当前位置: 首页>>代码示例>>C++>>正文


C++ point1函数代码示例

本文整理汇总了C++中point1函数的典型用法代码示例。如果您正苦于以下问题:C++ point1函数的具体用法?C++ point1怎么用?C++ point1使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了point1函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: dgAssert

dgInt32 dgCollisionInstance::CalculatePlaneIntersection (const dgVector& normal, const dgVector& point, dgVector* const contactsOut) const
{
	dgInt32 count = 0;
	dgAssert(normal.m_w == dgFloat32 (0.0f));
	switch (m_scaleType)
	{
		case m_unit:
		{
			count = m_childShape->CalculatePlaneIntersection (normal, point, contactsOut);
			break;
		}
		case m_uniform:
		{
			dgVector point1 (m_invScale * point);
			count = m_childShape->CalculatePlaneIntersection (normal, point1, contactsOut);
			for (dgInt32 i = 0; i < count; i ++) {
				contactsOut[i] = m_scale * contactsOut[i];
			}
			break;
		}

		case m_nonUniform:
		{
			// support((p * S), n) = S * support (p, n * transp(S)) 
			dgVector point1 (m_invScale * point);
			dgVector normal1 (m_scale * normal);
			normal1 = normal1.Normalize();
			count = m_childShape->CalculatePlaneIntersection (normal1, point1, contactsOut);
			for (dgInt32 i = 0; i < count; i ++) {
				contactsOut[i] = m_scale * contactsOut[i];
			}
			break;
		}

		case m_global:
		default:
		{
			dgVector point1 (m_aligmentMatrix.UntransformVector (m_invScale * point));
			dgVector normal1 (m_aligmentMatrix.UntransformVector (m_scale * normal));
			normal1 = normal1.Normalize();
			count = m_childShape->CalculatePlaneIntersection (normal1, point1, contactsOut);
			for (dgInt32 i = 0; i < count; i ++) {
				contactsOut[i] = m_scale * m_aligmentMatrix.TransformVector(contactsOut[i]);
			}
		}
	}
	return count;
}
开发者ID:AntonSynytsia,项目名称:MSPhysics,代码行数:48,代码来源:dgCollisionInstance.cpp

示例2: Arrow2D

void Arrow2D(const Point<float>& tail, const Point<float>& head)
{
  // u-v-w - Arrow coordinate system:
  Vector<float> u, v, w;	
  Vector<float> arrowLine(tail, head);
  GetOrthonormalBasisFromNormal(arrowLine, u, v, w);

  // set size of wings and turn w into a Unit vector:
  float d = WINGS * arrowLine.norm();

  // draw the shaft of the arrow:
  glBegin(GL_LINE_STRIP);
  glVertex3f(tail.x(), tail.y(), tail.z());
  glVertex3f(head.x(), head.y(), head.z());
  glEnd();

  Vector<float> point1(head.x() + d * (u.x() - w.x()), head.y() + d * (u.y() - w.y()), head.z() + d * (u.z() - w.z()));
  glBegin(GL_LINE_STRIP);
  glVertex3f(head.x(), head.y(), head.z());
  glVertex3f(point1.x(), point1.y(), point1.z());
  glEnd();

  Vector<float> point2(head.x() + d * (-u.x() - w.x()), head.y() + d * (-u.y() - w.y()), head.z() + d * (-u.z() - w.z()));    
  glBegin(GL_LINE_STRIP);
  glVertex3f(head.x(), head.y(), head.z());
  glVertex3f(point2.x(), point2.y(), point2.z());
  glEnd();
}
开发者ID:indivisibleatom,项目名称:averaging,代码行数:28,代码来源:geometryHelpers.cpp

