本文整理汇总了C++中VFS_I函数的典型用法代码示例。如果您正苦于以下问题:C++ VFS_I函数的具体用法?C++ VFS_I怎么用?C++ VFS_I使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了VFS_I函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: xfs_file_dio_aio_write
/*
* xfs_file_dio_aio_write - handle direct IO writes
*
* Lock the inode appropriately to prepare for and issue a direct IO write.
* By separating it from the buffered write path we remove all the tricky to
* follow locking changes and looping.
*
* If there are cached pages or we're extending the file, we need IOLOCK_EXCL
* until we're sure the bytes at the new EOF have been zeroed and/or the cached
* pages are flushed out.
*
* In most cases the direct IO writes will be done holding IOLOCK_SHARED
* allowing them to be done in parallel with reads and other direct IO writes.
* However, if the IO is not aligned to filesystem blocks, the direct IO layer
* needs to do sub-block zeroing and that requires serialisation against other
* direct IOs to the same block. In this case we need to serialise the
* submission of the unaligned IOs so that we don't get racing block zeroing in
* the dio layer. To avoid the problem with aio, we also need to wait for
* outstanding IOs to complete so that unwritten extent conversion is completed
* before we try to map the overlapping block. This is currently implemented by
* hitting it with a big hammer (i.e. inode_dio_wait()).
*
* Returns with locks held indicated by @iolock and errors indicated by
* negative return values.
*/
STATIC ssize_t
xfs_file_dio_aio_write(
struct kiocb *iocb,
struct iov_iter *from)
{
struct file *file = iocb->ki_filp;
struct address_space *mapping = file->f_mapping;
struct inode *inode = mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
ssize_t ret = 0;
int unaligned_io = 0;
int iolock;
size_t count = iov_iter_count(from);
loff_t end;
struct iov_iter data;
struct xfs_buftarg *target = XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
/* DIO must be aligned to device logical sector size */
if (!IS_DAX(inode) &&
((iocb->ki_pos | count) & target->bt_logical_sectormask))
return -EINVAL;
/* "unaligned" here means not aligned to a filesystem block */
if ((iocb->ki_pos & mp->m_blockmask) ||
((iocb->ki_pos + count) & mp->m_blockmask))
unaligned_io = 1;
/*
* We don't need to take an exclusive lock unless there page cache needs
* to be invalidated or unaligned IO is being executed. We don't need to
* consider the EOF extension case here because
* xfs_file_aio_write_checks() will relock the inode as necessary for
* EOF zeroing cases and fill out the new inode size as appropriate.
*/
if (unaligned_io || mapping->nrpages)
iolock = XFS_IOLOCK_EXCL;
else
iolock = XFS_IOLOCK_SHARED;
xfs_rw_ilock(ip, iolock);
/*
* Recheck if there are cached pages that need invalidate after we got
* the iolock to protect against other threads adding new pages while
* we were waiting for the iolock.
*/
if (mapping->nrpages && iolock == XFS_IOLOCK_SHARED) {
xfs_rw_iunlock(ip, iolock);
iolock = XFS_IOLOCK_EXCL;
xfs_rw_ilock(ip, iolock);
}
ret = xfs_file_aio_write_checks(iocb, from, &iolock);
if (ret)
goto out;
count = iov_iter_count(from);
end = iocb->ki_pos + count - 1;
/*
* See xfs_file_read_iter() for why we do a full-file flush here.
*/
if (mapping->nrpages) {
ret = filemap_write_and_wait(VFS_I(ip)->i_mapping);
if (ret)
goto out;
/*
* Invalidate whole pages. This can return an error if we fail
* to invalidate a page, but this should never happen on XFS.
* Warn if it does fail.
*/
ret = invalidate_inode_pages2(VFS_I(ip)->i_mapping);
WARN_ON_ONCE(ret);
ret = 0;
}
//.........这里部分代码省略.........
