本文整理汇总了C++中up_fullcontextrestore函数的典型用法代码示例。如果您正苦于以下问题:C++ up_fullcontextrestore函数的具体用法?C++ up_fullcontextrestore怎么用?C++ up_fullcontextrestore使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了up_fullcontextrestore函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: _exit
void _exit(int status)
{
_TCB* tcb;
/* Disable interrupts. They will be restored when the next
* task is started.
*/
(void)irqsave();
slldbg("TCB=%p exitting\n", g_readytorun.head);
#if defined(CONFIG_DUMP_ON_EXIT) && defined(CONFIG_DEBUG)
slldbg("Other tasks:\n");
sched_foreach(_up_dumponexit, NULL);
#endif
/* Destroy the task at the head of the ready to run list. */
(void)task_deletecurrent();
/* Now, perform the context switch to the new ready-to-run task at the
* head of the list.
*/
tcb = (_TCB*)g_readytorun.head;
/* Then switch contexts */
up_fullcontextrestore(tcb->xcp.regs);
}
示例2: up_sigdeliver
void up_sigdeliver(void)
{
#ifndef CONFIG_DISABLE_SIGNALS
struct tcb_s *rtcb = this_task();
uint32_t regs[XCPTCONTEXT_REGS];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
board_autoled_on(LED_SIGNAL);
sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copystate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_SR] = rtcb->xcp.saved_sr;
/* Get a local copy of the sigdeliver function pointer. We do this so
* that we can nullify the sigdeliver function pointer in the TCB and
* accept more signal deliveries while processing the current pending
* signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state. */
up_irq_restore(regs[REG_SR] & 0x000000f0);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sinfo("Resuming\n");
(void)up_irq_save();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of execution. */
board_autoled_off(LED_SIGNAL);
up_fullcontextrestore(regs);
#endif
}
示例3: up_sigdeliver
void up_sigdeliver(void)
{
_TCB *rtcb = (_TCB*)g_readytorun.head;
uint32_t regs[XCPTCONTEXT_REGS];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
up_ledon(LED_SIGNAL);
sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copystate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_PRIMASK] = rtcb->xcp.saved_primask;
regs[REG_XPSR] = rtcb->xcp.saved_xpsr;
/* Get a local copy of the sigdeliver function pointer. We do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
irqrestore((uint16_t)regs[REG_PRIMASK]);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sdbg("Resuming\n");
(void)irqsave();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of
* execution.
*/
up_ledoff(LED_SIGNAL);
up_fullcontextrestore(regs);
}
示例4: up_sigdeliver
void up_sigdeliver(void)
{
struct tcb_s *rtcb = this_task();
uint32_t regs[XCPTCONTEXT_REGS];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
board_autoled_on(LED_SIGNAL);
svdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n", rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copyfullstate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_CPSR] = rtcb->xcp.saved_cpsr;
/* Get a local copy of the sigdeliver function pointer. we do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
irqrestore(regs[REG_CPSR]);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
svdbg("Resuming\n");
(void)irqsave();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of execution. */
board_autoled_off(LED_SIGNAL);
#ifdef CONFIG_TASK_SCHED_HISTORY
/* Save the task name which will be scheduled */
save_task_scheduling_status(rtcb);
#endif
up_fullcontextrestore(regs);
}
示例5: up_release_pending
void up_release_pending(void)
{
struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
slldbg("From TCB=%p\n", rtcb);
/* Merge the g_pendingtasks list into the g_readytorun task list */
/* sched_lock(); */
if (sched_mergepending())
{
/* The currently active task has changed! We will need to
* switch contexts. First check if we are operating in
* interrupt context:
*/
if (current_regs)
{
/* Yes, then we have to do things differently.
* Just copy the current_regs into the OLD rtcb.
*/
up_copystate(rtcb->xcp.regs, current_regs);
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (struct tcb_s*)g_readytorun.head;
slldbg("New Active Task TCB=%p\n", rtcb);
/* Then switch contexts */
current_regs = rtcb->xcp.regs;
}
/* Copy the exception context into the TCB of the task that
* was currently active. if up_saveusercontext returns a non-zero
* value, then this is really the previously running task
* restarting!
