本文整理汇总了C++中div_u64_rem函数的典型用法代码示例。如果您正苦于以下问题:C++ div_u64_rem函数的具体用法?C++ div_u64_rem怎么用?C++ div_u64_rem使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了div_u64_rem函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: linear_to_generic_addr
static struct ppa_addr linear_to_generic_addr(struct nvm_dev *dev,
struct ppa_addr r)
{
struct ppa_addr l;
int secs, pgs, blks, luns;
sector_t ppa = r.ppa;
l.ppa = 0;
div_u64_rem(ppa, dev->sec_per_pg, &secs);
l.g.sec = secs;
sector_div(ppa, dev->sec_per_pg);
div_u64_rem(ppa, dev->pgs_per_blk, &pgs);
l.g.pg = pgs;
sector_div(ppa, dev->pgs_per_blk);
div_u64_rem(ppa, dev->blks_per_lun, &blks);
l.g.blk = blks;
sector_div(ppa, dev->blks_per_lun);
div_u64_rem(ppa, dev->luns_per_chnl, &luns);
l.g.lun = luns;
sector_div(ppa, dev->luns_per_chnl);
l.g.ch = ppa;
return l;
}
示例2: mmc_berase
unsigned long mmc_berase(struct blk_desc *block_dev, lbaint_t start,
lbaint_t blkcnt)
{
int dev_num = block_dev->devnum;
int err = 0;
u32 start_rem, blkcnt_rem;
struct mmc *mmc = find_mmc_device(dev_num);
lbaint_t blk = 0, blk_r = 0;
int timeout = 1000;
if (!mmc)
return -1;
err = blk_select_hwpart_devnum(IF_TYPE_MMC, dev_num,
block_dev->hwpart);
if (err < 0)
return -1;
/*
* We want to see if the requested start or total block count are
* unaligned. We discard the whole numbers and only care about the
* remainder.
*/
err = div_u64_rem(start, mmc->erase_grp_size, &start_rem);
err = div_u64_rem(blkcnt, mmc->erase_grp_size, &blkcnt_rem);
if (start_rem || blkcnt_rem)
printf("\n\nCaution! Your devices Erase group is 0x%x\n"
"The erase range would be change to "
"0x" LBAF "~0x" LBAF "\n\n",
mmc->erase_grp_size, start & ~(mmc->erase_grp_size - 1),
((start + blkcnt + mmc->erase_grp_size)
& ~(mmc->erase_grp_size - 1)) - 1);
while (blk < blkcnt) {
blk_r = ((blkcnt - blk) > mmc->erase_grp_size) ?
mmc->erase_grp_size : (blkcnt - blk);
err = mmc_erase_t(mmc, start + blk, blk_r);
if (err)
break;
blk += blk_r;
/* Waiting for the ready status */
if (mmc_send_status(mmc, timeout))
return 0;
}
return blk;
}
示例3: sst_calc_tstamp
static inline int sst_calc_tstamp(struct intel_sst_drv *ctx,
struct pcm_stream_info *info,
struct snd_pcm_substream *substream,
struct snd_sst_tstamp *fw_tstamp)
{
size_t delay_bytes, delay_frames;
size_t buffer_sz;
u32 pointer_bytes, pointer_samples;
dev_dbg(ctx->dev, "mrfld ring_buffer_counter %llu in bytes\n",
fw_tstamp->ring_buffer_counter);
dev_dbg(ctx->dev, "mrfld hardware_counter %llu in bytes\n",
fw_tstamp->hardware_counter);
if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
delay_bytes = (size_t) (fw_tstamp->ring_buffer_counter -
fw_tstamp->hardware_counter);
else
delay_bytes = (size_t) (fw_tstamp->hardware_counter -
fw_tstamp->ring_buffer_counter);
delay_frames = bytes_to_frames(substream->runtime, delay_bytes);
buffer_sz = snd_pcm_lib_buffer_bytes(substream);
div_u64_rem(fw_tstamp->ring_buffer_counter, buffer_sz, &pointer_bytes);
pointer_samples = bytes_to_samples(substream->runtime, pointer_bytes);
dev_dbg(ctx->dev, "pcm delay %zu in bytes\n", delay_bytes);
info->buffer_ptr = pointer_samples / substream->runtime->channels;
info->pcm_delay = delay_frames / substream->runtime->channels;
dev_dbg(ctx->dev, "buffer ptr %llu pcm_delay rep: %llu\n",
info->buffer_ptr, info->pcm_delay);
return 0;
}
示例4: show_pw20_wait_time
static ssize_t show_pw20_wait_time(struct device *dev,
struct device_attribute *attr, char *buf)
{
u32 value;
u64 tb_cycle = 1;
u64 time;
unsigned int cpu = dev->id;
if (!pw20_wt) {
smp_call_function_single(cpu, do_show_pwrmgtcr0, &value, 1);
