本文整理汇总了C++中mfdcr函数的典型用法代码示例。如果您正苦于以下问题:C++ mfdcr函数的具体用法?C++ mfdcr怎么用?C++ mfdcr使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了mfdcr函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: cpu_configure
/*
* Determine device configuration for a machine.
*/
void
cpu_configure(void)
{
intr_init();
calc_delayconst();
/* Make sure that timers run at CPU frequency */
mtdcr(DCR_CPC0_CR1, mfdcr(DCR_CPC0_CR1) & ~CPC0_CR1_CETE);
if (config_rootfound("plb", &local_plb_devs) == NULL)
panic("configure: plb not configured");
printf("biomask %x netmask %x ttymask %x\n", (u_short)imask[IPL_BIO],
(u_short)imask[IPL_NET], (u_short)imask[IPL_TTY]);
(void)spl0();
/*
* Now allow hardware interrupts.
*/
asm volatile ("wrteei 1");
}
示例2: l2cache_enable
/*************************************************************************
* void l2cache_enable()
*
************************************************************************/
static void l2cache_enable(void) /* see p258 7.4.1 Enabling L2 Cache */
{
mtdcr( L2_CACHE_CFG, 0x80000000 ); /* enable L2_MODE L2_CFG[L2M] */
mtdcr( L2_CACHE_ADDR, 0 ); /* set L2_ADDR with all zeros */
mtdcr( L2_CACHE_CMD, 0x80000000 ); /* issue HCLEAR command via L2_CMD */
while (!(mfdcr( L2_CACHE_STAT ) & 0x80000000 )) ;; /* poll L2_SR for completion */
mtdcr( L2_CACHE_CMD, 0x10000000 ); /* clear cache errors L2_CMD[CCP] */
mtdcr( L2_CACHE_CMD, 0x08000000 ); /* clear tag errors L2_CMD[CTE] */
mtdcr( L2_CACHE_SNP0, 0 ); /* snoop registers */
mtdcr( L2_CACHE_SNP1, 0 );
__asm__ volatile ("sync"); /* msync */
mtdcr( L2_CACHE_CFG, 0xe0000000 ); /* inst and data use L2 */
__asm__ volatile ("sync");
}
示例3: wait_for_dram_init_complete
int wait_for_dram_init_complete(void)
{
u32 val;
int wait = 0;
/*
* Wait for 'DRAM initialization complete' bit in status register
*/
mtdcr(ddrcfga, DDR0_00);
while (wait != 0xffff) {
val = mfdcr(ddrcfgd);
if ((val & DDR0_00_INT_STATUS_BIT6) == DDR0_00_INT_STATUS_BIT6)
/* 'DRAM initialization complete' bit */
return 0;
else
wait++;
}
debug("DRAM initialization complete bit in status register did not rise\n");
return -1;
}
示例4: emulate_mfdcr
static int emulate_mfdcr(struct kvm_vcpu *vcpu, int rt, int dcrn)
{
/* The guest may access CPR0 registers to determine the timebase
* frequency, and it must know the real host frequency because it
* can directly access the timebase registers.
*
* It would be possible to emulate those accesses in userspace,
* but userspace can really only figure out the end frequency.
* We could decompose that into the factors that compute it, but
* that's tricky math, and it's easier to just report the real
* CPR0 values.