*/
else if (!up_saveusercontext(rtcb->xcp.regs))
{
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (struct tcb_s*)g_readytorun.head;
slldbg("New Active Task TCB=%p\n", rtcb);
/* Then switch contexts */
up_fullcontextrestore(rtcb->xcp.regs);
}
}
}
示例6: _exit
void _exit(int status)
{
struct tcb_s *tcb;
/* Disable interrupts. They will be restored when the next
* task is started.
*/
(void)irqsave();
slldbg("TCB=%p exiting\n", this_task());
#if defined(CONFIG_DUMP_ON_EXIT) && defined(CONFIG_DEBUG)
slldbg("Other tasks:\n");
sched_foreach(_up_dumponexit, NULL);
#endif
/* Destroy the task at the head of the ready to run list. */
(void)task_exit();
/* Now, perform the context switch to the new ready-to-run task at the
* head of the list.
*/
tcb = this_task();
#ifdef CONFIG_ARCH_ADDRENV
/* Make sure that the address environment for the previously running
* task is closed down gracefully (data caches dump, MMU flushed) and
* set up the address environment for the new thread at the head of
* the ready-to-run list.
*/
(void)group_addrenv(tcb);
#endif
/* Then switch contexts */
up_fullcontextrestore(tcb->xcp.regs);
/* up_fullcontextrestore() should not return but could if the software
* interrupts are disabled.
*/
PANIC();
}
示例7: _exit
void _exit(int status)
{
struct tcb_s *tcb;
/* Make sure that we are in a critical section with local interrupts.
* The IRQ state will be restored when the next task is started.
*/
(void)enter_critical_section();
sinfo("TCB=%p exiting\n", this_task());
#ifdef CONFIG_DUMP_ON_EXIT
sinfo("Other tasks:\n");
sched_foreach(_up_dumponexit, NULL);
#endif
/* Destroy the task at the head of the ready to run list. */
(void)task_exit();
/* Now, perform the context switch to the new ready-to-run task at the
* head of the list.
*/
tcb = this_task();
#ifdef CONFIG_ARCH_ADDRENV
/* Make sure that the address environment for the previously running
* task is closed down gracefully (data caches dump, MMU flushed) and
* set up the address environment for the new thread at the head of
* the ready-to-run list.
*/
(void)group_addrenv(tcb);
#endif
/* Then switch contexts */
up_fullcontextrestore(tcb->xcp.regs);
}
示例8: up_sigdeliver
void up_sigdeliver(void)
{
_TCB *rtcb = (_TCB*)g_readytorun.head;
#if 0
uint32_t regs[XCPTCONTEXT_REGS+3]; /* Why +3? See below */
#else
uint32_t regs[XCPTCONTEXT_REGS];
#endif
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably EINTR).
*/
int saved_errno = rtcb->pterrno;
up_ledon(LED_SIGNAL);
sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copystate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_SR] = rtcb->xcp.saved_sr;
/* Get a local copy of the sigdeliver function pointer. We do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
irqrestore(regs[REG_SR]);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sdbg("Resuming\n");
(void)irqsave();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of execution. This is an
* unusual case that must be handled by up_fullcontextresore. This case is
* unusal in two ways:
*
* 1. It is not a context switch between threads. Rather, up_fullcontextrestore
* must behave more it more like a longjmp within the same task, using
* he same stack.
* 2. In this case, up_fullcontextrestore is called with r12 pointing to
* a register save area on the stack to be destroyed. This is
* dangerous because there is the very real possibility that the new
* stack pointer might overlap with the register save area and hat stack
* usage in up_fullcontextrestore might corrupt the register save data
* before the state is restored. At present, there does not appear to
* be any stack overlap problems. If there were, then adding 3 words
* to the size of register save structure size will protect its contents.
*/
up_ledoff(LED_SIGNAL);
up_fullcontextrestore(regs);
}
示例9: up_unblock_task
void up_unblock_task(struct tcb_s *tcb)
{
struct tcb_s *rtcb = this_task();
/* Verify that the context switch can be performed */
ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
(tcb->task_state <= LAST_BLOCKED_STATE));
/* Remove the task from the blocked task list */
sched_removeblocked(tcb);
/* Add the task in the correct location in the prioritized
* ready-to-run task list
*/
if (sched_addreadytorun(tcb))
{
/* The currently active task has changed! We need to do
* a context switch to the new task.
*/
/* Update scheduler parameters */
sched_suspend_scheduler(rtcb);
/* Are we in an interrupt handler? */
if (current_regs)
{
/* Yes, then we have to do things differently.