示例2: xfs_iget_cache_miss
static int
xfs_iget_cache_miss(
struct xfs_mount *mp,
struct xfs_perag *pag,
xfs_trans_t *tp,
xfs_ino_t ino,
struct xfs_inode **ipp,
int flags,
int lock_flags)
{
struct xfs_inode *ip;
int error;
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
int iflags;
ip = xfs_inode_alloc(mp, ino);
if (!ip)
return -ENOMEM;
error = xfs_iread(mp, tp, ip, flags);
if (error)
goto out_destroy;
trace_xfs_iget_miss(ip);
if ((VFS_I(ip)->i_mode == 0) && !(flags & XFS_IGET_CREATE)) {
error = -ENOENT;
goto out_destroy;
}
/*
* Preload the radix tree so we can insert safely under the
* write spinlock. Note that we cannot sleep inside the preload
* region. Since we can be called from transaction context, don't
* recurse into the file system.
*/
if (radix_tree_preload(GFP_NOFS)) {
error = -EAGAIN;
goto out_destroy;
}
/*
* Because the inode hasn't been added to the radix-tree yet it can't
* be found by another thread, so we can do the non-sleeping lock here.
*/
if (lock_flags) {
if (!xfs_ilock_nowait(ip, lock_flags))
BUG();
}
/*
* These values must be set before inserting the inode into the radix
* tree as the moment it is inserted a concurrent lookup (allowed by the
* RCU locking mechanism) can find it and that lookup must see that this
* is an inode currently under construction (i.e. that XFS_INEW is set).
* The ip->i_flags_lock that protects the XFS_INEW flag forms the
* memory barrier that ensures this detection works correctly at lookup
* time.
*/
iflags = XFS_INEW;
if (flags & XFS_IGET_DONTCACHE)
iflags |= XFS_IDONTCACHE;
ip->i_udquot = NULL;
ip->i_gdquot = NULL;
ip->i_pdquot = NULL;
xfs_iflags_set(ip, iflags);
/* insert the new inode */
spin_lock(&pag->pag_ici_lock);
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
if (unlikely(error)) {
WARN_ON(error != -EEXIST);
XFS_STATS_INC(mp, xs_ig_dup);
error = -EAGAIN;
goto out_preload_end;
}
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
*ipp = ip;
return 0;
out_preload_end:
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
if (lock_flags)
xfs_iunlock(ip, lock_flags);
out_destroy:
__destroy_inode(VFS_I(ip));
xfs_inode_free(ip);
return error;
}
示例3: xfs_file_aio_read
STATIC ssize_t
xfs_file_aio_read(
struct kiocb *iocb,
const struct iovec *iovp,
unsigned long nr_segs,
loff_t pos)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct xfs_inode *ip = XFS_I(inode);
struct xfs_mount *mp = ip->i_mount;
size_t size = 0;
ssize_t ret = 0;
int ioflags = 0;
xfs_fsize_t n;
XFS_STATS_INC(xs_read_calls);
BUG_ON(iocb->ki_pos != pos);
if (unlikely(file->f_flags & O_DIRECT))
ioflags |= IO_ISDIRECT;
if (file->f_mode & FMODE_NOCMTIME)
ioflags |= IO_INVIS;
ret = generic_segment_checks(iovp, &nr_segs, &size, VERIFY_WRITE);
if (ret < 0)
return ret;
if (unlikely(ioflags & IO_ISDIRECT)) {
xfs_buftarg_t *target =
XFS_IS_REALTIME_INODE(ip) ?
mp->m_rtdev_targp : mp->m_ddev_targp;
/* DIO must be aligned to device logical sector size */
if ((pos | size) & target->bt_logical_sectormask) {
if (pos == i_size_read(inode))
return 0;
return -XFS_ERROR(EINVAL);
}
}
n = mp->m_super->s_maxbytes - pos;
if (n <= 0 || size == 0)
return 0;
if (n < size)
size = n;
if (XFS_FORCED_SHUTDOWN(mp))
return -EIO;
/*
* Locking is a bit tricky here. If we take an exclusive lock
* for direct IO, we effectively serialise all new concurrent
* read IO to this file and block it behind IO that is currently in
* progress because IO in progress holds the IO lock shared. We only
* need to hold the lock exclusive to blow away the page cache, so
* only take lock exclusively if the page cache needs invalidation.