示例3: point1

/**
 *	This method parses a Python tuple and builds a CylinderVectorGenerator.
 *	The arguments accepted are two triples of numbers and two numbers. Args
 *	is not a borrowed object so it needs to have its reference count
 *	decremented after use.
 *
 *	@param args	Python tuple containing initialisation information.
 *
 *	@return A pointer to the newly created vector generator if successful;
 *			NULL, otherwise.
 */
CylinderVectorGenerator *CylinderVectorGenerator::parsePythonTuple(
		PyObject *args )
{
	BW_GUARD;
	float x1, y1, z1;
	float x2, y2, z2;
	float maxRadius, minRadius;

	if ( PyArg_ParseTuple( args, "(fff)(fff)ff",
		&x1, &y1, &z1,
		&x2, &y2, &z2,
		&maxRadius, &minRadius ) )
	{
		Vector3 point1( x1, y1, z1 );
		Vector3 point2( x2, y2, z2 );

		Py_DECREF( args );
		return new CylinderVectorGenerator( point1, point2, maxRadius,
			minRadius );
	}
	else
	{
		PyErr_SetString( PyExc_TypeError, "CylinderVectorGenerator:"
			"Expected (x1,y1,z1), (x2,y2,z2), maxRadius, minRadius." );
		Py_DECREF( args );
		return NULL;
	}
}
开发者ID:siredblood,项目名称:tree-bumpkin-project,代码行数:39,代码来源:vector_generator.cpp

示例4: Release

void MyPrimitive::GenerateTorus(float a_fOuterRadius, float a_fInnerRadius, int a_nSubdivisionsA, int a_nSubdivisionsB, vector3 a_v3Color)
{
	if (a_fOuterRadius <= a_fInnerRadius + 0.1f)
		return;

	if (a_nSubdivisionsA < 3)
		a_nSubdivisionsA = 3;
	if (a_nSubdivisionsA > 25)
		a_nSubdivisionsA = 25;

	if (a_nSubdivisionsB < 3)
		a_nSubdivisionsB = 3;
	if (a_nSubdivisionsB > 25)
		a_nSubdivisionsB = 25;

	Release();
	Init();

	//Your code starts here
	float fValue = 0.5f;
	//3--2
	//|  |
	//0--1
	vector3 point0(-fValue, -fValue, fValue); //0
	vector3 point1(fValue, -fValue, fValue); //1
	vector3 point2(fValue, fValue, fValue); //2
	vector3 point3(-fValue, fValue, fValue); //3

	AddQuad(point0, point1, point3, point2);

	//Your code ends here
	CompileObject(a_v3Color);
}
开发者ID:alexwharper,项目名称:ReEngineApp_2015s,代码行数:33,代码来源:MyPrimitive.cpp

示例5: point1

bool SVGPathParser::parseCurveToQuadraticSmoothSegment()
{
    FloatPoint targetPoint;
    if (!m_source.parseCurveToQuadraticSmoothSegment(targetPoint))
        return false;

    if (m_lastCommand != PathSegCurveToQuadraticAbs
        && m_lastCommand != PathSegCurveToQuadraticRel
        && m_lastCommand != PathSegCurveToQuadraticSmoothAbs
        && m_lastCommand != PathSegCurveToQuadraticSmoothRel)
        m_controlPoint = m_currentPoint;

    if (m_pathParsingMode == NormalizedParsing) {
        FloatPoint cubicPoint = m_currentPoint;
        cubicPoint.scale(2);
        cubicPoint.move(-m_controlPoint.x(), -m_controlPoint.y());
        FloatPoint point1(m_currentPoint.x() + 2 * cubicPoint.x(), m_currentPoint.y() + 2 * cubicPoint.y());
        FloatPoint point2(targetPoint.x() + 2 * cubicPoint.x(), targetPoint.y() + 2 * cubicPoint.y());
        if (m_mode == RelativeCoordinates) {
            point2 += m_currentPoint;
            targetPoint += m_currentPoint;
        }
        point1.scale(gOneOverThree);
        point2.scale(gOneOverThree);

        m_consumer.curveToCubic(point1, point2, targetPoint, AbsoluteCoordinates);

        m_controlPoint = cubicPoint;
        m_currentPoint = targetPoint;
    } else
        m_consumer.curveToQuadraticSmooth(targetPoint, m_mode);
    return true;
}
开发者ID:eocanha,项目名称:webkit,代码行数:33,代码来源:SVGPathParser.cpp