* Just copy the current_regs into the OLD rtcb.
*/
up_copystate(rtcb->xcp.regs, current_regs);
/* Restore the exception context of the rtcb at the (new) head
* of the ready-to-run task list.
*/
rtcb = this_task();
/* Update scheduler parameters */
sched_resume_scheduler(rtcb);
/* Then switch contexts. Any necessary address environment
* changes will be made when the interrupt returns.
*/
current_regs = rtcb->xcp.regs;
}
/* We are not in an interrupt handler. Copy the user C context
* into the TCB of the task that was previously active. if
* up_saveusercontext returns a non-zero value, then this is really the
* previously running task restarting!
*/
else if (!up_saveusercontext(rtcb->xcp.regs))
{
/* Restore the exception context of the new task that is ready to
* run (probably tcb). This is the new rtcb at the head of the
* ready-to-run task list.
*/
rtcb = this_task();
#ifdef CONFIG_ARCH_ADDRENV
/* Make sure that the address environment for the previously
* running task is closed down gracefully (data caches dump,
* MMU flushed) and set up the address environment for the new
* thread at the head of the ready-to-run list.
*/
(void)group_addrenv(rtcb);
#endif
/* Update scheduler parameters */
sched_resume_scheduler(rtcb);
/* Then switch contexts */
up_fullcontextrestore(rtcb->xcp.regs);
}
}
}
示例10: up_reprioritize_rtr
void up_reprioritize_rtr(struct tcb_s *tcb, uint8_t priority)
{
/* Verify that the caller is sane */
if (tcb->task_state < FIRST_READY_TO_RUN_STATE ||
tcb->task_state > LAST_READY_TO_RUN_STATE
#if SCHED_PRIORITY_MIN > 0
|| priority < SCHED_PRIORITY_MIN
#endif
#if SCHED_PRIORITY_MAX < UINT8_MAX
|| priority > SCHED_PRIORITY_MAX
#endif
)
{
PANIC(OSERR_BADREPRIORITIZESTATE);
}
else
{
struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
bool switch_needed;
slldbg("TCB=%p PRI=%d\n", tcb, priority);
/* Remove the tcb task from the ready-to-run list.
* sched_removereadytorun will return true if we just
* remove the head of the ready to run list.
*/
switch_needed = sched_removereadytorun(tcb);
/* Setup up the new task priority */
tcb->sched_priority = (uint8_t)priority;
/* Return the task to the specified blocked task list.
* sched_addreadytorun will return true if the task was
* added to the new list. We will need to perform a context
* switch only if the EXCLUSIVE or of the two calls is non-zero
* (i.e., one and only one the calls changes the head of the
* ready-to-run list).
*/
switch_needed ^= sched_addreadytorun(tcb);
/* Now, perform the context switch if one is needed */
if (switch_needed)
{
/* If we are going to do a context switch, then now is the right
* time to add any pending tasks back into the ready-to-run list.
* task list now
*/
if (g_pendingtasks.head)
{
sched_mergepending();
}
/* Are we in an interrupt handler? */
if (current_regs)
{
/* Yes, then we have to do things differently.
* Just copy the current_regs into the OLD rtcb.
*/
up_savestate(rtcb->xcp.regs);
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (struct tcb_s*)g_readytorun.head;
slldbg("New Active Task TCB=%p\n", rtcb);
/* Then switch contexts */
up_restorestate(rtcb->xcp.regs);
}
/* Copy the exception context into the TCB at the (old) head of the
* g_readytorun Task list. if up_saveusercontext returns a non-zero
* value, then this is really the previously running task restarting!
*/
else if (!up_saveusercontext(rtcb->xcp.regs))
{
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (struct tcb_s*)g_readytorun.head;
slldbg("New Active Task TCB=%p\n", rtcb);
/* Then switch contexts */
up_fullcontextrestore(rtcb->xcp.regs);
}
}
}
//.........这里部分代码省略.........
示例11: up_release_pending
void up_release_pending(void)
{
struct tcb_s *rtcb = this_task();
sinfo("From TCB=%p\n", rtcb);
/* Merge the g_pendingtasks list into the ready-to-run task list */
/* sched_lock(); */
if (sched_mergepending())
{
/* The currently active task has changed! We will need to
* switch contexts.
