本文整理汇总了C++中xTaskCreate函数的典型用法代码示例。如果您正苦于以下问题:C++ xTaskCreate函数的具体用法?C++ xTaskCreate怎么用?C++ xTaskCreate使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了xTaskCreate函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: vStartBlockingQueueTasks
void vStartBlockingQueueTasks( unsigned portBASE_TYPE uxPriority )
{
xBlockingQueueParameters *pxQueueParameters1, *pxQueueParameters2;
xBlockingQueueParameters *pxQueueParameters3, *pxQueueParameters4;
xBlockingQueueParameters *pxQueueParameters5, *pxQueueParameters6;
const unsigned portBASE_TYPE uxQueueSize1 = 1, uxQueueSize5 = 5;
const portTickType xBlockTime = ( portTickType ) 1000 / portTICK_RATE_MS;
const portTickType xDontBlock = ( portTickType ) 0;
/* Create the first two tasks as described at the top of the file. */
/* First create the structure used to pass parameters to the consumer tasks. */
pxQueueParameters1 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Create the queue used by the first two tasks to pass the incrementing number.
Pass a pointer to the queue in the parameter structure. */
pxQueueParameters1->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
/* The consumer is created first so gets a block time as described above. */
pxQueueParameters1->xBlockTime = xBlockTime;
/* Pass in the variable that this task is going to increment so we can check it
is still running. */
pxQueueParameters1->psCheckVariable = &( sBlockingConsumerCount[ 0 ] );
/* Create the structure used to pass parameters to the producer task. */
pxQueueParameters2 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
/* Pass the queue to this task also, using the parameter structure. */
pxQueueParameters2->xQueue = pxQueueParameters1->xQueue;
/* The producer is not going to block - as soon as it posts the consumer will
wake and remove the item so the producer should always have room to post. */
pxQueueParameters2->xBlockTime = xDontBlock;
/* Pass in the variable that this task is going to increment so we can check
it is still running. */
pxQueueParameters2->psCheckVariable = &( sBlockingProducerCount[ 0 ] );
/* Note the producer has a lower priority than the consumer when the tasks are
spawned. */
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB1", blckqSTACK_SIZE, ( void * ) pxQueueParameters1, uxPriority, NULL );
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB2", blckqSTACK_SIZE, ( void * ) pxQueueParameters2, tskIDLE_PRIORITY, NULL );
/* Create the second two tasks as described at the top of the file. This uses
the same mechanism but reverses the task priorities. */
pxQueueParameters3 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters3->xQueue = xQueueCreate( uxQueueSize1, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
pxQueueParameters3->xBlockTime = xDontBlock;
pxQueueParameters3->psCheckVariable = &( sBlockingProducerCount[ 1 ] );
pxQueueParameters4 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters4->xQueue = pxQueueParameters3->xQueue;
pxQueueParameters4->xBlockTime = xBlockTime;
pxQueueParameters4->psCheckVariable = &( sBlockingConsumerCount[ 1 ] );
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB3", blckqSTACK_SIZE, ( void * ) pxQueueParameters3, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB4", blckqSTACK_SIZE, ( void * ) pxQueueParameters4, uxPriority, NULL );
/* Create the last two tasks as described above. The mechanism is again just
the same. This time both parameter structures are given a block time. */
pxQueueParameters5 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters5->xQueue = xQueueCreate( uxQueueSize5, ( unsigned portBASE_TYPE ) sizeof( unsigned short ) );
pxQueueParameters5->xBlockTime = xBlockTime;
pxQueueParameters5->psCheckVariable = &( sBlockingProducerCount[ 2 ] );
pxQueueParameters6 = ( xBlockingQueueParameters * ) pvPortMalloc( sizeof( xBlockingQueueParameters ) );
pxQueueParameters6->xQueue = pxQueueParameters5->xQueue;
pxQueueParameters6->xBlockTime = xBlockTime;
pxQueueParameters6->psCheckVariable = &( sBlockingConsumerCount[ 2 ] );
xTaskCreate( vBlockingQueueProducer, ( signed char * ) "QProdB5", blckqSTACK_SIZE, ( void * ) pxQueueParameters5, tskIDLE_PRIORITY, NULL );
xTaskCreate( vBlockingQueueConsumer, ( signed char * ) "QConsB6", blckqSTACK_SIZE, ( void * ) pxQueueParameters6, tskIDLE_PRIORITY, NULL );
}
示例2: prvDemonstrateTaskStateAndHandleGetFunctions
static void prvDemonstrateTaskStateAndHandleGetFunctions( void )
{
TaskHandle_t xIdleTaskHandle, xTimerTaskHandle;
char *pcTaskName;
static portBASE_TYPE xPerformedOneShotTests = pdFALSE;
TaskHandle_t xTestTask;
/* Demonstrate the use of the xTimerGetTimerDaemonTaskHandle() and
xTaskGetIdleTaskHandle() functions. Also try using the function that sets
the task number. */
xIdleTaskHandle = xTaskGetIdleTaskHandle();
xTimerTaskHandle = xTimerGetTimerDaemonTaskHandle();
/* This is the idle hook, so the current task handle should equal the
returned idle task handle. */
if( xTaskGetCurrentTaskHandle() != xIdleTaskHandle )
{
pcStatusMessage = "Error: Returned idle task handle was incorrect";
}
/* Check the timer task handle was returned correctly. */
pcTaskName = pcTaskGetTaskName( xTimerTaskHandle );