value = (value & PWRMGTCR0_PW20_ENT) >>
PWRMGTCR0_PW20_ENT_SHIFT;
tb_cycle = (tb_cycle << (MAX_BIT - value + 1));
/* convert ms to ns */
if (tb_ticks_per_usec > 1000) {
time = div_u64(tb_cycle, tb_ticks_per_usec / 1000);
} else {
u32 rem_us;
time = div_u64_rem(tb_cycle, tb_ticks_per_usec,
&rem_us);
time = time * 1000 + rem_us * 1000 / tb_ticks_per_usec;
}
} else {
示例5: do_test_sync_cmpxchg
static void do_test_sync_cmpxchg(void)
{
int ret;
unsigned long flags;
unsigned int i;
cycles_t time1, time2, time;
u32 rem;
local_irq_save(flags);
preempt_disable();
time1 = get_cycles();
for (i = 0; i < NR_LOOPS; i++) {
#ifdef CONFIG_X86_32
ret = sync_cmpxchg(&test_val, 0, 0);
#else
ret = cmpxchg(&test_val, 0, 0);
#endif
}
time2 = get_cycles();
local_irq_restore(flags);
preempt_enable();
time = time2 - time1;
printk(KERN_ALERT "test results: time for locked cmpxchg\n");
printk(KERN_ALERT "number of loops: %d\n", NR_LOOPS);
printk(KERN_ALERT "total time: %llu\n", time);
time = div_u64_rem(time, NR_LOOPS, &rem);
printk(KERN_ALERT "-> locked cmpxchg takes %llu cycles\n", time);
printk(KERN_ALERT "test end\n");
}
示例6: do_testbaseline
static void do_testbaseline(void)
{
unsigned long flags;
unsigned int i;
cycles_t time1, time2, time;
u32 rem;
local_irq_save(flags);
preempt_disable();
time1 = get_cycles();
for (i = 0; i < NR_LOOPS; i++) {
asm volatile ("");
}
time2 = get_cycles();
local_irq_restore(flags);
preempt_enable();
time = time2 - time1;
printk(KERN_ALERT "test results: time for baseline\n");
printk(KERN_ALERT "number of loops: %d\n", NR_LOOPS);
printk(KERN_ALERT "total time: %llu\n", time);
time = div_u64_rem(time, NR_LOOPS, &rem);
printk(KERN_ALERT "-> baseline takes %llu cycles\n", time);
printk(KERN_ALERT "test end\n");
}
示例7: bl_map_stripe
static bool bl_map_stripe(struct pnfs_block_dev *dev, u64 offset,
struct pnfs_block_dev_map *map)
{
struct pnfs_block_dev *child;
u64 chunk;
u32 chunk_idx;
u64 disk_offset;
chunk = div_u64(offset, dev->chunk_size);
div_u64_rem(chunk, dev->nr_children, &chunk_idx);
if (chunk_idx > dev->nr_children) {
dprintk("%s: invalid chunk idx %d (%lld/%lld)\n",
__func__, chunk_idx, offset, dev->chunk_size);
/* error, should not happen */
return false;
}
/* truncate offset to the beginning of the stripe */
offset = chunk * dev->chunk_size;
/* disk offset of the stripe */
disk_offset = div_u64(offset, dev->nr_children);
child = &dev->children[chunk_idx];
child->map(child, disk_offset, map);
map->start += offset;
map->disk_offset += disk_offset;
map->len = dev->chunk_size;
return true;
}
示例8: do_test_inc
static void do_test_inc(void)
{
int ret;
unsigned long flags;
unsigned int i;
cycles_t time1, time2, time;
u32 rem;
local_t loc_val;
local_irq_save(flags);
preempt_disable();
time1 = get_cycles();
for (i = 0; i < NR_LOOPS; i++) {
ret = local_add_return(10, &loc_val);
}
time2 = get_cycles();
local_irq_restore(flags);
preempt_enable();
time = time2 - time1;
printk(KERN_ALERT "test results: time for non locked add return\n");
printk(KERN_ALERT "number of loops: %d\n", NR_LOOPS);
printk(KERN_ALERT "total time: %llu\n", time);
time = div_u64_rem(time, NR_LOOPS, &rem);
printk(KERN_ALERT "-> non locked add return takes %llu cycles\n", time);
printk(KERN_ALERT "test end\n");
}
示例9: ixgbe_ptp_enable_sdp
/**
* ixgbe_ptp_enable_sdp
* @hw - the hardware private structure
* @shift - the clock shift for calculating nanoseconds
*
* this function enables the clock out feature on the sdp0 for the
* X540 device. It will create a 1second periodic output that can be
* used as the PPS (via an interrupt).