*/
/* Update scheduler parameters */
sched_suspend_scheduler(rtcb);
/* Are we operating in interrupt context? */
if (CURRENT_REGS)
{
/* Yes, then we have to do things differently.
* Just copy the CURRENT_REGS into the OLD rtcb.
*/
up_savestate(rtcb->xcp.regs);
/* Restore the exception context of the rtcb at the (new) head
* of the ready-to-run task list.
*/
rtcb = this_task();
/* Update scheduler parameters */
sched_resume_scheduler(rtcb);
/* Then switch contexts. Any necessary address environment
* changes will be made when the interrupt returns.
*/
up_restorestate(rtcb->xcp.regs);
}
/* Copy the exception context into the TCB of the task that
* was currently active. if up_saveusercontext returns a non-zero
* value, then this is really the previously running task
* restarting!
*/
else if (!up_saveusercontext(rtcb->xcp.regs))
{
/* Restore the exception context of the rtcb at the (new) head
* of the ready-to-run task list.
*/
rtcb = this_task();
/* Update scheduler parameters */
sched_resume_scheduler(rtcb);
/* Then switch contexts */
up_fullcontextrestore(rtcb->xcp.regs);
}
}
}
示例12: up_unblock_task
void up_unblock_task(struct tcb_s *tcb)
{
struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
/* Verify that the context switch can be performed */
ASSERT((tcb->task_state >= FIRST_BLOCKED_STATE) &&
(tcb->task_state <= LAST_BLOCKED_STATE));
/* Remove the task from the blocked task list */
sched_removeblocked(tcb);
/* Reset its timeslice. This is only meaningful for round
* robin tasks but it doesn't here to do it for everything
*/
#if CONFIG_RR_INTERVAL > 0
tcb->timeslice = MSEC2TICK(CONFIG_RR_INTERVAL);
#endif
/* Add the task in the correct location in the prioritized
* g_readytorun task list
*/
if (sched_addreadytorun(tcb))
{
/* The currently active task has changed! We need to do
* a context switch to the new task.
*
* Are we in an interrupt handler?
*/
if (current_regs)
{
/* Yes, then we have to do things differently.
* Just copy the current_regs into the OLD rtcb.
*/
up_savestate(rtcb->xcp.regs);
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (struct tcb_s*)g_readytorun.head;
/* Then switch contexts */
up_restorestate(rtcb->xcp.regs);
#ifdef CONFIG_ARCH_ADDRENV
/* Make sure that the address environment for the previously
* running task is closed down gracefully (data caches dump,
* MMU flushed) and set up the address environment for the new
* thread at the head of the ready-to-run list.
*/
(void)group_addrenv(rtcb);
#endif
}
/* We are not in an interrupt handler. Copy the user C context
* into the TCB of the task that was previously active. if
* up_saveusercontext returns a non-zero value, then this is really the
* previously running task restarting!
*/
else if (!up_saveusercontext(rtcb->xcp.regs))
{
/* Restore the exception context of the new task that is ready to
* run (probably tcb). This is the new rtcb at the head of the
* g_readytorun task list.
*/
rtcb = (struct tcb_s*)g_readytorun.head;
#ifdef CONFIG_ARCH_ADDRENV
/* Make sure that the address environment for the previously
* running task is closed down gracefully (data caches dump,
* MMU flushed) and set up the address environment for the new
* thread at the head of the ready-to-run list.
*/
(void)group_addrenv(rtcb);
#endif
/* Then switch contexts */
up_fullcontextrestore(rtcb->xcp.regs);
}
}
}
示例13: up_sigdeliver
void up_sigdeliver(void)
{
struct tcb_s *rtcb = this_task();
uint32_t regs[XCPTCONTEXT_REGS];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
board_autoled_on(LED_SIGNAL);
sinfo("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copystate(regs, rtcb->xcp.regs);
regs[REG_EPC] = rtcb->xcp.saved_epc;
regs[REG_STATUS] = rtcb->xcp.saved_status;
/* Get a local copy of the sigdeliver function pointer. We do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
up_irq_restore((irqstate_t)regs[REG_STATUS]);
/* Deliver the signals */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sinfo("Resuming EPC: %08x STATUS: %08x\n", regs[REG_EPC], regs[REG_STATUS]);
(void)up_irq_save();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of
* execution.