if( strcmp( pcTaskName, "Tmr Svc" ) != 0 )
{
pcStatusMessage = "Error: Returned timer task handle was incorrect";
}
/* This task is running, make sure it's state is returned as running. */
if( eTaskStateGet( xIdleTaskHandle ) != eRunning )
{
pcStatusMessage = "Error: Returned idle task state was incorrect";
}
/* If this task is running, then the timer task must be blocked. */
if( eTaskStateGet( xTimerTaskHandle ) != eBlocked )
{
pcStatusMessage = "Error: Returned timer task state was incorrect";
}
/* Other tests that should only be performed once follow. The test task
is not created on each iteration because to do so would cause the death
task to report an error (too many tasks running). */
if( xPerformedOneShotTests == pdFALSE )
{
/* Don't run this part of the test again. */
xPerformedOneShotTests = pdTRUE;
/* Create a test task to use to test other eTaskStateGet() return values. */
if( xTaskCreate( prvTestTask, "Test", configMINIMAL_STACK_SIZE, NULL, tskIDLE_PRIORITY, &xTestTask ) == pdPASS )
{
/* If this task is running, the test task must be in the ready state. */
if( eTaskStateGet( xTestTask ) != eReady )
{
pcStatusMessage = "Error: Returned test task state was incorrect 1";
}
/* Now suspend the test task and check its state is reported correctly. */
vTaskSuspend( xTestTask );
if( eTaskStateGet( xTestTask ) != eSuspended )
{
pcStatusMessage = "Error: Returned test task state was incorrect 2";
}
/* Now delete the task and check its state is reported correctly. */
vTaskDelete( xTestTask );
if( eTaskStateGet( xTestTask ) != eDeleted )
{
pcStatusMessage = "Error: Returned test task state was incorrect 3";
}
}
}
}
示例3: main_full
void main_full( void )
{
/* The baud rate setting here has no effect, hence it is set to 0 to
make that obvious. */
xSerialPortInitMinimal( 0, mainUART_QUEUE_LENGTHS );
/* If the file system is only going to be accessed from one task then
F_FS_THREAD_AWARE can be set to 0 and the set of example files are created
before the RTOS scheduler is started. If the file system is going to be
access from more than one task then F_FS_THREAD_AWARE must be set to 1 and
the set of sample files are created from the idle task hook function
vApplicationIdleHook() - which is defined in this file. */
#if ( mainINCLUDE_FAT_SL_DEMO == 1 )&& ( F_FS_THREAD_AWARE == 0 )
{
/* Initialise the drive and file system, then create a few example
files. The output from this function just goes to the stdout window,
allowing the output to be viewed when the UDP command console is not
connected. */
vCreateAndVerifySampleFiles();
}
#endif
/* Start all the other standard demo/test tasks. The have not particular
functionality, but do demonstrate how to use the FreeRTOS API and test the
kernel port. */
vStartDynamicPriorityTasks();
vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY );
vCreateBlockTimeTasks();
vStartCountingSemaphoreTasks();
vStartGenericQueueTasks( tskIDLE_PRIORITY );
vStartRecursiveMutexTasks();
vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
vStartMathTasks( mainFLOP_TASK_PRIORITY );
vStartTimerDemoTask( mainTIMER_TEST_PERIOD );
vStartQueueOverwriteTask( mainQUEUE_OVERWRITE_PRIORITY );
#if mainINCLUDE_FAT_SL_DEMO == 1
{
/* Start the tasks that implements the command console on the UART, as
described above. */
vUARTCommandConsoleStart( mainUART_COMMAND_CONSOLE_STACK_SIZE, mainUART_COMMAND_CONSOLE_TASK_PRIORITY );
/* Register both the standard and file system related CLI commands. */
vRegisterSampleCLICommands();
vRegisterFileSystemCLICommands();
}
#else
{
/* The COM test tasks can use the UART if the CLI is not used by the
FAT SL demo. The COM test tasks require a UART connector to be fitted
to the UART port. */
vAltStartComTestTasks( mainCOM_TEST_TASK_PRIORITY, mainBAUD_RATE, mainCOM_TEST_LED );
}
#endif
/* Create the register check tasks, as described at the top of this
file */
xTaskCreate( prvRegTestTaskEntry1, "Reg1", configMINIMAL_STACK_SIZE, mainREG_TEST_TASK_1_PARAMETER, tskIDLE_PRIORITY, NULL );
xTaskCreate( prvRegTestTaskEntry2, "Reg2", configMINIMAL_STACK_SIZE, mainREG_TEST_TASK_2_PARAMETER, tskIDLE_PRIORITY, NULL );
/* Create the task that performs the 'check' functionality, as described at
the top of this file. */
xTaskCreate( prvCheckTask, "Check", configMINIMAL_STACK_SIZE, NULL, mainCHECK_TASK_PRIORITY, NULL );
/* The set of tasks created by the following function call have to be
created last as they keep account of the number of tasks they expect to see
running. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
/* Start the scheduler. */
vTaskStartScheduler();
/* If all is well, the scheduler will now be running, and the following
line will never be reached. If the following line does execute, then
there was either insufficient FreeRTOS heap memory available for the idle
and/or timer tasks to be created, or vTaskStartScheduler() was called from
User mode. See the memory management section on the FreeRTOS web site for
more details on the FreeRTOS heap http://www.freertos.org/a00111.html. The
mode from which main() is called is set in the C start up code and must be
a privileged mode (not user mode). */
for( ;; );
}
示例4: vErrorChecks
/*!