示例6: center

void ShadowScene::drawMagicCircle(){
	int interval = 360/64;		//ここの値を変えてみよう
	int max_num = 360 / interval;
	for (int angle = 0; angle < 360; angle+=interval) {
		if (angle > 360) angle = 360;
		int cur_num = angle / interval;
		float radius = 0.0f;
		Vector3<float>  center(0.0f,0.0f,0.0f);
		Vector2<double> texcoc(0.5,0.5);
		radius = DEGREE_TO_RADIAN(angle);
		Vector3<float>  point1(cos(radius),0.0f,sin(radius));
		Vector2<double> texco1((cos(radius) + 1)/2,(sin(radius) + 1)/2);
		radius = DEGREE_TO_RADIAN(angle + interval);
		Vector3<float>  point2(cos(radius),0.0f,sin(radius));
		Vector2<double> texco2((cos(radius) + 1)/2,(sin(radius) + 1)/2);
		Vector3<float>  normal(0.0f,1.0f,0.0f);

		//座標変換等の開始
		glPushMatrix();
		glBegin(GL_TRIANGLES);			//描画の開始
		glNormal3fv(normal.v);			//法線の定義
		glTexCoord2d(texcoc.x, texcoc.y);	glVertex3fv(center.v);	//頂点3個目
		glTexCoord2d(texco1.x, texco1.y);	glVertex3fv(point1.v);	//頂点2個目
		glTexCoord2d(texco2.x, texco2.y);	glVertex3fv(point2.v);	//頂点1個目
		//描画の終了
		glEnd();
		//座標変換の終了
		glPopMatrix();
		
	}
	
}
开发者ID:kudolf,项目名称:Game,代码行数:32,代码来源:ShadowScene.cpp

示例7: Release

void MyPrimitive::GenerateTube(float a_fOuterRadius, float a_fInnerRadius, float a_fHeight, int a_nSubdivisions, vector3 a_v3Color)
{
	if (a_nSubdivisions < 3)
		a_nSubdivisions = 3;
	if (a_nSubdivisions > 360)
		a_nSubdivisions = 360;

	Release();
	Init();

	for (int i = 0; i < a_nSubdivisions; i++)
	{
		float ang = (2 * PI) / a_nSubdivisions;

		vector3 point0(a_fOuterRadius*cos((i + 1)*ang), a_fHeight, a_fOuterRadius*sin((i + 1)*ang)); //1
		vector3 point1(a_fOuterRadius*cos(i*ang), 0, a_fOuterRadius*sin(i*ang)); //2
		vector3 point2(a_fOuterRadius*cos(i*ang), a_fHeight, a_fOuterRadius*sin(i*ang)); //0
		vector3 point3(a_fOuterRadius*cos((i + 1)*ang), 0, a_fOuterRadius*sin((i + 1)*ang)); //3

		vector3 point4(a_fInnerRadius*cos((i + 1)*ang), a_fHeight, a_fInnerRadius*sin((i + 1)*ang)); //1
		vector3 point5(a_fInnerRadius*cos(i*ang), 0, a_fInnerRadius*sin(i*ang)); //2
		vector3 point6(a_fInnerRadius*cos(i*ang), a_fHeight, a_fInnerRadius*sin(i*ang)); //0
		vector3 point7(a_fInnerRadius*cos((i + 1)*ang), 0, a_fInnerRadius*sin((i + 1)*ang)); //3

		AddQuad(point4, point0, point6, point2); //Top
		AddQuad(point0, point3, point2, point1); //Outer
		AddQuad(point7, point5, point3, point1); //Bottom
		AddQuad(point5, point7, point6,point4 ); // Inner
		
