本文整理汇总了C++中VertLeq函数的典型用法代码示例。如果您正苦于以下问题:C++ VertLeq函数的具体用法?C++ VertLeq怎么用?C++ VertLeq使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了VertLeq函数的14个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: __gl_edgeEval
GLdouble __gl_edgeEval( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* Given three vertices u,v,w such that VertLeq(u,v) && VertLeq(v,w),
* evaluates the t-coord of the edge uw at the s-coord of the vertex v.
* Returns v->t - (uw)(v->s), ie. the signed distance from uw to v.
* If uw is vertical (and thus passes thru v), the result is zero.
*
* The calculation is extremely accurate and stable, even when v
* is very close to u or w. In particular if we set v->t = 0 and
* let r be the negated result (this evaluates (uw)(v->s)), then
* r is guaranteed to satisfy MIN(u->t,w->t) <= r <= MAX(u->t,w->t).
*/
GLdouble gapL, gapR;
assert( VertLeq( u, v ) && VertLeq( v, w ));
gapL = v->s - u->s;
gapR = w->s - v->s;
if( gapL + gapR > 0 ) {
if( gapL < gapR ) {
return (v->t - u->t) + (u->t - w->t) * (gapL / (gapL + gapR));
} else {
return (v->t - w->t) + (w->t - u->t) * (gapR / (gapL + gapR));
}
}
/* vertical line */
return 0;
}
示例2: tessMeshTessellateMonoRegion
/* tessMeshTessellateMonoRegion( face ) tessellates a monotone region
* (what else would it do??) The region must consist of a single
* loop of half-edges (see mesh.h) oriented CCW. "Monotone" in this
* case means that any vertical line intersects the interior of the
* region in a single interval.
*
* Tessellation consists of adding interior edges (actually pairs of
* half-edges), to split the region into non-overlapping triangles.
*
* The basic idea is explained in Preparata and Shamos (which I don''t
* have handy right now), although their implementation is more
* complicated than this one. The are two edge chains, an upper chain
* and a lower chain. We process all vertices from both chains in order,
* from right to left.
*
* The algorithm ensures that the following invariant holds after each
* vertex is processed: the untessellated region consists of two
* chains, where one chain (say the upper) is a single edge, and
* the other chain is concave. The left vertex of the single edge
* is always to the left of all vertices in the concave chain.
*
* Each step consists of adding the rightmost unprocessed vertex to one
* of the two chains, and forming a fan of triangles from the rightmost
* of two chain endpoints. Determining whether we can add each triangle
* to the fan is a simple orientation test. By making the fan as large
* as possible, we restore the invariant (check it yourself).
*/
int tessMeshTessellateMonoRegion( TESSmesh *mesh, TESSface *face )
{
TESShalfEdge *up, *lo;
/* All edges are oriented CCW around the boundary of the region.
* First, find the half-edge whose origin vertex is rightmost.
* Since the sweep goes from left to right, face->anEdge should
* be close to the edge we want.
*/
up = face->anEdge;
if(!( up->Lnext != up && up->Lnext->Lnext != up )) return 1;
for( ; VertLeq( up->Dst, up->Org ); up = up->Lprev )
;
for( ; VertLeq( up->Org, up->Dst ); up = up->Lnext )
;
lo = up->Lprev;
while( up->Lnext != lo ) {
if( VertLeq( up->Dst, lo->Org )) {
/* up->Dst is on the left. It is safe to form triangles from lo->Org.
* The EdgeGoesLeft test guarantees progress even when some triangles
* are CW, given that the upper and lower chains are truly monotone.
*/
while( lo->Lnext != up && (EdgeGoesLeft( lo->Lnext )
|| EdgeSign( lo->Org, lo->Dst, lo->Lnext->Dst ) <= 0 )) {
TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, lo->Lnext, lo );
if (tempHalfEdge == NULL) return 0;
lo = tempHalfEdge->Sym;
}
lo = lo->Lprev;
} else {
/* lo->Org is on the left. We can make CCW triangles from up->Dst. */
while( lo->Lnext != up && (EdgeGoesRight( up->Lprev )
|| EdgeSign( up->Dst, up->Org, up->Lprev->Org ) >= 0 )) {
TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, up, up->Lprev );
if (tempHalfEdge == NULL) return 0;
up = tempHalfEdge->Sym;
}
up = up->Lnext;
}
}
/* Now lo->Org == up->Dst == the leftmost vertex. The remaining region
* can be tessellated in a fan from this leftmost vertex.