*/
switch (dcrn) {
case DCRN_CPR0_CONFIG_ADDR:
kvmppc_set_gpr(vcpu, rt, vcpu->arch.cpr0_cfgaddr);
break;
case DCRN_CPR0_CONFIG_DATA:
local_irq_disable();
mtdcr(DCRN_CPR0_CONFIG_ADDR,
vcpu->arch.cpr0_cfgaddr);
kvmppc_set_gpr(vcpu, rt,
mfdcr(DCRN_CPR0_CONFIG_DATA));
local_irq_enable();
break;
default:
vcpu->run->dcr.dcrn = dcrn;
vcpu->run->dcr.data = 0;
vcpu->run->dcr.is_write = 0;
vcpu->arch.dcr_is_write = 0;
vcpu->arch.io_gpr = rt;
vcpu->arch.dcr_needed = 1;
kvmppc_account_exit(vcpu, DCR_EXITS);
return EMULATE_DO_DCR;
}
return EMULATE_DONE;
}
示例5: __ft_board_setup
void __ft_board_setup(void *blob, bd_t *bd)
{
int rc;
int i;
u32 bxcr;
u32 ranges[EBC_NUM_BANKS * 4];
u32 *p = ranges;
char *ebc_path = "/plb/opb/ebc";
ft_cpu_setup(blob, bd);
/*
* Read 4xx EBC bus bridge registers to get mappings of the
* peripheral banks into the OPB/PLB address space
*/
for (i = 0; i < EBC_NUM_BANKS; i++) {
mtdcr(EBC0_CFGADDR, EBC_BXCR(i));
bxcr = mfdcr(EBC0_CFGDATA);
if ((bxcr & EBC_BXCR_BU_MASK) != EBC_BXCR_BU_NONE) {
*p++ = i;
*p++ = 0;
*p++ = bxcr & EBC_BXCR_BAS_MASK;
*p++ = EBC_BXCR_BANK_SIZE(bxcr);
}
}
/* Some 405 PPC's have EBC as direct PLB child in the dts */
if (fdt_path_offset(blob, "/plb/opb/ebc") < 0)
strcpy(ebc_path, "/plb/ebc");
rc = fdt_find_and_setprop(blob, ebc_path, "ranges", ranges,
(p - ranges) * sizeof(u32), 1);
if (rc) {
printf("Unable to update property EBC mappings, err=%s\n",
fdt_strerror(rc));
}
}
示例6: wait_for_dlllock
/*-----------------------------------------------------------------------------+
* wait_for_dlllock.
+----------------------------------------------------------------------------*/
static int wait_for_dlllock(void)
{
unsigned long val;
int wait = 0;
/* -----------------------------------------------------------+
* Wait for the DCC master delay line to finish calibration
* ----------------------------------------------------------*/
mtdcr(ddrcfga, DDR0_17);
val = DDR0_17_DLLLOCKREG_UNLOCKED;
while (wait != 0xffff) {
val = mfdcr(ddrcfgd);
if ((val & DDR0_17_DLLLOCKREG_MASK) == DDR0_17_DLLLOCKREG_LOCKED)
/* dlllockreg bit on */
return 0;
else
wait++;
}
debug("0x%04x: DDR0_17 Value (dlllockreg bit): 0x%08x\n", wait, val);
debug("Waiting for dlllockreg bit to raise\n");
return -1;
}
示例7: board_early_init_f
int board_early_init_f (void)
{
uint reg;
/*--------------------------------------------------------------------
* Setup the external bus controller/chip selects
*-------------------------------------------------------------------*/
mtdcr( ebccfga, xbcfg );
reg = mfdcr( ebccfgd );
mtdcr( ebccfgd, reg | 0x04000000 ); /* Set ATC */
mtebc( pb0ap, 0x92015480 ); /* FLASH/SRAM */
mtebc( pb0cr, 0xFF87A000 ); /* BAS=0xff8 8MB R/W 16-bit */
/* test-only: other regs still missing... */
/*--------------------------------------------------------------------
* Setup the interrupt controller polarities, triggers, etc.
*-------------------------------------------------------------------*/
mtdcr( uic0sr, 0xffffffff ); /* clear all */
mtdcr( uic0er, 0x00000000 ); /* disable all */
mtdcr( uic0cr, 0x00000009 ); /* SMI & UIC1 crit are critical */
mtdcr( uic0pr, 0xfffffe13 ); /* per ref-board manual */
mtdcr( uic0tr, 0x01c00008 ); /* per ref-board manual */