* \brief The task function for the "Check" task.
*/
static void vErrorChecks( void *pvParameters )
{
static volatile unsigned portLONG ulDummyVariable = 3UL;
unsigned portLONG ulMemCheckTaskRunningCount;
xTaskHandle xCreatedTask;
portBASE_TYPE bSuicidalTask = 0;
/* The parameters are not used. Prevent compiler warnings. */
( void ) pvParameters;
/* Cycle for ever, delaying then checking all the other tasks are still
operating without error.
In addition to the standard tests the memory allocator is tested through
the dynamic creation and deletion of a task each cycle. Each time the
task is created memory must be allocated for its stack. When the task is
deleted this memory is returned to the heap. If the task cannot be created
then it is likely that the memory allocation failed. */
for( ;; )
{
/* Do this only once. */
if( bSuicidalTask == 0 )
{
bSuicidalTask++;
/* This task has to be created last as it keeps account of the number of
tasks it expects to see running. However its implementation expects
to be called before vTaskStartScheduler(). We're in the case here where
vTaskStartScheduler() has already been called (thus the hidden IDLE task
has already been spawned). Since vCreateSuicidalTask() supposes that the
IDLE task isn't included in the response from uxTaskGetNumberOfTasks(),
let the MEM_CHECK task play that role. => this is why vCreateSuicidalTasks()
is not called as the last task. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
}
/* Reset xCreatedTask. This is modified by the task about to be
created so we can tell if it is executing correctly or not. */
xCreatedTask = mainNO_TASK;
/* Dynamically create a task - passing ulMemCheckTaskRunningCount as a
parameter. */
ulMemCheckTaskRunningCount = mainCOUNT_INITIAL_VALUE;
if( xTaskCreate( vMemCheckTask,
( signed portCHAR * ) "MEM_CHECK",
configMINIMAL_STACK_SIZE,
( void * ) &ulMemCheckTaskRunningCount,
tskIDLE_PRIORITY, &xCreatedTask ) != pdPASS )
{
/* Could not create the task - we have probably run out of heap.
Don't go any further and flash the LED faster to provide visual
feedback of the error. */
prvIndicateError();
}
/* Delay until it is time to execute again. */
vTaskDelay( mainCHECK_PERIOD );
/* Delete the dynamically created task. */
if( xCreatedTask != mainNO_TASK )
{
vTaskDelete( xCreatedTask );
}
/* Perform a bit of 32bit maths to ensure the registers used by the
integer tasks get some exercise. The result here is not important -
see the demo application documentation for more info. */
ulDummyVariable *= 3;
/* Check all other tasks are still operating without error.
Check that vMemCheckTask did increment the counter. */
if( ( prvCheckOtherTasksAreStillRunning() != pdFALSE )
|| ( ulMemCheckTaskRunningCount == mainCOUNT_INITIAL_VALUE ) )
{
/* An error has occurred in one of the tasks.
Don't go any further and flash the LED faster to give visual
feedback of the error. */
prvIndicateError();
}
else
{
/* Toggle the LED if everything is okay. */
vParTestToggleLED( mainCHECK_TASK_LED );
}
}
}
示例5: main
int main()
{
microcontroller_init();
uart1_queue_init(57600l); // default baudrate: 57600 due to XBee bi-direction communication
printf("Gluonpilot v%s ", version);
#ifdef LIMITED // Limited version is pre-loaded on modules sent to Non-European countries
printf("Limited version");
#endif
printf(" [%s %s, config: %dB, logline: %dB, navigation: %dB, double: %dB]\r\n\r\n",
__DATE__, __TIME__, sizeof(struct Configuration), sizeof(struct LogLine), sizeof(gluonscript_data.codes), sizeof(double));
microcontroller_reset_type(); // printf out reason of reset; for debugging
led_init();
// Create semaphores needed for FreeRTOS synchronization (better to do it know, they are changed in interrupts of uart2 and ppm)
vSemaphoreCreateBinary( xSpiSemaphore );
vSemaphoreCreateBinary( xGpsSemaphore );
// What hardware version are we using?