*/
if( lo->Lnext == up ) return 1;
while( lo->Lnext->Lnext != up ) {
TESShalfEdge *tempHalfEdge= tessMeshConnect( mesh, lo->Lnext, lo );
if (tempHalfEdge == NULL) return 0;
lo = tempHalfEdge->Sym;
}
return 1;
}
示例3: CheckForRightSplice
static int CheckForRightSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
* Check the upper and lower edge of "regUp", to make sure that the
* eUp->Org is above eLo, or eLo->Org is below eUp (depending on which
* origin is leftmost).
*
* The main purpose is to splice right-going edges with the same
* dest vertex and nearly identical slopes (ie. we can't distinguish
* the slopes numerically). However the splicing can also help us
* to recover from numerical errors. For example, suppose at one
* point we checked eUp and eLo, and decided that eUp->Org is barely
* above eLo. Then later, we split eLo into two edges (eg. from
* a splice operation like this one). This can change the result of
* our test so that now eUp->Org is incident to eLo, or barely below it.
* We must correct this condition to maintain the dictionary invariants.
*
* One possibility is to check these edges for intersection again
* (ie. CheckForIntersect). This is what we do if possible. However
* CheckForIntersect requires that tess->event lies between eUp and eLo,
* so that it has something to fall back on when the intersection
* calculation gives us an unusable answer. So, for those cases where
* we can't check for intersection, this routine fixes the problem
* by just splicing the offending vertex into the other edge.
* This is a guaranteed solution, no matter how degenerate things get.
* Basically this is a combinatorial solution to a numerical problem.
*/
{
ActiveRegion *regLo = RegionBelow(regUp);
GLUhalfEdge *eUp = regUp->eUp;
GLUhalfEdge *eLo = regLo->eUp;
if( VertLeq( eUp->Org, eLo->Org )) {
if( EdgeSign( eLo->Dst, eUp->Org, eLo->Org ) > 0 ) return FALSE;
/* eUp->Org appears to be below eLo */
if( ! VertEq( eUp->Org, eLo->Org )) {
/* Splice eUp->Org into eLo */
if ( __gl_meshSplitEdge( eLo->Sym ) == NULL) longjmp(tess->env,1);
if ( !__gl_meshSplice( eUp, eLo->Oprev ) ) longjmp(tess->env,1);
regUp->dirty = regLo->dirty = TRUE;
} else if( eUp->Org != eLo->Org ) {
/* merge the two vertices, discarding eUp->Org */
pqDelete( tess->pq, eUp->Org->pqHandle ); /* __gl_pqSortDelete */
SpliceMergeVertices( tess, eLo->Oprev, eUp );
}
} else {
if( EdgeSign( eUp->Dst, eLo->Org, eUp->Org ) < 0 ) return FALSE;
/* eLo->Org appears to be above eUp, so splice eLo->Org into eUp */
regUp->dirty = TRUE;
void* valid_ptr_check = RegionAbove(regUp);//->dirty
if ( valid_ptr_check ) {
RegionAbove(regUp)->dirty = TRUE;
}
if (__gl_meshSplitEdge( eUp->Sym ) == NULL) longjmp(tess->env,1);
if ( !__gl_meshSplice( eLo->Oprev, eUp ) ) longjmp(tess->env,1);
}
return TRUE;
}
示例4: __gl_edgeSign
GLdouble __gl_edgeSign( GLUvertex *u, GLUvertex *v, GLUvertex *w )
{
/* Returns a number whose sign matches EdgeEval(u,v,w) but which
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
* as v is above, on, or below the edge uw.
*/
GLdouble gapL, gapR;
assert( VertLeq( u, v ) && VertLeq( v, w ));
gapL = v->s - u->s;
gapR = w->s - v->s;
if( gapL + gapR > 0 ) {
return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
}
/* vertical line */
return 0;
}
示例5: tesedgeSign
TESSreal tesedgeSign( TESSvertex *u, TESSvertex *v, TESSvertex *w )
{
/* Returns a number whose sign matches EdgeEval(u,v,w) but which
* is cheaper to evaluate. Returns > 0, == 0 , or < 0
* as v is above, on, or below the edge uw.