mtdcr( uic0vr, 0x00000001 ); /* int31 highest, base=0x000 */
mtdcr( uic0sr, 0xffffffff ); /* clear all */
mtdcr( uic1sr, 0xffffffff ); /* clear all */
mtdcr( uic1er, 0x00000000 ); /* disable all */
mtdcr( uic1cr, 0x00000000 ); /* all non-critical */
mtdcr( uic1pr, 0xffffe0ff ); /* per ref-board manual */
mtdcr( uic1tr, 0x00ffc000 ); /* per ref-board manual */
mtdcr( uic1vr, 0x00000001 ); /* int31 highest, base=0x000 */
mtdcr( uic1sr, 0xffffffff ); /* clear all */
return 0;
}
示例8: checkcpu
int checkcpu (void)
{
#if !defined(CONFIG_405) /* not used on Xilinx 405 FPGA implementations */
uint pvr = get_pvr();
ulong clock = gd->cpu_clk;
char buf[32];
#if !defined(CONFIG_IOP480)
char addstr[64] = "";
sys_info_t sys_info;
puts ("CPU: ");
get_sys_info(&sys_info);
puts("AMCC PowerPC 4");
#if defined(CONFIG_405GP) || defined(CONFIG_405CR) || \
defined(CONFIG_405EP) || defined(CONFIG_405EZ) || \
defined(CONFIG_405EX)
puts("05");
#endif
#if defined(CONFIG_440)
puts("40");
#endif
switch (pvr) {
case PVR_405GP_RB:
puts("GP Rev. B");
break;
case PVR_405GP_RC:
puts("GP Rev. C");
break;
case PVR_405GP_RD:
puts("GP Rev. D");
break;
#ifdef CONFIG_405GP
case PVR_405GP_RE: /* 405GP rev E and 405CR rev C have same PVR */
puts("GP Rev. E");
break;
#endif
case PVR_405CR_RA:
puts("CR Rev. A");
break;
case PVR_405CR_RB:
puts("CR Rev. B");
break;
#ifdef CONFIG_405CR
case PVR_405CR_RC: /* 405GP rev E and 405CR rev C have same PVR */
puts("CR Rev. C");
break;
#endif
case PVR_405GPR_RB:
puts("GPr Rev. B");
break;
case PVR_405EP_RB:
puts("EP Rev. B");
break;
case PVR_405EZ_RA:
puts("EZ Rev. A");
break;
case PVR_405EX1_RA:
puts("EX Rev. A");
strcpy(addstr, "Security support");
break;
case PVR_405EX2_RA:
puts("EX Rev. A");
strcpy(addstr, "No Security support");
break;
case PVR_405EXR1_RA:
puts("EXr Rev. A");
strcpy(addstr, "Security support");
break;
case PVR_405EXR2_RA:
puts("EXr Rev. A");
strcpy(addstr, "No Security support");
break;
#if defined(CONFIG_440)
case PVR_440GP_RB:
puts("GP Rev. B");
/* See errata 1.12: CHIP_4 */
if ((mfdcr(cpc0_sys0) != mfdcr(cpc0_strp0)) ||
(mfdcr(cpc0_sys1) != mfdcr(cpc0_strp1)) ){
puts ( "\n\t CPC0_SYSx DCRs corrupted. "
"Resetting chip ...\n");
udelay( 1000 * 1000 ); /* Give time for serial buf to clear */
//.........这里部分代码省略.........
示例9: flash_init
unsigned long flash_init (void)
{
unsigned long size_b0, size_b1;
int i;
uint pbcr;
unsigned long base_b0, base_b1;
/* Init: no FLASHes known */
for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; ++i) {
flash_info[i].flash_id = FLASH_UNKNOWN;
}
/* Static FLASH Bank configuration here - FIXME XXX */
base_b0 = FLASH_BASE0_PRELIM;
size_b0 = flash_get_size ((vu_long *) base_b0, &flash_info[0]);
if (flash_info[0].flash_id == FLASH_UNKNOWN) {
printf ("## Unknown FLASH on Bank 0 - Size = 0x%08lx = %ld MB\n",
size_b0, size_b0 << 20);
}
base_b1 = FLASH_BASE1_PRELIM;
size_b1 = flash_get_size ((vu_long *) base_b1, &flash_info[1]);
/* Re-do sizing to get full correct info */
if (size_b1) {
if (size_b1 < (1 << 20)) {
/* minimum CS size on PPC405GP is 1MB !!! */
size_b1 = 1 << 20;
}
base_b1 = -size_b1;
mtdcr (EBC0_CFGADDR, PB0CR);
pbcr = mfdcr (EBC0_CFGDATA);
mtdcr (EBC0_CFGADDR, PB0CR);
pbcr = (pbcr & 0x0001ffff) | base_b1 | (calc_size(size_b1) << 17);