configuration_determine_hardware_version();
if (HARDWARE_VERSION == V01N)
printf("Found hardware version v0.1n\r\n");
else if (HARDWARE_VERSION == V01O)
printf("Found hardware version v0.1o\r\n");
else if (HARDWARE_VERSION == V01Q)
printf("Found hardware version v0.1q (GP2)\r\n");
else
printf("Found hardware version v0.1j or earlier\r\n");
// Open flash & load configuration
dataflash_open();
printf("%d MB flash found \r\n", (int)PAGE_SIZE/264);
//printf("Loading configuration...");
configuration_load();
//printf("done\r\n");
// Open RC receiver input: pwm_in/ppm_in task: in ppm_in/pwm_in.c
// This is too low level to do it in the control task
if (config.control.use_pwm)
{
pwm_in_open();
uart1_puts("Waiting for pwm");
pwm_in_wait_for();
if (! (ppm.channel[0] > 900 && ppm.channel[0] < 2100))
uart1_puts("not found!\r\n");
else
uart1_puts("done\r\n");
}
else
{
uart1_puts("Opening ppm...");
ppm_in_open(); // We need a complete frame (which takes at least 20ms) to start so never can start early enough!
uart1_puts(" done\r\n");
}
// Create our tasks.
if (config.control.servo_mix == QUADROCOPTER)
xTaskCreate( control_copter_task, ( signed portCHAR * ) "CControl", ( configMINIMAL_STACK_SIZE * 3 ), NULL, tskIDLE_PRIORITY + 7, NULL );
else
xTaskCreate( control_wing_task, ( signed portCHAR * ) "WControl", ( configMINIMAL_STACK_SIZE * 3 ), NULL, tskIDLE_PRIORITY + 7, NULL );
if (HARDWARE_VERSION == V01Q)
xTaskCreate( sensors_mpu6000_task, ( signed portCHAR * ) "Sensors", ( configMINIMAL_STACK_SIZE * 5 ), NULL, tskIDLE_PRIORITY + 6, NULL );
else
xTaskCreate( sensors_analog_task, ( signed portCHAR * ) "Sensors", ( configMINIMAL_STACK_SIZE * 5 ), NULL, tskIDLE_PRIORITY + 6, NULL );
xTaskCreate( sensors_gps_task, ( signed portCHAR * ) "GpsNavi", ( configMINIMAL_STACK_SIZE * 4 ), NULL, tskIDLE_PRIORITY + 5, NULL );
xTaskCreate( communication_input_task, ( signed portCHAR * ) "ConsoleInput", ( configMINIMAL_STACK_SIZE * 5 ), NULL, tskIDLE_PRIORITY + 4, NULL );
xTaskCreate( datalogger_task, ( signed portCHAR * ) "Dataflash", ( configMINIMAL_STACK_SIZE * 3 ), NULL, tskIDLE_PRIORITY + 3, NULL );
xTaskCreate( communication_telemetry_task, ( signed portCHAR * ) "Telemetry", ( configMINIMAL_STACK_SIZE * 2 ), NULL, tskIDLE_PRIORITY + 2, NULL );
xTaskCreate( osd_task, ( signed portCHAR * ) "OSD", ( configMINIMAL_STACK_SIZE * 1 ), NULL, tskIDLE_PRIORITY + 1, NULL );
#ifdef USE_TRACING
printf("\r\nENABLING TRACING\r\n");
setup_trace_pins();
#endif
// Order the scheduler to start scheduling our two tasks.
vTaskStartScheduler();
// We should only get here when the scheduler wasn't able to allocate enough memory.