*/
TESSreal gapL, gapR;
// assert( VertLeq( u, v ) && VertLeq( v, w ));
if( ! ( VertLeq( u, v ) && VertLeq( v, w )) )
return 0;// this is incorrect but prevents a crash with pernicious geometry
gapL = v->s - u->s;
gapR = w->s - v->s;
if( gapL + gapR > 0 ) {
return (v->t - w->t) * gapL + (v->t - u->t) * gapR;
}
/* vertical line */
return 0;
}
示例6: CheckForLeftSplice
static int CheckForLeftSplice( GLUtesselator *tess, ActiveRegion *regUp )
/*
* Check the upper and lower edge of "regUp", to make sure that the
* eUp->Dst is above eLo, or eLo->Dst is below eUp (depending on which
* destination is rightmost).
*
* Theoretically, this should always be true. However, splitting an edge
* into two pieces can change the results of previous tests. For example,
* suppose at one point we checked eUp and eLo, and decided that eUp->Dst
* is barely above eLo. Then later, we split eLo into two edges (eg. from
* a splice operation like this one). This can change the result of
* the test so that now eUp->Dst is incident to eLo, or barely below it.
* We must correct this condition to maintain the dictionary invariants
* (otherwise new edges might get inserted in the wrong place in the
* dictionary, and bad stuff will happen).
*
* We fix the problem by just splicing the offending vertex into the
* other edge.
*/
{
ActiveRegion *regLo = RegionBelow(regUp);
GLUhalfEdge *eUp = regUp->eUp;
GLUhalfEdge *eLo = regLo->eUp;
GLUhalfEdge *e;
assert( ! VertEq( eUp->Dst, eLo->Dst ));
if( VertLeq( eUp->Dst, eLo->Dst )) {
if( EdgeSign( eUp->Dst, eLo->Dst, eUp->Org ) < 0 ) return FALSE;
/* eLo->Dst is above eUp, so splice eLo->Dst into eUp */
if ( RegionAbove(regUp) ) {
RegionAbove(regUp)->dirty = TRUE;
}
regUp->dirty = TRUE;
e = __gl_meshSplitEdge( eUp );
if (e == NULL) longjmp(tess->env,1);
if ( !__gl_meshSplice( eLo->Sym, e ) ) longjmp(tess->env,1);
e->Lface->inside = regUp->inside;
} else {
if( EdgeSign( eLo->Dst, eUp->Dst, eLo->Org ) > 0 ) return FALSE;
/* eUp->Dst is below eLo, so splice eUp->Dst into eLo */
regUp->dirty = regLo->dirty = TRUE;
e = __gl_meshSplitEdge( eLo );
if (e == NULL) longjmp(tess->env,1);
if ( !__gl_meshSplice( eUp->Lnext, eLo->Sym ) ) longjmp(tess->env,1);
e->Rface->inside = regUp->inside;
}
return TRUE;
}
示例7: EdgeLeq
static int EdgeLeq( GLUtesselator *tess, ActiveRegion *reg1,
ActiveRegion *reg2 )
/*
* Both edges must be directed from right to left (this is the canonical
* direction for the upper edge of each region).
*
* The strategy is to evaluate a "t" value for each edge at the
* current sweep line position, given by tess->event. The calculations
* are designed to be very stable, but of course they are not perfect.
*
* Special case: if both edge destinations are at the sweep event,
* we sort the edges by slope (they would otherwise compare equally).
*/
{
GLUvertex *event = tess->event;
GLUhalfEdge *e1, *e2;
GLdouble t1, t2;
e1 = reg1->eUp;
e2 = reg2->eUp;
if( e1->Dst == event ) {
if( e2->Dst == event ) {
/* Two edges right of the sweep line which meet at the sweep event.
* Sort them by slope.
*/
if( VertLeq( e1->Org, e2->Org )) {
return EdgeSign( e2->Dst, e1->Org, e2->Org ) <= 0;
}
return EdgeSign( e1->Dst, e2->Org, e1->Org ) >= 0;
}
return EdgeSign( e2->Dst, event, e2->Org ) <= 0;
}
if( e2->Dst == event ) {
return EdgeSign( e1->Dst, event, e1->Org ) >= 0;
}
/* General case - compute signed distance *from* e1, e2 to event */
t1 = EdgeEval( e1->Dst, event, e1->Org );
t2 = EdgeEval( e2->Dst, event, e2->Org );
return (t1 >= t2);
}
示例8: __gl_vertLeq
int __gl_vertLeq( GLUvertex *u, GLUvertex *v )
{
/* Returns TRUE if u is lexicographically <= v. */
return VertLeq( u, v );
}
示例9: __gl_edgeIntersect
void __gl_edgeIntersect( GLUvertex *o1, GLUvertex *d1,
GLUvertex *o2, GLUvertex *d2,
GLUvertex *v )
/* Given edges (o1,d1) and (o2,d2), compute their point of intersection.