mtdcr (EBC0_CFGDATA, pbcr);
#if 0 /* test-only */
printf("size_b1=%x base_b1=%x PB1CR = %x\n",
size_b1, base_b1, pbcr); /* test-only */
#endif
}
if (size_b0) {
if (size_b0 < (1 << 20)) {
/* minimum CS size on PPC405GP is 1MB !!! */
size_b0 = 1 << 20;
}
base_b0 = base_b1 - size_b0;
mtdcr (EBC0_CFGADDR, PB1CR);
pbcr = mfdcr (EBC0_CFGDATA);
mtdcr (EBC0_CFGADDR, PB1CR);
pbcr = (pbcr & 0x0001ffff) | base_b0 | (calc_size(size_b0) << 17);
mtdcr (EBC0_CFGDATA, pbcr);
#if 0 /* test-only */
printf("size_b0=%x base_b0=%x PB0CR = %x\n",
size_b0, base_b0, pbcr); /* test-only */
#endif
}
size_b0 = flash_get_size ((vu_long *) base_b0, &flash_info[0]);
flash_get_offsets (base_b0, &flash_info[0]);
/* monitor protection ON by default */
flash_protect (FLAG_PROTECT_SET,
base_b0 + size_b0 - monitor_flash_len,
base_b0 + size_b0 - 1, &flash_info[0]);
if (size_b1) {
/* Re-do sizing to get full correct info */
size_b1 = flash_get_size ((vu_long *) base_b1, &flash_info[1]);
flash_get_offsets (base_b1, &flash_info[1]);
/* monitor protection ON by default */
flash_protect (FLAG_PROTECT_SET,
base_b1 + size_b1 - monitor_flash_len,
base_b1 + size_b1 - 1, &flash_info[1]);
/* monitor protection OFF by default (one is enough) */
flash_protect (FLAG_PROTECT_CLEAR,
base_b0 + size_b0 - monitor_flash_len,
base_b0 + size_b0 - 1, &flash_info[0]);
} else {
flash_info[1].flash_id = FLASH_UNKNOWN;
flash_info[1].sector_count = -1;
}
flash_info[0].size = size_b0;
flash_info[1].size = size_b1;
return (size_b0 + size_b1);
}
示例10: flash_init
unsigned long flash_init (void)
{
unsigned long size_b0, size_b1;
int i;
uint pbcr;
unsigned long base_b0, base_b1;
/* Init: no FLASHes known */
for (i = 0; i < CONFIG_SYS_MAX_FLASH_BANKS; ++i) {
flash_info[i].flash_id = FLASH_UNKNOWN;
}
/* Static FLASH Bank configuration here - FIXME XXX */
base_b0 = FLASH_BASE0_PRELIM;
size_b0 = flash_get_size ((vu_long *) base_b0, &flash_info[0]);
if (flash_info[0].flash_id == FLASH_UNKNOWN) {
printf ("## Unknown FLASH on Bank 0 - Size = 0x%08lx = %ld MB\n",
size_b0, size_b0 << 20);
}
base_b1 = FLASH_BASE1_PRELIM;
size_b1 = flash_get_size ((vu_long *) base_b1, &flash_info[1]);
/* Re-do sizing to get full correct info */
if (size_b1) {
mtdcr (ebccfga, pb0cr);
pbcr = mfdcr (ebccfgd);
mtdcr (ebccfga, pb0cr);
base_b1 = -size_b1;
pbcr = (pbcr & 0x0001ffff) | base_b1 |
(((size_b1 / 1024 / 1024) - 1) << 17);
mtdcr (ebccfgd, pbcr);
/* printf("pb1cr = %x\n", pbcr); */
}
if (size_b0) {
mtdcr (ebccfga, pb1cr);
pbcr = mfdcr (ebccfgd);
mtdcr (ebccfga, pb1cr);
base_b0 = base_b1 - size_b0;
pbcr = (pbcr & 0x0001ffff) | base_b0 |
(((size_b0 / 1024 / 1024) - 1) << 17);
mtdcr (ebccfgd, pbcr);
/* printf("pb0cr = %x\n", pbcr); */
}
size_b0 = flash_get_size ((vu_long *) base_b0, &flash_info[0]);
flash_get_offsets (base_b0, &flash_info[0]);
/* monitor protection ON by default */
flash_protect (FLAG_PROTECT_SET,
base_b0 + size_b0 - monitor_flash_len,
base_b0 + size_b0 - 1, &flash_info[0]);
if (size_b1) {
/* Re-do sizing to get full correct info */
size_b1 = flash_get_size ((vu_long *) base_b1, &flash_info[1]);
flash_get_offsets (base_b1, &flash_info[1]);
/* monitor protection ON by default */
flash_protect (FLAG_PROTECT_SET,
base_b1 + size_b1 - monitor_flash_len,