*/
board_autoled_off(LED_SIGNAL);
up_fullcontextrestore(regs);
/* up_fullcontextrestore() should not return but could if the software
* interrupts are disabled.
*/
PANIC();
}
示例14: up_sigdeliver
void up_sigdeliver(void)
{
/* NOTE the "magic" guard space added to regs. This is a little kludge
* because up_fullcontextrestore (called below) will do a stack-to-stack
* copy an may overwrite the regs[] array contents. Sorry.
*/
struct tcb_s *rtcb = (struct tcb_s*)g_readytorun.head;
uint32_t regs[XCPTCONTEXT_REGS + 4];
sig_deliver_t sigdeliver;
/* Save the errno. This must be preserved throughout the signal handling
* so that the user code final gets the correct errno value (probably
* EINTR).
*/
int saved_errno = rtcb->pterrno;
board_led_on(LED_SIGNAL);
sdbg("rtcb=%p sigdeliver=%p sigpendactionq.head=%p\n",
rtcb, rtcb->xcp.sigdeliver, rtcb->sigpendactionq.head);
ASSERT(rtcb->xcp.sigdeliver != NULL);
/* Save the real return state on the stack. */
up_copyfullstate(regs, rtcb->xcp.regs);
regs[REG_PC] = rtcb->xcp.saved_pc;
regs[REG_PRIMASK] = rtcb->xcp.saved_primask;
regs[REG_XPSR] = rtcb->xcp.saved_xpsr;
#ifdef CONFIG_BUILD_PROTECTED
regs[REG_LR] = rtcb->xcp.saved_lr;
#endif
/* Get a local copy of the sigdeliver function pointer. We do this so that
* we can nullify the sigdeliver function pointer in the TCB and accept
* more signal deliveries while processing the current pending signals.
*/
sigdeliver = rtcb->xcp.sigdeliver;
rtcb->xcp.sigdeliver = NULL;
/* Then restore the task interrupt state */
irqrestore((uint8_t)regs[REG_PRIMASK]);
/* Deliver the signal */
sigdeliver(rtcb);
/* Output any debug messages BEFORE restoring errno (because they may
* alter errno), then disable interrupts again and restore the original
* errno that is needed by the user logic (it is probably EINTR).
*/
sdbg("Resuming\n");
(void)irqsave();
rtcb->pterrno = saved_errno;
/* Then restore the correct state for this thread of
* execution.
*/
board_led_off(LED_SIGNAL);
up_fullcontextrestore(regs);
}
示例15: up_block_task
void up_block_task(_TCB *tcb, tstate_t task_state)
{
/* Verify that the context switch can be performed */
if ((tcb->task_state < FIRST_READY_TO_RUN_STATE) ||
(tcb->task_state > LAST_READY_TO_RUN_STATE))
{
PANIC(OSERR_BADBLOCKSTATE);
}
else
{
_TCB *rtcb = (_TCB*)g_readytorun.head;
bool switch_needed;
/* Remove the tcb task from the ready-to-run list. If we
* are blocking the task at the head of the task list (the
* most likely case), then a context switch to the next
* ready-to-run task is needed. In this case, it should
* also be true that rtcb == tcb.
*/
switch_needed = sched_removereadytorun(tcb);
/* Add the task to the specified blocked task list */
sched_addblocked(tcb, (tstate_t)task_state);
/* If there are any pending tasks, then add them to the g_readytorun
* task list now
*/
if (g_pendingtasks.head)
{
switch_needed |= sched_mergepending();
}
/* Now, perform the context switch if one is needed */
if (switch_needed)
{
/* Are we in an interrupt handler? */
if (current_regs)
{
/* Yes, then we have to do things differently.
* Just copy the current_regs into the OLD rtcb.
*/
up_savestate(rtcb->xcp.regs);
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (_TCB*)g_readytorun.head;
/* Then switch contexts */
up_restorestate(rtcb->xcp.regs);
}
/* Copy the user C context into the TCB at the (old) head of the
* g_readytorun Task list. if up_saveusercontext returns a non-zero
* value, then this is really the previously running task restarting!
*/
else if (!up_saveusercontext(rtcb->xcp.regs))
{
/* Restore the exception context of the rtcb at the (new) head
* of the g_readytorun task list.
*/
rtcb = (_TCB*)g_readytorun.head;
/* Then switch contexts */
up_fullcontextrestore(rtcb->xcp.regs);
}
}
}
}