* The computed point is guaranteed to lie in the intersection of the
* bounding rectangles defined by each edge.
*/
{
GLdouble z1, z2;
/* This is certainly not the most efficient way to find the intersection
* of two line segments, but it is very numerically stable.
*
* Strategy: find the two middle vertices in the VertLeq ordering,
* and interpolate the intersection s-value from these. Then repeat
* using the TransLeq ordering to find the intersection t-value.
*/
if( ! VertLeq( o1, d1 )) { Swap( o1, d1 ); }
if( ! VertLeq( o2, d2 )) { Swap( o2, d2 ); }
if( ! VertLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
if( ! VertLeq( o2, d1 )) {
/* Technically, no intersection -- do our best */
v->s = (o2->s + d1->s) / 2;
} else if( VertLeq( d1, d2 )) {
/* Interpolate between o2 and d1 */
z1 = EdgeEval( o1, o2, d1 );
z2 = EdgeEval( o2, d1, d2 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->s = Interpolate( z1, o2->s, z2, d1->s );
} else {
/* Interpolate between o2 and d2 */
z1 = EdgeSign( o1, o2, d1 );
z2 = -EdgeSign( o1, d2, d1 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->s = Interpolate( z1, o2->s, z2, d2->s );
}
/* Now repeat the process for t */
if( ! TransLeq( o1, d1 )) { Swap( o1, d1 ); }
if( ! TransLeq( o2, d2 )) { Swap( o2, d2 ); }
if( ! TransLeq( o1, o2 )) { Swap( o1, o2 ); Swap( d1, d2 ); }
if( ! TransLeq( o2, d1 )) {
/* Technically, no intersection -- do our best */
v->t = (o2->t + d1->t) / 2;
} else if( TransLeq( d1, d2 )) {
/* Interpolate between o2 and d1 */
z1 = TransEval( o1, o2, d1 );
z2 = TransEval( o2, d1, d2 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->t = Interpolate( z1, o2->t, z2, d1->t );
} else {
/* Interpolate between o2 and d2 */
z1 = TransSign( o1, o2, d1 );
z2 = -TransSign( o1, d2, d1 );
if( z1+z2 < 0 ) { z1 = -z1; z2 = -z2; }
v->t = Interpolate( z1, o2->t, z2, d2->t );
}
}
示例10: ConnectLeftVertex
static void ConnectLeftVertex( TESStesselator *tess, TESSvertex *vEvent )
/*
* Purpose: connect a "left" vertex (one where both edges go right)
* to the processed portion of the mesh. Let R be the active region
* containing vEvent, and let U and L be the upper and lower edge
* chains of R. There are two possibilities:
*
* - the normal case: split R into two regions, by connecting vEvent to
* the rightmost vertex of U or L lying to the left of the sweep line
*
* - the degenerate case: if vEvent is close enough to U or L, we
* merge vEvent into that edge chain. The subcases are:
* - merging with the rightmost vertex of U or L
* - merging with the active edge of U or L
* - merging with an already-processed portion of U or L
*/
{
ActiveRegion *regUp, *regLo, *reg;
TESShalfEdge *eUp, *eLo, *eNew;
ActiveRegion tmp;
/* assert( vEvent->anEdge->Onext->Onext == vEvent->anEdge ); */
/* Get a pointer to the active region containing vEvent */
tmp.eUp = vEvent->anEdge->Sym;
/* __GL_DICTLISTKEY */ /* tessDictListSearch */
regUp = (ActiveRegion *)dictKey( dictSearch( tess->dict, &tmp ));
regLo = RegionBelow( regUp );
if( !regLo ) {
// This may happen if the input polygon is coplanar.
return;
}
eUp = regUp->eUp;
eLo = regLo->eUp;
/* Try merging with U or L first */
if( EdgeSign( eUp->Dst, vEvent, eUp->Org ) == 0 ) {
ConnectLeftDegenerate( tess, regUp, vEvent );
return;
}
/* Connect vEvent to rightmost processed vertex of either chain.
