例7: derive_key
static int
derive_key(libzfs_handle_t *hdl, zfs_keyformat_t format, uint64_t iters,
uint8_t *key_material, size_t key_material_len, uint64_t salt,
uint8_t **key_out)
{
int ret;
uint8_t *key;
*key_out = NULL;
key = zfs_alloc(hdl, WRAPPING_KEY_LEN);
if (!key)
return (ENOMEM);
switch (format) {
case ZFS_KEYFORMAT_RAW:
bcopy(key_material, key, WRAPPING_KEY_LEN);
break;
case ZFS_KEYFORMAT_HEX:
ret = hex_key_to_raw((char *)key_material,
WRAPPING_KEY_LEN * 2, key);
if (ret != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Invalid hex key provided."));
goto error;
}
break;
case ZFS_KEYFORMAT_PASSPHRASE:
salt = LE_64(salt);
ret = pbkdf2(key_material, strlen((char *)key_material),
((uint8_t *)&salt), sizeof (uint64_t), iters,
key, WRAPPING_KEY_LEN);
if (ret != 0) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"Failed to generate key from passphrase."));
goto error;
}
break;
default:
ret = EINVAL;
goto error;
}
*key_out = key;
return (0);
error:
free(key);
*key_out = NULL;
return (ret);
}
示例8: construct_graph
/*
* Construct a complete graph of all necessary vertices. First, we iterate over
* only our object's children. If we don't find any cloned snapshots, then we
* simple return that. Otherwise, we have to start at the pool root and iterate
* over all datasets.
*/
static zfs_graph_t *
construct_graph(libzfs_handle_t *hdl, const char *dataset)
{
zfs_graph_t *zgp = zfs_graph_create(hdl, ZFS_GRAPH_SIZE);
zfs_cmd_t zc = { 0 };
int ret = 0;
if (zgp == NULL)
return (zgp);
/*
* We need to explicitly check whether this dataset has clones or not,
* since iterate_children() only checks the children.
*/
(void) strlcpy(zc.zc_name, dataset, sizeof (zc.zc_name));
(void) ioctl(hdl->libzfs_fd, ZFS_IOC_OBJSET_STATS, &zc);
if (zc.zc_objset_stats.dds_num_clones != 0 ||
(ret = iterate_children(hdl, zgp, dataset)) != 0) {
/*
* Determine pool name and try again.
*/
char *pool, *slash;
if ((slash = strchr(dataset, '/')) != NULL ||
(slash = strchr(dataset, '@')) != NULL) {
pool = zfs_alloc(hdl, slash - dataset + 1);
if (pool == NULL) {
zfs_graph_destroy(zgp);
return (NULL);
}
(void) strncpy(pool, dataset, slash - dataset);
pool[slash - dataset] = '\0';
if (iterate_children(hdl, zgp, pool) == -1 ||
zfs_graph_add(hdl, zgp, pool, NULL, 0) != 0) {
free(pool);
zfs_graph_destroy(zgp);
return (NULL);
}
free(pool);
}
}
if (ret == -1 || zfs_graph_add(hdl, zgp, dataset, NULL, 0) != 0) {
zfs_graph_destroy(zgp);
return (NULL);
}
return (zgp);
}
示例9: zfs_vertex_create
/*
* Allocate a new vertex with the given name.
*/
static zfs_vertex_t *
zfs_vertex_create(libzfs_handle_t *hdl, const char *dataset)
{
zfs_vertex_t *zvp = zfs_alloc(hdl, sizeof (zfs_vertex_t));
if (zvp == NULL)
return (NULL);
assert(strlen(dataset) < ZFS_MAXNAMELEN);
(void) strlcpy(zvp->zv_dataset, dataset, sizeof (zvp->zv_dataset));
if ((zvp->zv_edges = zfs_alloc(hdl,
MIN_EDGECOUNT * sizeof (void *))) == NULL) {
free(zvp);
return (NULL);
}
zvp->zv_edgealloc = MIN_EDGECOUNT;
return (zvp);
}
示例10: topo_sort
/*
* Given a graph, do a recursive topological sort into the given array. This is
* really just a depth first search, so that the deepest nodes appear first.
* hijack the 'zv_visited' marker to avoid visiting the same vertex twice.
*/
static int
topo_sort(libzfs_handle_t *hdl, boolean_t allowrecursion, char **result,
size_t *idx, zfs_vertex_t *zgv)
{
int i;
if (zgv->zv_visited == VISIT_SORT_PRE && !allowrecursion) {
/*
* If we've already seen this vertex as part of our depth-first
* search, then we have a cyclic dependency, and we must return
* an error.
*/
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"recursive dependency at '%s'"),
zgv->zv_dataset);
return (zfs_error(hdl, EZFS_RECURSIVE,
dgettext(TEXT_DOMAIN,
"cannot determine dependent datasets")));
} else if (zgv->zv_visited >= VISIT_SORT_PRE) {
/*
* If we've already processed this as part of the topological
* sort, then don't bother doing so again.