base_b1 + size_b1 - 1, &flash_info[1]);
/* monitor protection OFF by default (one is enough) */
flash_protect (FLAG_PROTECT_CLEAR,
base_b0 + size_b0 - monitor_flash_len,
base_b0 + size_b0 - 1, &flash_info[0]);
} else {
flash_info[1].flash_id = FLASH_UNKNOWN;
flash_info[1].sector_count = -1;
}
flash_info[0].size = size_b0;
flash_info[1].size = size_b1;
return (size_b0 + size_b1);
}
示例11: ppc4xx_enable_dma
void
ppc4xx_enable_dma(unsigned int dmanr)
{
unsigned int control;
ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr];
unsigned int status_bits[] = { DMA_CS0 | DMA_TS0 | DMA_CH0_ERR,
DMA_CS1 | DMA_TS1 | DMA_CH1_ERR,
DMA_CS2 | DMA_TS2 | DMA_CH2_ERR,
DMA_CS3 | DMA_TS3 | DMA_CH3_ERR};
if (p_dma_ch->in_use) {
printk("enable_dma: channel %d in use\n", dmanr);
return;
}
if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) {
printk("enable_dma: bad channel: %d\n", dmanr);
return;
}
if (p_dma_ch->mode == DMA_MODE_READ) {
/* peripheral to memory */
ppc4xx_set_src_addr(dmanr, 0);
ppc4xx_set_dst_addr(dmanr, p_dma_ch->addr);
} else if (p_dma_ch->mode == DMA_MODE_WRITE) {
/* memory to peripheral */
ppc4xx_set_src_addr(dmanr, p_dma_ch->addr);
ppc4xx_set_dst_addr(dmanr, 0);
}
/* for other xfer modes, the addresses are already set */
control = mfdcr(DCRN_DMACR0 + (dmanr * 0x8));
control &= ~(DMA_TM_MASK | DMA_TD); /* clear all mode bits */
if (p_dma_ch->mode == DMA_MODE_MM) {
/* software initiated memory to memory */
control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE;
}
mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control);
/*
* Clear the CS, TS, RI bits for the channel from DMASR. This
* has been observed to happen correctly only after the mode and
* ETD/DCE bits in DMACRx are set above. Must do this before
* enabling the channel.
*/
mtdcr(DCRN_DMASR, status_bits[dmanr]);
/*
* For device-paced transfers, Terminal Count Enable apparently
* must be on, and this must be turned on after the mode, etc.
* bits are cleared above (at least on Redwood-6).
*/
if ((p_dma_ch->mode == DMA_MODE_MM_DEVATDST) ||
(p_dma_ch->mode == DMA_MODE_MM_DEVATSRC))
control |= DMA_TCE_ENABLE;
/*
* Now enable the channel.
*/
control |= (p_dma_ch->mode | DMA_CE_ENABLE);
mtdcr(DCRN_DMACR0 + (dmanr * 0x8), control);
p_dma_ch->in_use = 1;
}
示例12: decompress_kernel
struct bi_record *
decompress_kernel(unsigned long load_addr, int num_words, unsigned long cksum)
{
#ifdef INTERACTIVE_CONSOLE
int timer = 0;
char ch;
#endif
char *cp;
struct bi_record *rec;
unsigned long initrd_loc = 0, TotalMemory = 0;
#if defined(CONFIG_SERIAL_8250_CONSOLE) || defined(CONFIG_SERIAL_MPSC_CONSOLE)
com_port = serial_init(0, NULL);
#endif
#if defined(PPC4xx_EMAC0_MR0)
/* Reset MAL */
mtdcr(DCRN_MALCR(DCRN_MAL_BASE), MALCR_MMSR);
/* Wait for reset */
while (mfdcr(DCRN_MALCR(DCRN_MAL_BASE)) & MALCR_MMSR) {};
/* Reset EMAC */
*(volatile unsigned long *)PPC4xx_EMAC0_MR0 = 0x20000000;
__asm__ __volatile__("eieio");
#endif
/*
* Call get_mem_size(), which is memory controller dependent,
* and we must have the correct file linked in here.
*/
TotalMemory = get_mem_size();
/* assume the chunk below 8M is free */
end_avail = (char *)0x00800000;
/*
* Reveal where we were loaded at and where we
* were relocated to.