uart1_puts("Not enough heap!\r\n");
return 1;
}
示例6: prvOptionallyCreateComprehensveTestApplication
static void prvOptionallyCreateComprehensveTestApplication( void )
{
#if ( mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY == 0 )
{
TimerHandle_t xCheckTimer = NULL;
/* Configure the interrupts used to test FPU registers being used from
nested interrupts. */
prvSetupNestedFPUInterruptsTest();
/* Start all the other standard demo/test tasks. */
vStartIntegerMathTasks( tskIDLE_PRIORITY );
vStartDynamicPriorityTasks();
vStartBlockingQueueTasks( mainBLOCK_Q_PRIORITY );
vCreateBlockTimeTasks();
vStartCountingSemaphoreTasks();
vStartGenericQueueTasks( tskIDLE_PRIORITY );
vStartRecursiveMutexTasks();
vStartPolledQueueTasks( mainQUEUE_POLL_PRIORITY );
vStartSemaphoreTasks( mainSEM_TEST_PRIORITY );
/* Most importantly, start the tasks that use the FPU. */
vStartMathTasks( mainFLOP_TASK_PRIORITY );
/* Create the register check tasks, as described at the top of this
file */
xTaskCreate( vRegTest1Task, "Reg1", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
xTaskCreate( vRegTest2Task, "Reg2", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
/* Create the semaphore that is used to demonstrate a task being
synchronised with an interrupt. */
vSemaphoreCreateBinary( xTestSemaphore );
/* Create the task that is unblocked by the demonstration interrupt. */
xTaskCreate( prvButtonTestTask, "BtnTest", configMINIMAL_STACK_SIZE, ( void * ) NULL, tskIDLE_PRIORITY, NULL );
/* Create the software timer that performs the 'check' functionality,
as described at the top of this file. */
xCheckTimer = xTimerCreate( "CheckTimer", /* A text name, purely to help debugging. */
( mainCHECK_TIMER_PERIOD_MS ), /* The timer period, in this case 3000ms (3s). */
pdTRUE, /* This is an auto-reload timer, so xAutoReload is set to pdTRUE. */
( void * ) 0, /* The ID is not used, so can be set to anything. */
prvCheckTimerCallback /* The callback function that inspects the status of all the other tasks. */
);
if( xCheckTimer != NULL )
{
xTimerStart( xCheckTimer, mainDONT_BLOCK );
}
/* This task has to be created last as it keeps account of the number of
tasks it expects to see running. */
vCreateSuicidalTasks( mainCREATOR_TASK_PRIORITY );
}
#else /* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY */
{
/* Just to prevent compiler warnings when the configuration options are
set such that these static functions are not used. */
( void ) vRegTest1Task;
( void ) vRegTest2Task;
( void ) prvCheckTimerCallback;
( void ) prvSetupNestedFPUInterruptsTest;
}
#endif /* mainCREATE_SIMPLE_LED_FLASHER_DEMO_ONLY */
}
示例7: main
int main( void )
{
configASSERT( ul1 == 0x123 );
configASSERT( ul2 == 0 );
prvSetupHardware();
/* Create the queue used to pass "I'm alive" messages to the check task. */
xGlobalScopeCheckQueue = xQueueCreate( 1, sizeof( uint32_t ) );
/* One check task uses the task parameter to receive the queue handle.
This allows the file scope variable to be accessed from within the task.
The pvParameters member of xRegTest2Parameters can only be set after the
queue has been created so is set here. */
xRegTest2Parameters.pvParameters = xGlobalScopeCheckQueue;
/* Create three test tasks. Handles to the created tasks are not required,
hence the second parameter is NULL. */
xTaskCreateRestricted( &xRegTest1Parameters, NULL );
xTaskCreateRestricted( &xRegTest2Parameters, NULL );
xTaskCreateRestricted( &xCheckTaskParameters, NULL );
/* Create a task that does nothing but ensure some of the MPU API functions
can be called correctly, then get deleted. This is done for code coverage
test purposes only. The task's handle is saved in xTaskToDelete so it can
get deleted in the idle task hook. */
xTaskCreateRestricted( &xTaskToDeleteParameters, &xTaskToDelete );
/* Create the tasks that are created using the original xTaskCreate() API
function. */
xTaskCreate( prvOldStyleUserModeTask, /* The function that implements the task. */
"Task1", /* Text name for the task. */
100, /* Stack depth in words. */
NULL, /* Task parameters. */
3, /* Priority and mode (user in this case). */
NULL /* Handle. */
);
xTaskCreate( prvOldStylePrivilegedModeTask, /* The function that implements the task. */
"Task2", /* Text name for the task. */
100, /* Stack depth in words. */
NULL, /* Task parameters. */
( 3 | portPRIVILEGE_BIT ), /* Priority and mode. */
NULL /* Handle. */
);
/* Create the third and fourth register check tasks, as described at the top
of this file. */
xTaskCreate( prvRegTest3Task, "Reg3", configMINIMAL_STACK_SIZE, configREG_TEST_TASK_3_PARAMETER, tskIDLE_PRIORITY, NULL );
xTaskCreate( prvRegTest4Task, "Reg4", configMINIMAL_STACK_SIZE, configREG_TEST_TASK_4_PARAMETER, tskIDLE_PRIORITY, NULL );
/* Create and start the software timer. */
xTimer = xTimerCreate( "Timer", /* Test name for the timer. */
mainTIMER_PERIOD, /* Period of the timer. */
pdTRUE, /* The timer will auto-reload itself. */
( void * ) 0, /* The timer's ID is used to count the number of times it expires - initialise this to 0. */
prvTimerCallback ); /* The function called when the timer expires. */
configASSERT( xTimer );
xTimerStart( xTimer, mainDONT_BLOCK );
/* Start the scheduler. */
vTaskStartScheduler();
/* Will only get here if there was insufficient memory to create the idle
task. */
for( ;; );
}
示例8: vTaskMenu
/**
* @brief Menu Task.
*
* This function allows the user to select which task to start:
* Record a program or Play a program.
*
* On initial launch, the arm may be in an unknown state so the first
* function called is used to reset the arm into a known position.
*
* Upon return to the menu task, from the record and play tasks,
* the arm may be in an unknown position, so the reset task may
* be called appropriately.
*
* @param [in] pvParameter Standard FreeRTOS method of passing parameters.
* @return Void.