*/
return (0);
}
zgv->zv_visited = VISIT_SORT_PRE;
/* avoid doing a search if we don't have to */
zfs_vertex_sort_edges(zgv);
for (i = 0; i < zgv->zv_edgecount; i++) {
if (topo_sort(hdl, allowrecursion, result, idx,
zgv->zv_edges[i]->ze_dest) != 0)
return (-1);
}
/* we may have visited this in the course of the above */
if (zgv->zv_visited == VISIT_SORT_POST)
return (0);
if ((result[*idx] = zfs_alloc(hdl,
strlen(zgv->zv_dataset) + 1)) == NULL)
return (-1);
(void) strcpy(result[*idx], zgv->zv_dataset);
*idx += 1;
zgv->zv_visited = VISIT_SORT_POST;
return (0);
}
示例11: get_keydata_curl
/*ARGSUSED*/
static size_t
get_keydata_curl(void *ptr, size_t size, size_t nmemb, void *arg)
{
struct cb_arg_curl *cb = arg;
size_t datalen = size * nmemb;
if (ptr == NULL || datalen == 0)
return (0);
cb->cb_keydatalen = datalen;
cb->cb_keydata = zfs_alloc(cb->cb_hdl, datalen);
bcopy(ptr, cb->cb_keydata, datalen);
return (datalen);
}
示例12: zpool_handle
/*
* Returns a handle to the pool that contains the provided dataset.
* If a handle to that pool already exists then that handle is returned.
* Otherwise, a new handle is created and added to the list of handles.
*/
static zpool_handle_t *
zpool_handle(zfs_handle_t *zhp)
{
char *pool_name;
int len;
zpool_handle_t *zph;
len = strcspn(zhp->zfs_name, "/@") + 1;
pool_name = zfs_alloc(zhp->zfs_hdl, len);
(void) strlcpy(pool_name, zhp->zfs_name, len);
zph = zpool_find_handle(zhp, pool_name, len);
if (zph == NULL)
zph = zpool_add_handle(zhp, pool_name);
free(pool_name);
return (zph);
}
示例13: get_dependents
/*
* The only public interface for this file. Do the dirty work of constructing a
* child list for the given object. Construct the graph, do the toplogical
* sort, and then return the array of strings to the caller.
*
* The 'allowrecursion' parameter controls behavior when cycles are found. If
* it is set, the the cycle is ignored and the results returned as if the cycle
* did not exist. If it is not set, then the routine will generate an error if
* a cycle is found.
*/
int
get_dependents(libzfs_handle_t *hdl, boolean_t allowrecursion,
const char *dataset, char ***result, size_t *count)
{
zfs_graph_t *zgp;
zfs_vertex_t *zvp;
if ((zgp = construct_graph(hdl, dataset)) == NULL)
return (-1);
if ((*result = zfs_alloc(hdl,
zgp->zg_nvertex * sizeof (char *))) == NULL) {
zfs_graph_destroy(zgp);
return (-1);
}
if ((zvp = zfs_graph_lookup(hdl, zgp, dataset, 0)) == NULL) {
free(*result);
zfs_graph_destroy(zgp);
return (-1);
}
*count = 0;
if (topo_sort(hdl, allowrecursion, *result, count, zvp) != 0) {
free(*result);
zfs_graph_destroy(zgp);
return (-1);
}
/*
* Get rid of the last entry, which is our starting vertex and not
* strictly a dependent.
*/
assert(*count > 0);
free((*result)[*count - 1]);
(*count)--;
zfs_graph_destroy(zgp);
return (0);
}
示例14: zcmd_write_src_nvlist
int
zcmd_write_src_nvlist(libzfs_handle_t *hdl, zfs_cmd_t *zc, nvlist_t *nvl,
size_t *size)
{
char *packed;
size_t len;
verify(nvlist_size(nvl, &len, NV_ENCODE_NATIVE) == 0);
if ((packed = zfs_alloc(hdl, len)) == NULL)
return (-1);
verify(nvlist_pack(nvl, &packed, &len, NV_ENCODE_NATIVE, 0) == 0);
zc->zc_nvlist_src = (uint64_t)(uintptr_t)packed;
zc->zc_nvlist_src_size = len;
if (size)
*size = len;
return (0);
}
示例15: zpool_open_canfail
/*
* Open a handle to the given pool, even if the pool is currently in the FAULTED
* state.
*/
zpool_handle_t *
zpool_open_canfail(libzfs_handle_t *hdl, const char *pool)
{
zpool_handle_t *zhp;
boolean_t missing;
/*
* Make sure the pool name is valid.
*/
if (!zpool_name_valid(hdl, B_TRUE, pool)) {
(void) zfs_error(hdl, EZFS_INVALIDNAME,
dgettext(TEXT_DOMAIN, "cannot open '%s'"),
pool);
return (NULL);
}
if ((zhp = zfs_alloc(hdl, sizeof (zpool_handle_t))) == NULL)
return (NULL);
zhp->zpool_hdl = hdl;
(void) strlcpy(zhp->zpool_name, pool, sizeof (zhp->zpool_name));
if (zpool_refresh_stats(zhp, &missing) != 0) {
zpool_close(zhp);
return (NULL);
}
if (missing) {
zfs_error_aux(hdl, dgettext(TEXT_DOMAIN,
"no such pool"));
(void) zfs_error(hdl, EZFS_NOENT,
dgettext(TEXT_DOMAIN, "cannot open '%s'"),
pool);
zpool_close(zhp);
return (NULL);
}
return (zhp);
}