	}

	//Your code ends here
	CompileObject(a_v3Color);
}
开发者ID:sml5527,项目名称:ReEngineApp_2015s,代码行数:34,代码来源:MyPrimitive.cpp

示例8: makeChamber

BaseIF* makeChamber(const Real& radius,
                    const Real& thick,
                    const Real& offset,
                    const Real& height)
{
  RealVect zero(D_DECL(0.0,0.0,0.0));
  RealVect xAxis(D_DECL(1.0,0.0,0.0));
  bool inside = true;

  Vector<BaseIF*> pieces;

  // Create a chamber
  TiltedCylinderIF chamberOut(radius + thick/2.0,xAxis,zero, inside);
  TiltedCylinderIF chamberIn (radius - thick/2.0,xAxis,zero,!inside);

  IntersectionIF infiniteChamber(chamberIn,chamberOut);

  pieces.push_back(&infiniteChamber);

  RealVect normal1(D_DECL(1.0,0.0,0.0));
  RealVect point1(D_DECL(offset,0.0,0.0));
  PlaneIF plane1(normal1,point1,inside);

  pieces.push_back(&plane1);

  RealVect normal2(D_DECL(-1.0,0.0,0.0));
  RealVect point2(D_DECL(offset+height,0.0,0.0));
  PlaneIF plane2(normal2,point2,inside);

  pieces.push_back(&plane2);

  IntersectionIF* chamber = new IntersectionIF(pieces);

  return chamber;
}
开发者ID:rsnemmen,项目名称:Chombo,代码行数:35,代码来源:pointCoarseningTest.cpp

示例9: point1

void NormalQuantifier::build (UInt32 numberSubdivisions)
{
    UInt32 index = 0;
    UInt32 nN    = ((1 << (2 * numberSubdivisions)) * 8);
    
    _numberSubdivisions = numberSubdivisions;

    _normalTable.resize(nN);
  
    if(_numberSubdivisions != 0) 
    {
        for(UInt32 octant = 0; octant < 8; octant++) 
        {
            Int32 xoctant = (octant & 4)>0?-1:1;
            Int32 yoctant = (octant & 2)>0?-1:1;
            Int32 zoctant = (octant & 1)>0?-1:1;
            
            Vec3f point1(0.f * xoctant, 0.f * yoctant, 1.f * zoctant);
            Vec3f point2(1.f * xoctant, 0.f * yoctant, 0.f * zoctant);
            Vec3f point3(0.f * xoctant, 1.f * yoctant, 0.f * zoctant);
            
            subdivide(point1, point2, point3, _numberSubdivisions+1, index);
        }
        
        if(index != nN)
        {
            FFATAL(("NormalQuantifier::build() index missmatch!\n"));
        }
        else
        {
            FLOG(("NormalQuantifier init: %d subdivision, %d normal\n",
                  _numberSubdivisions, _normalTable.size()));
        }
    }  
}
开发者ID:mlimper,项目名称:OpenSG1x,代码行数:35,代码来源:OSGNormalQuantifier.cpp

示例10: makeVane

BaseIF* makeVane(const Real&     thick,
                 const RealVect& normal,
                 const Real&     innerRadius,
                 const Real&     outerRadius,
                 const Real&     offset,
                 const Real&     height)
{
  RealVect zero(D_DECL(0.0,0.0,0.0));
  RealVect xAxis(D_DECL(1.0,0.0,0.0));
  bool inside = true;

  Vector<BaseIF*> vaneParts;

  // Each side of the vane (infinite)
  RealVect normal1(normal);
  RealVect point1(D_DECL(offset+height/2.0,-thick/2.0,0.0));
  PlaneIF plane1(normal1,point1,inside);

  vaneParts.push_back(&plane1);

  RealVect normal2(-normal);
  RealVect point2(D_DECL(offset+height/2.0,thick/2.0,0.0));
  PlaneIF plane2(normal2,point2,inside);

  vaneParts.push_back(&plane2);