*/
void vTaskMenu( void *pvParameters )
{
portSHORT sReceivedValue;
portBASE_TYPE xKeyPadQueueStatus;
const portTickType xTicksToWait = 1000 / portTICK_RATE_MS;
enum xChoice_t {RECORD_A_PROGRAM, PLAY_A_PROGRAM} xChoice;
portCHAR *pcChoices[] =
{
"Record a Program",
"Play a Program"
};
xChoice = RECORD_A_PROGRAM;
printf("Menu\n");
if (xSystemState != MENU_SELECT)
{
vWaitForReset();
}
vPrintToLCD(1,"Select Option:");
vPrintToLCD(2,pcChoices[xChoice]);
for(;;)
{
if( uxQueueMessagesWaiting( xKeyPadQueue ) != 0)
{
printf( "Queue should have been empty!\r\n" );
}
xKeyPadQueueStatus = xQueueReceive( xKeyPadQueue, &sReceivedValue, xTicksToWait );
if( xKeyPadQueueStatus == pdPASS )
{
// printf( "Received = %d \t", sReceivedValue);
switch (sReceivedValue)
{
case RESET:
break;
case PLAY:
break;
case PAUSE:
break;
case STOP:
break;
case ENTER:
switch (xChoice)
{
case RECORD_A_PROGRAM:
printf("%s\n",pcChoices[xChoice]);
xSystemState = RECORDING;
xTaskCreate(vTaskRecord,
"Record Task",
2000,
NULL,
1,
&xRecordHandle);
/* Get out of here */
vTaskDelete( NULL);
break;
case PLAY_A_PROGRAM:
printf("%s\n",pcChoices[xChoice]);
xSystemState = PLAYING;
xTaskCreate(vTaskPlay,
"Play Task",
PLAY_TASK_STACK_SIZE,
NULL,
1,
&xPlayHandle);
/* Get out of here */
vTaskDelete( NULL);
break;
default:
break;
}
break;
case CANCEL:
break;
case XUP:
case UP:
case XRIGHT:
//.........这里部分代码省略.........
示例9: init_led_utama
void init_led_utama(void) {
xTaskCreate(task_led2, ( signed portCHAR * ) "Led2", (configMINIMAL_STACK_SIZE * 2) ,\
NULL, tskIDLE_PRIORITY - 2, ( xTaskHandle * ) &hdl_led );
}
示例10: main
/* ----- Main -------------------------------------------------------------- */
int main(int argc, char* argv[])
{
/*
* The NVIC priority group is set to NVIC_PRIORITYGROUP_4 in HAL_Init
* called in _initialize_hardware.c
* At this point everything is ready to go!
*/
/* Create the tasks */
#if 1
xTaskCreate(backgroundTask, /* Pointer to the task entry function */
"Background", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainBACKGROUND_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(lcdTask, /* Pointer to the task entry function */
"LCD", /* Name for the task */
configMINIMAL_STACK_SIZE * 2, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainLCD_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(can1Task, /* Pointer to the task entry function */
"CAN1", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainCAN1_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(can2Task, /* Pointer to the task entry function */
"CAN2", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainCAN2_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(uart1Task, /* Pointer to the task entry function */
"UART1", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainUART1_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(uart2Task, /* Pointer to the task entry function */
"UART2", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainUART2_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(rs232Task, /* Pointer to the task entry function */
"RS232", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainRS232_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(gpio0Task, /* Pointer to the task entry function */
"GPIO0", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainGPIO0_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(gpio1Task, /* Pointer to the task entry function */
"GPIO1", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainGPIO1_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
#if 1
xTaskCreate(adcTask, /* Pointer to the task entry function */
"ADC", /* Name for the task */
configMINIMAL_STACK_SIZE, /* The size of the stack */
NULL, /* Pointer to parameters for the task */
mainADC_TASK_PRIORITY, /* The priority for the task */
NULL); /* Handle for the created task */
#endif
/* Start the scheduler */
vTaskStartScheduler();
/* If all is well, the scheduler will now be running, and the following line
will never be reached. If the following line does execute, then there was
insufficient FreeRTOS heap memory available for the idle and/or timer tasks
to be created. See the memory management section on the FreeRTOS web site
for more details. */
while (1);
//.........这里部分代码省略.........
示例11: main
//.........这里部分代码省略.........
lprintf(" Software Build Date: %s\n", buildDate);
#if (PART != LM3S2110)
lprintf(" Assembly Part Number: %s\n", usercfg.assy_pn);
lprintf("Assembly Serial Number: %s\n", usercfg.assy_sn);
lprintf(" Board Part Number: %s\n", permcfg.bd_pn);
lprintf(" Board Serial Number: %s\n", permcfg.bd_sn);
lprintf("Notes:\r\n %s\r\n", usercfg.notes);
#endif
#if (PART == LM3S8962)
/*
* Display our configuration on the OLED display.