*/
puts("loaded at: "); puthex(load_addr);
puts(" "); puthex((unsigned long)(load_addr + (4*num_words)));
puts("\n");
if ( (unsigned long)load_addr != (unsigned long)&start )
{
puts("relocated to: "); puthex((unsigned long)&start);
puts(" ");
puthex((unsigned long)((unsigned long)&start + (4*num_words)));
puts("\n");
}
/*
* We link ourself to 0x00800000. When we run, we relocate
* ourselves there. So we just need __image_begin for the
* start. -- Tom
*/
zimage_start = (char *)(unsigned long)(&__image_begin);
zimage_size = (unsigned long)(&__image_end) -
(unsigned long)(&__image_begin);
initrd_size = (unsigned long)(&__ramdisk_end) -
(unsigned long)(&__ramdisk_begin);
/*
* The zImage and initrd will be between start and _end, so they've
* already been moved once. We're good to go now. -- Tom
*/
avail_ram = (char *)PAGE_ALIGN((unsigned long)_end);
puts("zimage at: "); puthex((unsigned long)zimage_start);
puts(" "); puthex((unsigned long)(zimage_size+zimage_start));
puts("\n");
if ( initrd_size ) {
puts("initrd at: ");
puthex((unsigned long)(&__ramdisk_begin));
puts(" "); puthex((unsigned long)(&__ramdisk_end));puts("\n");
}
#ifndef CONFIG_40x /* don't overwrite the 40x image located at 0x00400000! */
avail_ram = (char *)0x00400000;
#endif
end_avail = (char *)0x00800000;
puts("avail ram: "); puthex((unsigned long)avail_ram); puts(" ");
puthex((unsigned long)end_avail); puts("\n");
if (keyb_present)
CRT_tstc(); /* Forces keyboard to be initialized */
/* Display standard Linux/PPC boot prompt for kernel args */
puts("\nLinux/PPC load: ");
cp = cmd_line;
memcpy (cmd_line, cmd_preset, sizeof(cmd_preset));
while ( *cp ) putc(*cp++);
#ifdef INTERACTIVE_CONSOLE
/*
* If they have a console, allow them to edit the command line.
* Otherwise, don't bother wasting the five seconds.
*/
while (timer++ < 5*1000) {
if (tstc()) {
while ((ch = getc()) != '\n' && ch != '\r') {
//.........这里部分代码省略.........
示例13: ppc4xx_alloc_dma_handle
/*
* Create a scatter/gather list handle. This is simply a structure which
* describes a scatter/gather list.
*
* A handle is returned in "handle" which the driver should save in order to
* be able to access this list later. A chunk of memory will be allocated
* to be used by the API for internal management purposes, including managing
* the sg list and allocating memory for the sgl descriptors. One page should
* be more than enough for that purpose. Perhaps it's a bit wasteful to use
* a whole page for a single sg list, but most likely there will be only one
* sg list per channel.
*
* Interrupt notes:
* Each sgl descriptor has a copy of the DMA control word which the DMA engine
* loads in the control register. The control word has a "global" interrupt
* enable bit for that channel. Interrupts are further qualified by a few bits
* in the sgl descriptor count register. In order to setup an sgl, we have to
* know ahead of time whether or not interrupts will be enabled at the completion
* of the transfers. Thus, enable_dma_interrupt()/disable_dma_interrupt() MUST
* be called before calling alloc_dma_handle(). If the interrupt mode will never
* change after powerup, then enable_dma_interrupt()/disable_dma_interrupt()
* do not have to be called -- interrupts will be enabled or disabled based
* on how the channel was configured after powerup by the hw_init_dma_channel()
* function. Each sgl descriptor will be setup to interrupt if an error occurs;
* however, only the last descriptor will be setup to interrupt. Thus, an
* interrupt will occur (if interrupts are enabled) only after the complete
* sgl transfer is done.
*/
int
ppc4xx_alloc_dma_handle(sgl_handle_t * phandle, unsigned int mode, unsigned int dmanr)
{
sgl_list_info_t *psgl;
dma_addr_t dma_addr;
ppc_dma_ch_t *p_dma_ch = &dma_channels[dmanr];
uint32_t sg_command;
void *ret;
if (dmanr >= MAX_PPC4xx_DMA_CHANNELS) {
printk("ppc4xx_alloc_dma_handle: invalid channel 0x%x\n", dmanr);
return DMA_STATUS_BAD_CHANNEL;
}
if (!phandle) {
printk("ppc4xx_alloc_dma_handle: null handle pointer\n");
return DMA_STATUS_NULL_POINTER;
}
/* Get a page of memory, which is zeroed out by consistent_alloc() */
ret = consistent_alloc(GFP_KERNEL, DMA_PPC4xx_SIZE, &dma_addr);
if (ret != NULL) {
memset(ret, 0, DMA_PPC4xx_SIZE);
psgl = (sgl_list_info_t *) ret;
}
if (psgl == NULL) {
*phandle = (sgl_handle_t) NULL;
return DMA_STATUS_OUT_OF_MEMORY;
}
psgl->dma_addr = dma_addr;
psgl->dmanr = dmanr;
/*
* Modify and save the control word. These words will be
* written to each sgl descriptor. The DMA engine then
* loads this control word into the control register
* every time it reads a new descriptor.