* This allows the normal direct IO case of no page cache pages to
* proceeed concurrently without serialisation.
*/
xfs_rw_ilock(ip, XFS_IOLOCK_SHARED);
if ((ioflags & IO_ISDIRECT) && inode->i_mapping->nrpages) {
xfs_rw_iunlock(ip, XFS_IOLOCK_SHARED);
xfs_rw_ilock(ip, XFS_IOLOCK_EXCL);
if (inode->i_mapping->nrpages) {
ret = filemap_write_and_wait_range(
VFS_I(ip)->i_mapping,
pos, pos + size - 1);
if (ret) {
xfs_rw_iunlock(ip, XFS_IOLOCK_EXCL);
return ret;
}
/*
* Invalidate whole pages. This can return an error if
* we fail to invalidate a page, but this should never
* happen on XFS. Warn if it does fail.
*/
ret = invalidate_inode_pages2_range(VFS_I(ip)->i_mapping,
pos >> PAGE_CACHE_SHIFT,
(pos + size - 1) >> PAGE_CACHE_SHIFT);
WARN_ON_ONCE(ret);
ret = 0;
}
示例4: xfs_setattr_nonsize
int
xfs_setattr_nonsize(
struct xfs_inode *ip,
struct iattr *iattr,
int flags)
{
xfs_mount_t *mp = ip->i_mount;
struct inode *inode = VFS_I(ip);
int mask = iattr->ia_valid;
xfs_trans_t *tp;
int error;
uid_t uid = 0, iuid = 0;
gid_t gid = 0, igid = 0;
struct xfs_dquot *udqp = NULL, *gdqp = NULL;
struct xfs_dquot *olddquot1 = NULL, *olddquot2 = NULL;
trace_xfs_setattr(ip);
if (mp->m_flags & XFS_MOUNT_RDONLY)
return XFS_ERROR(EROFS);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
error = -inode_change_ok(inode, iattr);
if (error)
return XFS_ERROR(error);
ASSERT((mask & ATTR_SIZE) == 0);
/*
* If disk quotas is on, we make sure that the dquots do exist on disk,
* before we start any other transactions. Trying to do this later
* is messy. We don't care to take a readlock to look at the ids
* in inode here, because we can't hold it across the trans_reserve.
* If the IDs do change before we take the ilock, we're covered
* because the i_*dquot fields will get updated anyway.
*/
if (XFS_IS_QUOTA_ON(mp) && (mask & (ATTR_UID|ATTR_GID))) {
uint qflags = 0;
if ((mask & ATTR_UID) && XFS_IS_UQUOTA_ON(mp)) {
uid = iattr->ia_uid;
qflags |= XFS_QMOPT_UQUOTA;
} else {
uid = ip->i_d.di_uid;
}
if ((mask & ATTR_GID) && XFS_IS_GQUOTA_ON(mp)) {
gid = iattr->ia_gid;
qflags |= XFS_QMOPT_GQUOTA;
} else {
gid = ip->i_d.di_gid;
}
/*
* We take a reference when we initialize udqp and gdqp,
* so it is important that we never blindly double trip on
* the same variable. See xfs_create() for an example.
*/
ASSERT(udqp == NULL);
ASSERT(gdqp == NULL);
error = xfs_qm_vop_dqalloc(ip, uid, gid, xfs_get_projid(ip),
qflags, &udqp, &gdqp);
if (error)
return error;
}
tp = xfs_trans_alloc(mp, XFS_TRANS_SETATTR_NOT_SIZE);
error = xfs_trans_reserve(tp, 0, XFS_ICHANGE_LOG_RES(mp), 0, 0, 0);
if (error)
goto out_dqrele;
xfs_ilock(ip, XFS_ILOCK_EXCL);
/*
* Change file ownership. Must be the owner or privileged.