* e->Dst is the vertex that we will connect to vEvent.
*/
reg = VertLeq( eLo->Dst, eUp->Dst ) ? regUp : regLo;
if( regUp->inside || reg->fixUpperEdge) {
if( reg == regUp ) {
eNew = tessMeshConnect( tess->mesh, vEvent->anEdge->Sym, eUp->Lnext );
if (eNew == NULL) longjmp(tess->env,1);
} else {
TESShalfEdge *tempHalfEdge= tessMeshConnect( tess->mesh, eLo->Dnext, vEvent->anEdge);
if (tempHalfEdge == NULL) longjmp(tess->env,1);
eNew = tempHalfEdge->Sym;
}
if( reg->fixUpperEdge ) {
if ( !FixUpperEdge( tess, reg, eNew ) ) longjmp(tess->env,1);
} else {
ComputeWinding( tess, AddRegionBelow( tess, regUp, eNew ));
}
SweepEvent( tess, vEvent );
} else {
/* The new vertex is in a region which does not belong to the polygon.
* We don''t need to connect this vertex to the rest of the mesh.
*/
AddRightEdges( tess, regUp, vEvent->anEdge, vEvent->anEdge, NULL, TRUE );
}
}
示例11: ConnectRightVertex
static void ConnectRightVertex( TESStesselator *tess, ActiveRegion *regUp,
TESShalfEdge *eBottomLeft )
/*
* Purpose: connect a "right" vertex vEvent (one where all edges go left)
* to the unprocessed portion of the mesh. Since there are no right-going
* edges, two regions (one above vEvent and one below) are being merged
* into one. "regUp" is the upper of these two regions.
*
* There are two reasons for doing this (adding a right-going edge):
* - if the two regions being merged are "inside", we must add an edge
* to keep them separated (the combined region would not be monotone).
* - in any case, we must leave some record of vEvent in the dictionary,
* so that we can merge vEvent with features that we have not seen yet.
* For example, maybe there is a vertical edge which passes just to
* the right of vEvent; we would like to splice vEvent into this edge.
*
* However, we don't want to connect vEvent to just any vertex. We don''t
* want the new edge to cross any other edges; otherwise we will create
* intersection vertices even when the input data had no self-intersections.
* (This is a bad thing; if the user's input data has no intersections,
* we don't want to generate any false intersections ourselves.)
*
* Our eventual goal is to connect vEvent to the leftmost unprocessed
* vertex of the combined region (the union of regUp and regLo).
* But because of unseen vertices with all right-going edges, and also
* new vertices which may be created by edge intersections, we don''t
* know where that leftmost unprocessed vertex is. In the meantime, we
* connect vEvent to the closest vertex of either chain, and mark the region
* as "fixUpperEdge". This flag says to delete and reconnect this edge
* to the next processed vertex on the boundary of the combined region.
* Quite possibly the vertex we connected to will turn out to be the
* closest one, in which case we won''t need to make any changes.
*/
{
TESShalfEdge *eNew;
TESShalfEdge *eTopLeft = eBottomLeft->Onext;
ActiveRegion *regLo = RegionBelow(regUp);
TESShalfEdge *eUp = regUp->eUp;
TESShalfEdge *eLo = regLo->eUp;
int degenerate = FALSE;
if( eUp->Dst != eLo->Dst ) {
(void) CheckForIntersect( tess, regUp );
}
/* Possible new degeneracies: upper or lower edge of regUp may pass
* through vEvent, or may coincide with new intersection vertex
*/
if( VertEq( eUp->Org, tess->event )) {
if ( !tessMeshSplice( tess->mesh, eTopLeft->Oprev, eUp ) ) longjmp(tess->env,1);
regUp = TopLeftRegion( tess, regUp );
if (regUp == NULL) longjmp(tess->env,1);
eTopLeft = RegionBelow( regUp )->eUp;
FinishLeftRegions( tess, RegionBelow(regUp), regLo );
degenerate = TRUE;
}
if( VertEq( eLo->Org, tess->event )) {
if ( !tessMeshSplice( tess->mesh, eBottomLeft, eLo->Oprev ) ) longjmp(tess->env,1);
eBottomLeft = FinishLeftRegions( tess, regLo, NULL );
degenerate = TRUE;
}
if( degenerate ) {
AddRightEdges( tess, regUp, eBottomLeft->Onext, eTopLeft, eTopLeft, TRUE );
return;
}
/* Non-degenerate situation -- need to add a temporary, fixable edge.