  // Make sure we only get something to the right of the origin
  RealVect normal3(D_DECL(0.0,0.0,1.0));
  RealVect point3(D_DECL(0.0,0.0,0.0));
  PlaneIF plane3(normal3,point3,inside);

  vaneParts.push_back(&plane3);

  // Cut off the top and bottom
  RealVect normal4(D_DECL(1.0,0.0,0.0));
  RealVect point4(D_DECL(offset,0.0,0.0));
  PlaneIF plane4(normal4,point4,inside);

  vaneParts.push_back(&plane4);

  RealVect normal5(D_DECL(-1.0,0.0,0.0));
  RealVect point5(D_DECL(offset+height,0.0,0.0));
  PlaneIF plane5(normal5,point5,inside);

  vaneParts.push_back(&plane5);

  // The outside of the inner cylinder
  TiltedCylinderIF inner(innerRadius,xAxis,zero,!inside);

  vaneParts.push_back(&inner);

  // The inside of the outer cylinder
  TiltedCylinderIF outer(outerRadius,xAxis,zero,inside);

  vaneParts.push_back(&outer);

  IntersectionIF* vane = new IntersectionIF(vaneParts);

  return vane;
}
开发者ID:rsnemmen,项目名称:Chombo,代码行数:60,代码来源:swirl.cpp

示例11: main

int main()
{
	// Take the counts per second (frequency) at the start of the program
	/*float dt = 0;
	__int64 cntsPerSec = 0;
	QueryPerformanceFrequency((LARGE_INTEGER*)&cntsPerSec);
	float secsPerCnt = 1.0f / (float)cntsPerSec; 

	__int64 prevTimeStamp = 0;
	QueryPerformanceCounter((LARGE_INTEGER*)&prevTimeStamp);
	__int64 currTimeStamp = 0;
	do
	{
		QueryPerformanceCounter((LARGE_INTEGER*)&currTimeStamp);
		dt = (currTimeStamp - prevTimeStamp) * secsPerCnt;

		std::cout << "Time: " << dt << std::endl;
	}while(dt <= 10);*/

	/*Clock myClock = Clock();

	do
	{
		myClock.SetDeltaTime();
		std::cout << "Time: " << myClock.GetDeltaTime() << std::endl;
	}while(myClock.GetDeltaTime() <= 10);*/

	Point2D point1(3.0, 0.0);
	Point2D point2(1.5, 0.0);
	bool bCheck= CollisionCheck2D_AABB(point1, point2) ;
	std::cout << "The distance between Point1: (" << point1.x << "," << point1.y << ") and Point2: (" << point2.x << "," << point2.y << ")" << std::endl;
	std::cout << "Dist: " << distance2D(point1.x, point1.y, point2.x, point2.y) << std::endl;
	std::cout << "Collision check: " << bCheck << std::endl;
	return 0;
}
开发者ID:ChrisC64,项目名称:TestWork,代码行数:35,代码来源:Main.cpp

示例12: getAlpha

void Rectangle3DOverlay::render(RenderArgs* args) {
    if (!_visible) {
        return; // do nothing if we're not visible
    }

    float alpha = getAlpha();
    xColor color = getColor();
    const float MAX_COLOR = 255.0f;
    glm::vec4 rectangleColor(color.red / MAX_COLOR, color.green / MAX_COLOR, color.blue / MAX_COLOR, alpha);

    glm::vec3 position = getPosition();
    glm::vec2 dimensions = getDimensions();
    glm::vec2 halfDimensions = dimensions * 0.5f;
    glm::quat rotation = getRotation();

    auto batch = args->_batch;

    if (batch) {
        Transform transform;
        transform.setTranslation(position);
        transform.setRotation(rotation);

        batch->setModelTransform(transform);
        auto geometryCache = DependencyManager::get<GeometryCache>();