*/
if (mask & (ATTR_UID|ATTR_GID)) {
/*
* These IDs could have changed since we last looked at them.
* But, we're assured that if the ownership did change
* while we didn't have the inode locked, inode's dquot(s)
* would have changed also.
*/
iuid = ip->i_d.di_uid;
igid = ip->i_d.di_gid;
gid = (mask & ATTR_GID) ? iattr->ia_gid : igid;
uid = (mask & ATTR_UID) ? iattr->ia_uid : iuid;
/*
* Do a quota reservation only if uid/gid is actually
* going to change.
*/
if (XFS_IS_QUOTA_RUNNING(mp) &&
((XFS_IS_UQUOTA_ON(mp) && iuid != uid) ||
(XFS_IS_GQUOTA_ON(mp) && igid != gid))) {
ASSERT(tp);
error = xfs_qm_vop_chown_reserve(tp, ip, udqp, gdqp,
capable(CAP_FOWNER) ?
XFS_QMOPT_FORCE_RES : 0);
//.........这里部分代码省略.........
示例5: libxfs_ialloc
/*
* Allocate an inode on disk and return a copy of its in-core version.
* Set mode, nlink, and rdev appropriately within the inode.
* The uid and gid for the inode are set according to the contents of
* the given cred structure.
*
* This was once shared with the kernel, but has diverged to the point
* where it's no longer worth the hassle of maintaining common code.
*/
int
libxfs_ialloc(
xfs_trans_t *tp,
xfs_inode_t *pip,
mode_t mode,
nlink_t nlink,
xfs_dev_t rdev,
struct cred *cr,
struct fsxattr *fsx,
int okalloc,
xfs_buf_t **ialloc_context,
xfs_inode_t **ipp)
{
xfs_ino_t ino;
xfs_inode_t *ip;
uint flags;
int error;
/*
* Call the space management code to pick
* the on-disk inode to be allocated.
*/
error = xfs_dialloc(tp, pip ? pip->i_ino : 0, mode, okalloc,
ialloc_context, &ino);
if (error != 0)
return error;
if (*ialloc_context || ino == NULLFSINO) {
*ipp = NULL;
return 0;
}
ASSERT(*ialloc_context == NULL);
error = xfs_trans_iget(tp->t_mountp, tp, ino, 0, 0, &ip);
if (error != 0)
return error;
ASSERT(ip != NULL);
VFS_I(ip)->i_mode = mode;
set_nlink(VFS_I(ip), nlink);
ip->i_d.di_uid = cr->cr_uid;
ip->i_d.di_gid = cr->cr_gid;
xfs_set_projid(&ip->i_d, pip ? 0 : fsx->fsx_projid);
xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_CHG | XFS_ICHGTIME_MOD);
/*
* We only support filesystems that understand v2 format inodes. So if
* this is currently an old format inode, then change the inode version
* number now. This way we only do the conversion here rather than here
* and in the flush/logging code.
*/
if (ip->i_d.di_version == 1) {
ip->i_d.di_version = 2;
/*
* old link count, projid_lo/hi field, pad field
* already zeroed
*/
}
if (pip && (VFS_I(pip)->i_mode & S_ISGID)) {
ip->i_d.di_gid = pip->i_d.di_gid;
if ((VFS_I(pip)->i_mode & S_ISGID) && (mode & S_IFMT) == S_IFDIR)
VFS_I(ip)->i_mode |= S_ISGID;
}
ip->i_d.di_size = 0;
ip->i_d.di_nextents = 0;
ASSERT(ip->i_d.di_nblocks == 0);
ip->i_d.di_extsize = pip ? 0 : fsx->fsx_extsize;
ip->i_d.di_dmevmask = 0;
ip->i_d.di_dmstate = 0;
ip->i_d.di_flags = pip ? 0 : fsx->fsx_xflags;
if (ip->i_d.di_version == 3) {
ASSERT(ip->i_d.di_ino == ino);
ASSERT(uuid_equal(&ip->i_d.di_uuid, &mp->m_sb.sb_meta_uuid));
VFS_I(ip)->i_version = 1;
ip->i_d.di_flags2 = 0;
ip->i_d.di_crtime.t_sec = (__int32_t)VFS_I(ip)->i_mtime.tv_sec;
ip->i_d.di_crtime.t_nsec = (__int32_t)VFS_I(ip)->i_mtime.tv_nsec;
}
flags = XFS_ILOG_CORE;
switch (mode & S_IFMT) {
case S_IFIFO:
case S_IFSOCK:
/* doesn't make sense to set an rdev for these */
rdev = 0;
/* FALLTHROUGH */
case S_IFCHR:
case S_IFBLK:
ip->i_d.di_format = XFS_DINODE_FMT_DEV;
//.........这里部分代码省略.........