*/
psgl->control = p_dma_ch->control;
/* Clear all mode bits */
psgl->control &= ~(DMA_TM_MASK | DMA_TD);
/* Save control word and mode */
psgl->control |= (mode | DMA_CE_ENABLE);
/* In MM mode, we must set ETD/TCE */
if (mode == DMA_MODE_MM)
psgl->control |= DMA_ETD_OUTPUT | DMA_TCE_ENABLE;
if (p_dma_ch->int_enable) {
/* Enable channel interrupt */
psgl->control |= DMA_CIE_ENABLE;
} else {
psgl->control &= ~DMA_CIE_ENABLE;
}
sg_command = mfdcr(DCRN_ASGC);
switch (dmanr) {
case 0:
sg_command |= SSG0_MASK_ENABLE;
break;
case 1:
sg_command |= SSG1_MASK_ENABLE;
break;
case 2:
sg_command |= SSG2_MASK_ENABLE;
break;
case 3:
sg_command |= SSG3_MASK_ENABLE;
break;
default:
//.........这里部分代码省略.........
示例14: misc_init_r
int misc_init_r (void)
{
DECLARE_GLOBAL_DATA_PTR;
bd_t *bd = gd->bd;
char * tmp; /* Temporary char pointer */
unsigned long cntrl0Reg;
#ifdef CONFIG_CPCI405_VER2
unsigned char *dst;
ulong len = sizeof(fpgadata);
int status;
int index;
int i;
/*
* On CPCI-405 version 2 the environment is saved in eeprom!
* FPGA can be gzip compressed (malloc) and booted this late.
*/
if (cpci405_version() >= 2) {
/*
* Setup GPIO pins (CS6+CS7 as GPIO)
*/
cntrl0Reg = mfdcr(cntrl0);
mtdcr(cntrl0, cntrl0Reg | 0x00300000);
dst = malloc(CFG_FPGA_MAX_SIZE);
if (gunzip (dst, CFG_FPGA_MAX_SIZE, (uchar *)fpgadata, (int *)&len) != 0) {
printf ("GUNZIP ERROR - must RESET board to recover\n");
do_reset (NULL, 0, 0, NULL);
}
status = fpga_boot(dst, len);
if (status != 0) {
printf("\nFPGA: Booting failed ");
switch (status) {
case ERROR_FPGA_PRG_INIT_LOW:
printf("(Timeout: INIT not low after asserting PROGRAM*)\n ");
break;
case ERROR_FPGA_PRG_INIT_HIGH:
printf("(Timeout: INIT not high after deasserting PROGRAM*)\n ");
break;
case ERROR_FPGA_PRG_DONE:
printf("(Timeout: DONE not high after programming FPGA)\n ");
break;
}
/* display infos on fpgaimage */
index = 15;
for (i=0; i<4; i++) {
len = dst[index];
printf("FPGA: %s\n", &(dst[index+1]));
index += len+3;
}
putc ('\n');
/* delayed reboot */
for (i=20; i>0; i--) {
printf("Rebooting in %2d seconds \r",i);
for (index=0;index<1000;index++)
udelay(1000);
}
putc ('\n');
do_reset(NULL, 0, 0, NULL);
}
/* restore gpio/cs settings */
mtdcr(cntrl0, cntrl0Reg);
puts("FPGA: ");
/* display infos on fpgaimage */
index = 15;
for (i=0; i<4; i++) {
len = dst[index];
printf("%s ", &(dst[index+1]));
index += len+3;
}
putc ('\n');
free(dst);
/*
* Reset FPGA via FPGA_DATA pin
*/
SET_FPGA(FPGA_PRG | FPGA_CLK);
udelay(1000); /* wait 1ms */
SET_FPGA(FPGA_PRG | FPGA_CLK | FPGA_DATA);
udelay(1000); /* wait 1ms */
if (cpci405_version() == 3) {
volatile unsigned short *fpga_mode = (unsigned short *)CFG_FPGA_BASE_ADDR;
volatile unsigned char *leds = (unsigned char *)CFG_LED_ADDR;
/*
* Enable outputs in fpga on version 3 board
*/
*fpga_mode |= CFG_FPGA_MODE_ENABLE_OUTPUT;
/*
//.........这里部分代码省略.........
示例15: misc_init_r
//.........这里部分代码省略.........