* Connect to the closer of eLo->Org, eUp->Org.
*/
if( VertLeq( eLo->Org, eUp->Org )) {
eNew = eLo->Oprev;
} else {
eNew = eUp;
}
eNew = tessMeshConnect( tess->mesh, eBottomLeft->Lprev, eNew );
if (eNew == NULL) longjmp(tess->env,1);
/* Prevent cleanup, otherwise eNew might disappear before we've even
* had a chance to mark it as a temporary edge.
*/
AddRightEdges( tess, regUp, eNew, eNew->Onext, eNew->Onext, FALSE );
eNew->Sym->activeRegion->fixUpperEdge = TRUE;
WalkDirtyRegions( tess, regUp );
}
示例12: CheckForIntersect
static int CheckForIntersect( TESStesselator *tess, ActiveRegion *regUp )
/*
* Check the upper and lower edges of the given region to see if
* they intersect. If so, create the intersection and add it
* to the data structures.
*
* Returns TRUE if adding the new intersection resulted in a recursive
* call to AddRightEdges(); in this case all "dirty" regions have been
* checked for intersections, and possibly regUp has been deleted.
*/
{
ActiveRegion *regLo = RegionBelow(regUp);
TESShalfEdge *eUp = regUp->eUp;
TESShalfEdge *eLo = regLo->eUp;
TESSvertex *orgUp = eUp->Org;
TESSvertex *orgLo = eLo->Org;
TESSvertex *dstUp = eUp->Dst;
TESSvertex *dstLo = eLo->Dst;
TESSreal tMinUp, tMaxLo;
TESSvertex isect, *orgMin;
TESShalfEdge *e;
assert( ! VertEq( dstLo, dstUp ));
assert( EdgeSign( dstUp, tess->event, orgUp ) <= 0 );
assert( EdgeSign( dstLo, tess->event, orgLo ) >= 0 );
assert( orgUp != tess->event && orgLo != tess->event );
assert( ! regUp->fixUpperEdge && ! regLo->fixUpperEdge );
if( orgUp == orgLo ) return FALSE; /* right endpoints are the same */
tMinUp = MIN( orgUp->t, dstUp->t );
tMaxLo = MAX( orgLo->t, dstLo->t );
if( tMinUp > tMaxLo ) return FALSE; /* t ranges do not overlap */
if( VertLeq( orgUp, orgLo )) {
if( EdgeSign( dstLo, orgUp, orgLo ) > 0 ) return FALSE;
} else {
if( EdgeSign( dstUp, orgLo, orgUp ) < 0 ) return FALSE;
}
/* At this point the edges intersect, at least marginally */
DebugEvent( tess );
tesedgeIntersect( dstUp, orgUp, dstLo, orgLo, &isect );
/* The following properties are guaranteed: */
assert( MIN( orgUp->t, dstUp->t ) <= isect.t );
assert( isect.t <= MAX( orgLo->t, dstLo->t ));
assert( MIN( dstLo->s, dstUp->s ) <= isect.s );
assert( isect.s <= MAX( orgLo->s, orgUp->s ));
if( VertLeq( &isect, tess->event )) {
/* The intersection point lies slightly to the left of the sweep line,
* so move it until it''s slightly to the right of the sweep line.
* (If we had perfect numerical precision, this would never happen
* in the first place). The easiest and safest thing to do is
* replace the intersection by tess->event.
*/
isect.s = tess->event->s;
isect.t = tess->event->t;
}
/* Similarly, if the computed intersection lies to the right of the
* rightmost origin (which should rarely happen), it can cause
* unbelievable inefficiency on sufficiently degenerate inputs.
* (If you have the test program, try running test54.d with the
* "X zoom" option turned on).