示例6: xfs_reflink_clear_inode_flag
/* Clear the inode reflink flag if there are no shared extents. */
int
xfs_reflink_clear_inode_flag(
struct xfs_inode *ip,
struct xfs_trans **tpp)
{
struct xfs_mount *mp = ip->i_mount;
xfs_fileoff_t fbno;
xfs_filblks_t end;
xfs_agnumber_t agno;
xfs_agblock_t agbno;
xfs_extlen_t aglen;
xfs_agblock_t rbno;
xfs_extlen_t rlen;
struct xfs_bmbt_irec map;
int nmaps;
int error = 0;
ASSERT(xfs_is_reflink_inode(ip));
fbno = 0;
end = XFS_B_TO_FSB(mp, i_size_read(VFS_I(ip)));
while (end - fbno > 0) {
nmaps = 1;
/*
* Look for extents in the file. Skip holes, delalloc, or
* unwritten extents; they can't be reflinked.
*/
error = xfs_bmapi_read(ip, fbno, end - fbno, &map, &nmaps, 0);
if (error)
return error;
if (nmaps == 0)
break;
if (!xfs_bmap_is_real_extent(&map))
goto next;
agno = XFS_FSB_TO_AGNO(mp, map.br_startblock);
agbno = XFS_FSB_TO_AGBNO(mp, map.br_startblock);
aglen = map.br_blockcount;
error = xfs_reflink_find_shared(mp, agno, agbno, aglen,
&rbno, &rlen, false);
if (error)
return error;
/* Is there still a shared block here? */
if (rbno != NULLAGBLOCK)
return 0;
next:
fbno = map.br_startoff + map.br_blockcount;
}
/*
* We didn't find any shared blocks so turn off the reflink flag.
* First, get rid of any leftover CoW mappings.
*/
error = xfs_reflink_cancel_cow_blocks(ip, tpp, 0, NULLFILEOFF, true);
if (error)
return error;
/* Clear the inode flag. */
trace_xfs_reflink_unset_inode_flag(ip);
ip->i_d.di_flags2 &= ~XFS_DIFLAG2_REFLINK;
xfs_inode_clear_cowblocks_tag(ip);
xfs_trans_ijoin(*tpp, ip, 0);
xfs_trans_log_inode(*tpp, ip, XFS_ILOG_CORE);
return error;
}
示例7: xfs_sync_inodes_ag
/*
* Sync all the inodes in the given AG according to the
* direction given by the flags.
*/
STATIC int
xfs_sync_inodes_ag(
xfs_mount_t *mp,
int ag,
int flags)
{
xfs_perag_t *pag = &mp->m_perag[ag];
int nr_found;
uint32_t first_index = 0;
int error = 0;
int last_error = 0;
int fflag = XFS_B_ASYNC;
if (flags & SYNC_DELWRI)
fflag = XFS_B_DELWRI;
if (flags & SYNC_WAIT)
fflag = 0; /* synchronous overrides all */
do {
struct inode *inode;
xfs_inode_t *ip = NULL;
int lock_flags = XFS_ILOCK_SHARED;
/*
* use a gang lookup to find the next inode in the tree
* as the tree is sparse and a gang lookup walks to find
* the number of objects requested.