*
* It calculates when the systime will be on an exact second, and then
* aligns the start of the PPS signal to that value. The shift is
* necessary because it can change based on the link speed.
*/
static void ixgbe_ptp_enable_sdp(struct ixgbe_hw *hw, int shift)
{
u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh;
u64 clock_edge = 0;
u32 rem;
switch (hw->mac.type) {
case ixgbe_mac_X540:
esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
/*
* enable the SDP0 pin as output, and connected to the native
* function for Timesync (ClockOut)
*/
esdp |= (IXGBE_ESDP_SDP0_DIR |
IXGBE_ESDP_SDP0_NATIVE);
/*
* enable the Clock Out feature on SDP0, and allow interrupts
* to occur when the pin changes
*/
tsauxc = (IXGBE_TSAUXC_EN_CLK |
IXGBE_TSAUXC_SYNCLK |
IXGBE_TSAUXC_SDP0_INT);
/* clock period (or pulse length) */
clktiml = (u32)(NSECS_PER_SEC << shift);
clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
/*
* account for the fact that we can't do u64 division
* with remainder, by converting the clock values into
* nanoseconds first
*/
clock_edge >>= shift;
div_u64_rem(clock_edge, NSECS_PER_SEC, &rem);
clock_edge += (NSECS_PER_SEC - rem);
clock_edge <<= shift;
/* specify the initial clock start time */
trgttiml = (u32)clock_edge;
trgttimh = (u32)(clock_edge >> 32);
IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
IXGBE_WRITE_REG(hw, IXGBE_EIMS, IXGBE_EICR_TIMESYNC);
break;
default:
break;
}
}
示例10: trace_print_message
int trace_print_message(char* str, size_t size,
const void* msg, size_t msg_size, int cpu, u64 ts, void* user_data)
{
int result, result_total = 0;
const struct kedr_trace_message* msg_real =
(const struct kedr_trace_message*)msg;
// ts is time in nanoseconds since system starts
u32 sec, ms;
sec = div_u64_rem(ts, 1000000000, &ms);
ms /= 1000;
(void)user_data;
#define update_str(str, size, result) \
if(size <= result) { str += size; size = 0; } \
else{ str += result; size -= result; }
result = snprintf(str, size, "%s-%d\t[%.03d]\t%lu.%.06u:\t",
msg_real->command, msg_real->pid,
cpu, (unsigned long)sec, (unsigned)ms);
result_total += result;
update_str(str, size, result);
result = msg_real->pp(str,
size, msg_real->data);
result_total += result;
update_str(str, size, result);
result = snprintf(str, size, "\n");
result_total += result;
#undef update_str
return result_total;
}
示例11: do_test_int
static void do_test_int(void)
{
unsigned long flags;
unsigned int i;
cycles_t time1, time2, time;
u32 rem;
local_irq_save(flags);
preempt_disable();
time1 = get_cycles();
for (i = 0; i < NR_LOOPS; i++) {
local_irq_restore(flags);
local_irq_save(flags);
}
time2 = get_cycles();
local_irq_restore(flags);
preempt_enable();
time = time2 - time1;
printk(KERN_ALERT "test results: time for disabling/enabling interrupts (STI/CLI)\n");
printk(KERN_ALERT "number of loops: %d\n", NR_LOOPS);
printk(KERN_ALERT "total time: %llu\n", time);
time = div_u64_rem(time, NR_LOOPS, &rem);
printk(KERN_ALERT "-> enabling/disabling interrupts (STI/CLI) takes %llu cycles\n",
time);
printk(KERN_ALERT "test end\n");
}
示例12: div_s64_rem
s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
{
u64 quotient;
if (dividend < 0) {
quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
*remainder = -*remainder;
if (divisor > 0)
quotient = -quotient;
} else {
quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
if (divisor < 0)
quotient = -quotient;
}
return quotient;
}
示例13: __add_badblock_range
/**
* __add_badblock_range() - Convert a physical address range to bad sectors
* @bb: badblocks instance to populate
* @ns_offset: namespace offset where the error range begins (in bytes)
* @len: number of bytes of poison to be added
*
* This assumes that the range provided with (ns_offset, len) is within
* the bounds of physical addresses for this namespace, i.e. lies in the
* interval [ns_start, ns_start + ns_size)
*/
static void __add_badblock_range(struct badblocks *bb, u64 ns_offset, u64 len)
{
const unsigned int sector_size = 512;
sector_t start_sector;
u64 num_sectors;
u32 rem;
start_sector = div_u64(ns_offset, sector_size);
num_sectors = div_u64_rem(len, sector_size, &rem);
if (rem)
num_sectors++;
if (unlikely(num_sectors > (u64)INT_MAX)) {
u64 remaining = num_sectors;
sector_t s = start_sector;
while (remaining) {
int done = min_t(u64, remaining, INT_MAX);
set_badblock(bb, s, done);
remaining -= done;
s += done;
}
} else
set_badblock(bb, start_sector, num_sectors);
}
示例14: stmmac_adjust_time
/**
* stmmac_adjust_time
*
* @ptp: pointer to ptp_clock_info structure
* @delta: desired change in nanoseconds
*
* Description: this function will shift/adjust the hardware clock time.