*/
RIT128x96x4StringDraw("CRI Quickstart", 0, RITLINE(0), 15);
RIT128x96x4StringDraw("LM3S8962", 0, RITLINE(1), 15);
/*
* Split date
* 0123456789012345678901234567890
* Sun, 08 May 2011 19:05:42 -0400
*
* into:
* 0123456789012345678901234567890
* Sun, 08 May 2011
*
* and
*
* 0123456789012345678901234567890
* 19:05:42 -0400
*/
strcpy(s,buildDate);
s[16]=0;
RIT128x96x4StringDraw(s, 0, RITLINE(2), 15);
RIT128x96x4StringDraw(&s[17], 0, RITLINE(3), 15);
#endif
/**
* \req \req_id The \program \shall identify:
* - The reason for the reset.
*/
why = SysCtlResetCauseGet();
if (why != 0) {
SysCtlResetCauseClear(why);
lprintf("Reset reason: ");
if (why & SYSCTL_CAUSE_LDO)
lprintf("LDO ");
if (why & SYSCTL_CAUSE_SW)
lprintf("SW ");
if (why & SYSCTL_CAUSE_WDOG)
lprintf("WDOG ");
if (why & SYSCTL_CAUSE_BOR)
lprintf("Brown-out ");
if (why & SYSCTL_CAUSE_POR)
lprintf("Power-on ");
if (why & SYSCTL_CAUSE_EXT)
lprintf("External ");
lprintf("\r\n");
}
io_init();
#endif
util_init();
/**
* \req \req_tcpip The \program \shall support TCP/IP communications.
*
* Create the LWIP task if running on a processor that includes a MAC
* and PHY.
*/
#if QUICK_ETHERNET
if( SysCtlPeripheralPresent( SYSCTL_PERIPH_ETH ) ) {
xTaskCreate(ethernetThread,
(signed char *)"eth-init",
DEFAULT_STACK_SIZE,
NULL,
ETH_INIT_PRIORITY,
NULL);
}
#endif
/*
* Enable interrupts...
*/
IntMasterEnable();
vSetupHighFrequencyTimer();
vTaskStartScheduler();
DPRINTF(0,"Idle Task Create Failed.");
/*
* Will only get here if there was insufficient memory to create the
* idle task.
*/
for( ;; );
return 0;
}
示例12: main
/**
**===========================================================================
**
** Abstract: main program
**
**===========================================================================
*/
int main(void)
{
#if SYS_STARTUP == 0
SystemInit();
#endif
nvic_init(); // настройка векторов прерываний
led_init(); // инициализация светодиода, индицирующего работу процессора
init_calendar(); // инициализация календаря
_SPI_init(); // SPI для внешней FRAM
// чтение заводских установок
read_data(0x7B,0x00,128,(unsigned char*)&_Sys.FR.b1[0]);
read_data(0x7B,0x80,128,(unsigned char*)&_Sys.FR.b1[0x80]);
read_data(0x7C,0x00,128,(unsigned char*)&_Sys.FR.b1[0x100]);
read_data(0x7C,0x80,128,(unsigned char*)&_Sys.FR.b1[0x180]);
read_data(0x7D,0x00,128,(unsigned char*)&_Sys.FR.b1[0x200]);
read_data(0x7D,0x80,128,(unsigned char*)&_Sys.FR.b1[0x280]);
read_data(0x7E,0x00,128,(unsigned char*)&_Sys.FR.b1[0x300]);
read_data(0x7E,0x80,128,(unsigned char*)&_Sys.FR.b1[0x380]);
// чтение системных настроек контроллера
//read_data(0x7F,0x58,1,&rf_ch);
read_data(0x7F,0x00,6,(unsigned char*)&_Sys.Mem.b1[0]);
_Sys.Adr=_Sys.Mem.b1[0];
if((_Sys.Adr==0)||(_Sys.Adr==0xFF)) _Sys.Adr=0x01;
_Sys.Can1_Baudrate=_Sys.Mem.b1[1];
if(_Sys.Can1_Baudrate>5) _Sys.Can1_Baudrate=5;
_Sys.Can1_Type = _Sys.Mem.b1[2];
if(_Sys.Can1_Type>1) _Sys.Can1_Type=0;
_Sys.Can2_Baudrate=_Sys.Mem.b1[3];
if(_Sys.Can2_Baudrate>5) _Sys.Can2_Baudrate=5;
_Sys.Can2_Type = _Sys.Mem.b1[4];
if(_Sys.Can2_Type>1) _Sys.Can2_Type=0;
emu_mode = _Sys.Mem.b1[5];
if(emu_mode>2) emu_mode=0;
read_data(0x7F,0x4C,4,ip_addr);set_ip(ip_addr);
read_data(0x7F,0x50,6,mac_addr);set_mac(mac_addr);
read_data(0x7F,0x5A,4,ip_gate);set_gate(ip_gate);
read_data(0x7F,0x5E,1,&modbus_master_emu);
read_data(0x7F,0x5F,4,ip_mask);set_mask(ip_mask);
#if FRAM_YEAR