        if (getIsSolid()) {
            glm::vec3 topLeft(-halfDimensions.x, -halfDimensions.y, 0.0f);
            glm::vec3 bottomRight(halfDimensions.x, halfDimensions.y, 0.0f);
            geometryCache->bindSimpleProgram(*batch);
            geometryCache->renderQuad(*batch, topLeft, bottomRight, rectangleColor);
        } else {
            geometryCache->bindSimpleProgram(*batch, false, false, false, true, true);
            if (getIsDashedLine()) {
                glm::vec3 point1(-halfDimensions.x, -halfDimensions.y, 0.0f);
                glm::vec3 point2(halfDimensions.x, -halfDimensions.y, 0.0f);
                glm::vec3 point3(halfDimensions.x, halfDimensions.y, 0.0f);
                glm::vec3 point4(-halfDimensions.x, halfDimensions.y, 0.0f);

                geometryCache->renderDashedLine(*batch, point1, point2, rectangleColor);
                geometryCache->renderDashedLine(*batch, point2, point3, rectangleColor);
                geometryCache->renderDashedLine(*batch, point3, point4, rectangleColor);
                geometryCache->renderDashedLine(*batch, point4, point1, rectangleColor);
            } else {
                if (halfDimensions != _previousHalfDimensions) {
                    QVector<glm::vec3> border;
                    border << glm::vec3(-halfDimensions.x, -halfDimensions.y, 0.0f);
                    border << glm::vec3(halfDimensions.x, -halfDimensions.y, 0.0f);
                    border << glm::vec3(halfDimensions.x, halfDimensions.y, 0.0f);
                    border << glm::vec3(-halfDimensions.x, halfDimensions.y, 0.0f);
                    border << glm::vec3(-halfDimensions.x, -halfDimensions.y, 0.0f);
                    geometryCache->updateVertices(_geometryCacheID, border, rectangleColor);

                    _previousHalfDimensions = halfDimensions;
                }
                geometryCache->renderVertices(*batch, gpu::LINE_STRIP, _geometryCacheID);
            }
        }
    }
}
开发者ID:AlexanderOtavka,项目名称:hifi,代码行数:59,代码来源:Rectangle3DOverlay.cpp

示例13: box

void AxisAlignedBoxTest::collisionPoint() {
    Shapes::AxisAlignedBox3D box({-1.0f, -2.0f, -3.0f}, {1.0f, 2.0f, 3.0f});
    Shapes::Point3D point1({-1.5f, -1.0f, 2.0f});
    Shapes::Point3D point2({0.5f, 1.0f, -2.5f});

    VERIFY_NOT_COLLIDES(box, point1);
    VERIFY_COLLIDES(box, point2);
}
开发者ID:ArEnSc,项目名称:magnum,代码行数:8,代码来源:AxisAlignedBoxTest.cpp

示例14: contain

bool RTRBoundingBox::contain(const RTRVector3D& point) const
{
    for (int i = 0; i < 3; i++)
    {
        if (point(i) < point1(i) || point(i) > point2(i)) return false;
    }
    return true;
}
开发者ID:tansinan,项目名称:course_project_ray_trace_renderer,代码行数:8,代码来源:RTRGeometry.cpp

示例15: optimize

	// out: optimized model-shape
	// in: GRAY img
	// in: evtl zusaetzlicher param um scale-level/iter auszuwaehlen
	// calculates shape updates (deltaShape) for one or more iter/scales and returns...
	// assume we get a col-vec.
	cv::Mat optimize(cv::Mat modelShape, cv::Mat image) {

		for (int cascadeStep = 0; cascadeStep < model.getNumCascadeSteps(); ++cascadeStep) {
			//feature_current = obtain_features(double(TestImg), New_Shape, 'HOG', hogScale);