*/
static int stmmac_adjust_time(struct ptp_clock_info *ptp, s64 delta)
{
struct stmmac_priv *priv =
container_of(ptp, struct stmmac_priv, ptp_clock_ops);
unsigned long flags;
u32 sec, nsec;
u32 quotient, reminder;
int neg_adj = 0;
if (delta < 0) {
neg_adj = 1;
delta = -delta;
}
quotient = div_u64_rem(delta, 1000000000ULL, &reminder);
sec = quotient;
nsec = reminder;
spin_lock_irqsave(&priv->ptp_lock, flags);
priv->hw->ptp->adjust_systime(priv->ptpaddr, sec, nsec, neg_adj,
priv->plat->has_gmac4);
spin_unlock_irqrestore(&priv->ptp_lock, flags);
return 0;
}
示例15: ixgbe_ptp_setup_sdp
/**
* ixgbe_ptp_setup_sdp
* @hw: the hardware private structure
*
* this function enables or disables the clock out feature on SDP0 for
* the X540 device. It will create a 1second periodic output that can
* be used as the PPS (via an interrupt).
*
* It calculates when the systime will be on an exact second, and then
* aligns the start of the PPS signal to that value. The shift is
* necessary because it can change based on the link speed.
*/
static void ixgbe_ptp_setup_sdp(struct ixgbe_adapter *adapter)
{
struct ixgbe_hw *hw = &adapter->hw;
int shift = adapter->hw_cc.shift;
u32 esdp, tsauxc, clktiml, clktimh, trgttiml, trgttimh, rem;
u64 ns = 0, clock_edge = 0;
if ((adapter->flags2 & IXGBE_FLAG2_PTP_PPS_ENABLED) &&
(hw->mac.type == ixgbe_mac_X540)) {
/* disable the pin first */
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, 0x0);
IXGBE_WRITE_FLUSH(hw);
esdp = IXGBE_READ_REG(hw, IXGBE_ESDP);
/*
* enable the SDP0 pin as output, and connected to the
* native function for Timesync (ClockOut)
*/
esdp |= (IXGBE_ESDP_SDP0_DIR |
IXGBE_ESDP_SDP0_NATIVE);
/*
* enable the Clock Out feature on SDP0, and allow
* interrupts to occur when the pin changes
*/
tsauxc = (IXGBE_TSAUXC_EN_CLK |
IXGBE_TSAUXC_SYNCLK |
IXGBE_TSAUXC_SDP0_INT);
/* clock period (or pulse length) */
clktiml = (u32)(NSECS_PER_SEC << shift);
clktimh = (u32)((NSECS_PER_SEC << shift) >> 32);
/*
* Account for the cyclecounter wrap-around value by
* using the converted ns value of the current time to
* check for when the next aligned second would occur.
*/
clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIML);
clock_edge |= (u64)IXGBE_READ_REG(hw, IXGBE_SYSTIMH) << 32;
ns = timecounter_cyc2time(&adapter->hw_tc, clock_edge);
div_u64_rem(ns, NSECS_PER_SEC, &rem);
clock_edge += ((NSECS_PER_SEC - (u64)rem) << shift);
/* specify the initial clock start time */
trgttiml = (u32)clock_edge;
trgttimh = (u32)(clock_edge >> 32);
IXGBE_WRITE_REG(hw, IXGBE_CLKTIML, clktiml);
IXGBE_WRITE_REG(hw, IXGBE_CLKTIMH, clktimh);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIML0, trgttiml);
IXGBE_WRITE_REG(hw, IXGBE_TRGTTIMH0, trgttimh);
IXGBE_WRITE_REG(hw, IXGBE_ESDP, esdp);
IXGBE_WRITE_REG(hw, IXGBE_TSAUXC, tsauxc);
IXGBE_WRITE_FLUSH(hw);
} else {