read_data(0x7F,0x56,1,(unsigned char*)×.year);
if(times.year>99) times.year=0;
#endif
read_data(0x7F,0x57,1,(unsigned char*)&pult_dis);
read_data(0x7F,0x59,1,(unsigned char*)&sd_dis);
/* read_data(0x7F,0x5A,32,ssid_name);
read_data(0x7F,0x7A,32,wifi_password);
read_data(0x7F,0x9A,1,&wifi_type);
read_data(0x7F,0x9B,4,wifi_ip);*/
// начальные значения номеров строк пульта
_Sys.S1=0x00;_Sys.S2=0x00;_Sys.S3=0x00;_Sys.S4=0x00;
// системные миллисекундные задачи
xTaskCreate( R1Task, ( signed portCHAR * ) "R1", configMINIMAL_STACK_SIZE*2, NULL, R1_TASK_PRIORITY, NULL );
xTaskCreate( R5Task, ( signed portCHAR * ) "R5", configMINIMAL_STACK_SIZE*2, NULL, R5_TASK_PRIORITY, NULL );
xTaskCreate( R10Task, ( signed portCHAR * ) "R10", configMINIMAL_STACK_SIZE*2, NULL, R10_TASK_PRIORITY, NULL );
xTaskCreate( R100Task, ( signed portCHAR * ) "R100", configMINIMAL_STACK_SIZE*2, NULL, R100_TASK_PRIORITY, NULL );
xTaskCreate( R1000Task, ( signed portCHAR * ) "R1000", configMINIMAL_STACK_SIZE*2, NULL, R1000_TASK_PRIORITY, NULL );
// служебная вспомогательная задача (светодиод,фильтр ацп,...)
xTaskCreate( prvFlashTask, (signed portCHAR *) "Flash", configMINIMAL_STACK_SIZE*2, NULL, mainFLASH_TASK_PRIORITY, NULL );
// стандартный пульт или коммуникационный канал
if(pult_dis!=0x31) xTaskCreate( LCDTask, ( signed portCHAR * ) "Lcd", configMINIMAL_STACK_SIZE*2, NULL, LCD_TASK_PRIORITY, NULL );
else xTaskCreate( PultCanTask, ( signed portCHAR * ) "Lcd", configMINIMAL_STACK_SIZE*5, NULL, Canal_TASK_PRIORITY, NULL );
// задача обработки входов/выходов включая модули расширения
xTaskCreate( InOutTask, ( signed portCHAR * ) "InOut", configMINIMAL_STACK_SIZE*2, NULL, InOut_TASK_PRIORITY, NULL );
// два основных коммуникационных канала RS485
if(_Sys.Can1_Type==0) xTaskCreate( BinCanTask, ( signed portCHAR * ) "Canal", configMINIMAL_STACK_SIZE*2, NULL, Canal_TASK_PRIORITY, NULL );
else xTaskCreate( AsciiCanTask, ( signed portCHAR * ) "Canal", configMINIMAL_STACK_SIZE*2, NULL, Canal_TASK_PRIORITY, NULL );
if(_Sys.Can2_Type==0) xTaskCreate( BinCan2Task, ( signed portCHAR * ) "Canal2", configMINIMAL_STACK_SIZE*2, NULL, Canal_TASK_PRIORITY, NULL );
else xTaskCreate( AsciiCan2Task, ( signed portCHAR * ) "Canal2", configMINIMAL_STACK_SIZE*2, NULL, Canal_TASK_PRIORITY, NULL );
// WIFI задачи
/* if(wifi_ip[0])
{
xTaskCreate( WIFITask, ( signed portCHAR * ) "Wifi", configMINIMAL_STACK_SIZE, NULL, WF_TASK_PRIORITY, NULL );
xTaskCreate( SCAN_WIFITask, ( signed portCHAR * ) "SCANWifi", configMINIMAL_STACK_SIZE, NULL, WF_TASK_PRIORITY+1, NULL );
}*/
// проводной ethernet
if(ip_addr[0]) xTaskCreate( EthTask, ( signed portCHAR * ) "Eth", configMINIMAL_STACK_SIZE*3, NULL, ETH_TASK_PRIORITY, NULL );
// задача работы с sd картой
//.........这里部分代码省略.........
示例13: smooth_traj_start
void smooth_traj_start()
{
xTaskCreate(smooth_traj_task, (const signed char *)"TrajectoryManager", 200, NULL, 1, NULL );
}
示例14: vStartUDPCommandInterpreterTask
void vStartUDPCommandInterpreterTask( uint16_t usStackSize, uint32_t ulPort, UBaseType_t uxPriority )
{
xTaskCreate( vUDPCommandInterpreterTask, "CLI", usStackSize, ( void * ) ulPort, uxPriority, NULL );
}
示例15: pl_arcook_init
void pl_arcook_init(void)
{
xTaskCreate((pdTASK_CODE)plasma_task, "Plasma task", 512, NULL, 7, &xPlasmaTaskHandle );
/* Attempt to create a semaphore. */
xArcoOkSync = xSemaphoreCreateBinary();
}