			vector<cv::Point2f> points;
			for (int i = 0; i < model.getNumLandmarks(); ++i) { // in case of HOG, need integers?
				points.emplace_back(cv::Point2f(modelShape.at<float>(i), modelShape.at<float>(i + model.getNumLandmarks())));
			}
			Mat currentFeatures;
			double dynamicFaceSizeDistance = 0.0;
			if (true) { // adaptive
				// dynamic face-size:
				cv::Vec2f point1(modelShape.at<float>(8), modelShape.at<float>(8 + model.getNumLandmarks())); // reye_ic
				cv::Vec2f point2(modelShape.at<float>(9), modelShape.at<float>(9 + model.getNumLandmarks())); // leye_ic
				cv::Vec2f anchor1 = (point1 + point2) / 2.0f;
				cv::Vec2f point3(modelShape.at<float>(11), modelShape.at<float>(11 + model.getNumLandmarks())); // rmouth_oc
				cv::Vec2f point4(modelShape.at<float>(12), modelShape.at<float>(12 + model.getNumLandmarks())); // lmouth_oc
				cv::Vec2f anchor2 = (point3 + point4) / 2.0f;
				// dynamic window-size:
				// From the paper: patch size $ S_p(d) $ of the d-th regressor is $ S_p(d) = S_f / ( K * (1 + e^(d-D)) ) $
				// D = numCascades (e.g. D=5, d goes from 1 to 5 (Matlab convention))
				// K = fixed value for shrinking
				// S_f = the size of the face estimated from the previous updated shape s^(d-1).
				// For S_f, can use the IED, EMD, or max(IED, EMD). We use the EMD.
				dynamicFaceSizeDistance = cv::norm(anchor1 - anchor2);
				double windowSize = dynamicFaceSizeDistance / 2.0; // shrink value
				double windowSizeHalf = windowSize / 2.0;
				windowSizeHalf = std::round(windowSizeHalf * (1 / (1 + exp((cascadeStep + 1) - model.getNumCascadeSteps())))); // this is (step - numStages), numStages is 5 and step goes from 1 to 5. Because our step goes from 0 to 4, we add 1.
				int NUM_CELL = 3; // think about if this should go in the descriptorExtractor or not. Is it Hog specific?
				int windowSizeHalfi = static_cast<int>(windowSizeHalf) + NUM_CELL - (static_cast<int>(windowSizeHalf) % NUM_CELL); // make sure it's divisible by 3. However, this is not needed and not a good way
				
				currentFeatures = model.getDescriptorExtractor(cascadeStep)->getDescriptors(image, points, windowSizeHalfi);
			}
			else { // non-adaptive, the descriptorExtractor has all necessary params
				currentFeatures = model.getDescriptorExtractor(cascadeStep)->getDescriptors(image, points);
			}
			currentFeatures = currentFeatures.reshape(0, currentFeatures.cols * model.getNumLandmarks()).t();

			//delta_shape = AAM.RF(1).Regressor(hogScale).A(1:end - 1, : )' * feature_current + AAM.RF(1).Regressor(hogScale).A(end,:)';
			Mat regressorData = model.getRegressorData(cascadeStep);
			//Mat deltaShape = regressorData.rowRange(0, regressorData.rows - 1).t() * currentFeatures + regressorData.row(regressorData.rows - 1).t();
			Mat deltaShape = currentFeatures * regressorData.rowRange(0, regressorData.rows - 1) + regressorData.row(regressorData.rows - 1);
			if (true) { // adaptive
				modelShape = modelShape + deltaShape.t() * dynamicFaceSizeDistance;
			}
			else {
				modelShape = modelShape + deltaShape.t();
			}
			
			/*
			for (int i = 0; i < m.getNumLandmarks(); ++i) {
			cv::circle(landmarksImage, Point2f(modelShape.at<float>(i, 0), modelShape.at<float>(i + m.getNumLandmarks(), 0)), 6 - hogScale, Scalar(51.0f*(float)hogScale, 51.0f*(float)hogScale, 0.0f));
			}*/
		}

		return modelShape;
	};
开发者ID:PhilippKopp,项目名称:FeatureDetection,代码行数:63,代码来源:SdmLandmarkModel.hpp


注:本文中的point1函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。