CONFIG_ENV_ADDR_REDUND + 2 * CONFIG_ENV_SECT_SIZE - 1,
&flash_info[cfi_flash_num_flash_banks - 1]);
/*
* USB suff...
*/
/* Reset USB */
/* Reset of USB2PHY0 must be active at least 10 us */
mtsdr(SDR0_SRST0, SDR0_SRST0_USB2H | SDR0_SRST0_USB2D);
udelay(2000);
mtsdr(SDR0_SRST1, SDR0_SRST1_USB20PHY | SDR0_SRST1_USB2HUTMI |
SDR0_SRST1_USB2HPHY | SDR0_SRST1_OPBA2 |
SDR0_SRST1_PLB42OPB1 | SDR0_SRST1_OPB2PLB40);
udelay(2000);
/* Errata CHIP_6 */
/* 1. Set internal PHY configuration */
/* SDR Setting */
mfsdr(SDR0_PFC1, sdr0_pfc1);
mfsdr(SDR0_USB0, usb2d0cr);
mfsdr(SDR0_USB2PHY0CR, usb2phy0cr);
mfsdr(SDR0_USB2H0CR, usb2h0cr);
usb2phy0cr = usb2phy0cr & ~SDR0_USB2PHY0CR_XOCLK_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_XOCLK_EXTERNAL; /*0*/
usb2phy0cr = usb2phy0cr & ~SDR0_USB2PHY0CR_WDINT_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_WDINT_16BIT_30MHZ; /*1*/
usb2phy0cr = usb2phy0cr & ~SDR0_USB2PHY0CR_DVBUS_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DVBUS_PUREN; /*1*/
usb2phy0cr = usb2phy0cr & ~SDR0_USB2PHY0CR_DWNSTR_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_DWNSTR_HOST; /*1*/
usb2phy0cr = usb2phy0cr & ~SDR0_USB2PHY0CR_UTMICN_MASK;
usb2phy0cr = usb2phy0cr | SDR0_USB2PHY0CR_UTMICN_HOST; /*1*/
/*
* An 8-bit/60MHz interface is the only possible alternative
* when connecting the Device to the PHY
*/
usb2h0cr = usb2h0cr & ~SDR0_USB2H0CR_WDINT_MASK;
usb2h0cr = usb2h0cr | SDR0_USB2H0CR_WDINT_16BIT_30MHZ; /*1*/
mtsdr(SDR0_PFC1, sdr0_pfc1);
mtsdr(SDR0_USB0, usb2d0cr);
mtsdr(SDR0_USB2PHY0CR, usb2phy0cr);
mtsdr(SDR0_USB2H0CR, usb2h0cr);
/* 2. De-assert internal PHY reset */
mfsdr(SDR0_SRST1, sdr0_srst);
sdr0_srst = sdr0_srst & ~SDR0_SRST1_USB20PHY;
mtsdr(SDR0_SRST1, sdr0_srst);
/* 3. Wait for more than 1 ms */
udelay(2000);
/* 4. De-assert USB 2.0 Host main reset */
mfsdr(SDR0_SRST0, sdr0_srst);
sdr0_srst = sdr0_srst &~ SDR0_SRST0_USB2H;
mtsdr(SDR0_SRST0, sdr0_srst);
udelay(1000);
/* 5. De-assert reset of OPB2 cores */
mfsdr(SDR0_SRST1, sdr0_srst);
sdr0_srst = sdr0_srst &~ SDR0_SRST1_PLB42OPB1;
sdr0_srst = sdr0_srst &~ SDR0_SRST1_OPB2PLB40;
sdr0_srst = sdr0_srst &~ SDR0_SRST1_OPBA2;
mtsdr(SDR0_SRST1, sdr0_srst);
udelay(1000);
/* 6. Set EHCI Configure FLAG */
/* 7. Reassert internal PHY reset: */
mtsdr(SDR0_SRST1, SDR0_SRST1_USB20PHY);
udelay(1000);
/*
* Clear resets
*/
mtsdr(SDR0_SRST1, 0x00000000);
mtsdr(SDR0_SRST0, 0x00000000);
printf("USB: Host(int phy) Device(ext phy)\n");
/*
* Clear PLB4A0_ACR[WRP]
* This fix will make the MAL burst disabling patch for the Linux
* EMAC driver obsolete.
*/
reg = mfdcr(PLB4A0_ACR) & ~PLB4Ax_ACR_WRP_MASK;
mtdcr(PLB4A0_ACR, reg);
/*
* Init matrix keyboard
*/
misc_init_r_kbd();
return 0;
}