*/
orgMin = VertLeq( orgUp, orgLo ) ? orgUp : orgLo;
if( VertLeq( orgMin, &isect )) {
isect.s = orgMin->s;
isect.t = orgMin->t;
}
if( VertEq( &isect, orgUp ) || VertEq( &isect, orgLo )) {
/* Easy case -- intersection at one of the right endpoints */
(void) CheckForRightSplice( tess, regUp );
return FALSE;
}
if( (! VertEq( dstUp, tess->event )
&& EdgeSign( dstUp, tess->event, &isect ) >= 0)
|| (! VertEq( dstLo, tess->event )
&& EdgeSign( dstLo, tess->event, &isect ) <= 0 ))
{
/* Very unusual -- the new upper or lower edge would pass on the
* wrong side of the sweep event, or through it. This can happen
* due to very small numerical errors in the intersection calculation.
*/
if( dstLo == tess->event ) {
/* Splice dstLo into eUp, and process the new region(s) */
if (tessMeshSplitEdge( tess->mesh, eUp->Sym ) == NULL) longjmp(tess->env,1);
if ( !tessMeshSplice( tess->mesh, eLo->Sym, eUp ) ) longjmp(tess->env,1);
regUp = TopLeftRegion( tess, regUp );
if (regUp == NULL) longjmp(tess->env,1);
eUp = RegionBelow(regUp)->eUp;
FinishLeftRegions( tess, RegionBelow(regUp), regLo );
AddRightEdges( tess, regUp, eUp->Oprev, eUp, eUp, TRUE );
return TRUE;
}
if( dstUp == tess->event ) {
/* Splice dstUp into eLo, and process the new region(s) */
//.........这里部分代码省略.........
示例13: AddRightEdges
static void AddRightEdges( TESStesselator *tess, ActiveRegion *regUp,
TESShalfEdge *eFirst, TESShalfEdge *eLast, TESShalfEdge *eTopLeft,
int cleanUp )
/*
* Purpose: insert right-going edges into the edge dictionary, and update
* winding numbers and mesh connectivity appropriately. All right-going
* edges share a common origin vOrg. Edges are inserted CCW starting at
* eFirst; the last edge inserted is eLast->Oprev. If vOrg has any
* left-going edges already processed, then eTopLeft must be the edge
* such that an imaginary upward vertical segment from vOrg would be
* contained between eTopLeft->Oprev and eTopLeft; otherwise eTopLeft
* should be NULL.
*/
{
ActiveRegion *reg, *regPrev;
TESShalfEdge *e, *ePrev;
int firstTime = TRUE;
/* Insert the new right-going edges in the dictionary */
e = eFirst;
do {
assert( VertLeq( e->Org, e->Dst ));
AddRegionBelow( tess, regUp, e->Sym );
e = e->Onext;
} while ( e != eLast );
/* Walk *all* right-going edges from e->Org, in the dictionary order,
* updating the winding numbers of each region, and re-linking the mesh
* edges to match the dictionary ordering (if necessary).
*/
if( eTopLeft == NULL ) {
eTopLeft = RegionBelow( regUp )->eUp->Rprev;
}
regPrev = regUp;
ePrev = eTopLeft;
for( ;; ) {
reg = RegionBelow( regPrev );
e = reg->eUp->Sym;
if( e->Org != ePrev->Org ) break;
if( e->Onext != ePrev ) {
/* Unlink e from its current position, and relink below ePrev */
if ( !tessMeshSplice( tess->mesh, e->Oprev, e ) ) longjmp(tess->env,1);
if ( !tessMeshSplice( tess->mesh, ePrev->Oprev, e ) ) longjmp(tess->env,1);
}
/* Compute the winding number and "inside" flag for the new regions */
reg->windingNumber = regPrev->windingNumber - e->winding;
reg->inside = IsWindingInside( tess, reg->windingNumber );
/* Check for two outgoing edges with same slope -- process these
* before any intersection tests (see example in tessComputeInterior).
*/
regPrev->dirty = TRUE;
if( ! firstTime && CheckForRightSplice( tess, regPrev )) {
AddWinding( e, ePrev );
DeleteRegion( tess, regPrev );
if ( !tessMeshDelete( tess->mesh, ePrev ) ) longjmp(tess->env,1);
}
firstTime = FALSE;
regPrev = reg;
ePrev = e;
}
regPrev->dirty = TRUE;
assert( regPrev->windingNumber - e->winding == reg->windingNumber );
if( cleanUp ) {
/* Check for intersections between newly adjacent edges. */
WalkDirtyRegions( tess, regPrev );
}
}
示例14: tesvertLeq
int tesvertLeq( TESSvertex *u, TESSvertex *v )
{
/* Returns TRUE if u is lexicographically <= v. */
return VertLeq( u, v );
}