*/
read_lock(&pag->pag_ici_lock);
nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
(void**)&ip, first_index, 1);
if (!nr_found) {
read_unlock(&pag->pag_ici_lock);
break;
}
/*
* Update the index for the next lookup. Catch overflows
* into the next AG range which can occur if we have inodes
* in the last block of the AG and we are currently
* pointing to the last inode.
*/
first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino)) {
read_unlock(&pag->pag_ici_lock);
break;
}
/* nothing to sync during shutdown */
if (XFS_FORCED_SHUTDOWN(mp)) {
read_unlock(&pag->pag_ici_lock);
return 0;
}
/*
* If we can't get a reference on the inode, it must be
* in reclaim. Leave it for the reclaim code to flush.
*/
inode = VFS_I(ip);
if (!igrab(inode)) {
read_unlock(&pag->pag_ici_lock);
continue;
}
read_unlock(&pag->pag_ici_lock);
/* avoid new or bad inodes */
if (is_bad_inode(inode) ||
xfs_iflags_test(ip, XFS_INEW)) {
IRELE(ip);
continue;
}
/*
* If we have to flush data or wait for I/O completion
* we need to hold the iolock.
*/
if ((flags & SYNC_DELWRI) && VN_DIRTY(inode)) {
xfs_ilock(ip, XFS_IOLOCK_SHARED);
lock_flags |= XFS_IOLOCK_SHARED;
error = xfs_flush_pages(ip, 0, -1, fflag, FI_NONE);
if (flags & SYNC_IOWAIT)
xfs_ioend_wait(ip);
}
xfs_ilock(ip, XFS_ILOCK_SHARED);
if ((flags & SYNC_ATTR) && !xfs_inode_clean(ip)) {
if (flags & SYNC_WAIT) {
xfs_iflock(ip);
if (!xfs_inode_clean(ip))
error = xfs_iflush(ip, XFS_IFLUSH_SYNC);
else
xfs_ifunlock(ip);
} else if (xfs_iflock_nowait(ip)) {
if (!xfs_inode_clean(ip))
error = xfs_iflush(ip, XFS_IFLUSH_DELWRI);
//.........这里部分代码省略.........
示例8: xfs_vn_mknod
STATIC int
xfs_vn_mknod(
struct inode *dir,
struct dentry *dentry,
int mode,
dev_t rdev)
{
struct inode *inode;
struct xfs_inode *ip = NULL;
xfs_acl_t *default_acl = NULL;
struct xfs_name name;
int (*test_default_acl)(struct inode *) = _ACL_DEFAULT_EXISTS;
int error;
/*
* Irix uses Missed'em'V split, but doesn't want to see
* the upper 5 bits of (14bit) major.
*/
if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
return -EINVAL;
if (test_default_acl && test_default_acl(dir)) {
if (!_ACL_ALLOC(default_acl)) {
return -ENOMEM;
}
if (!_ACL_GET_DEFAULT(dir, default_acl)) {
_ACL_FREE(default_acl);
default_acl = NULL;
}
}
xfs_dentry_to_name(&name, dentry);
if (IS_POSIXACL(dir) && !default_acl)
mode &= ~current->fs->umask;
switch (mode & S_IFMT) {
case S_IFCHR:
case S_IFBLK:
case S_IFIFO:
case S_IFSOCK:
rdev = sysv_encode_dev(rdev);
case S_IFREG:
error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip, NULL);
break;
case S_IFDIR:
error = xfs_mkdir(XFS_I(dir), &name, mode, &ip, NULL);
break;
default:
error = EINVAL;
break;
}
if (unlikely(error))
goto out_free_acl;
inode = VFS_I(ip);
error = xfs_init_security(inode, dir);
if (unlikely(error))
goto out_cleanup_inode;
if (default_acl) {
error = _ACL_INHERIT(inode, mode, default_acl);
if (unlikely(error))
goto out_cleanup_inode;
_ACL_FREE(default_acl);
}
d_instantiate(dentry, inode);
return -error;
out_cleanup_inode:
xfs_cleanup_inode(dir, inode, dentry);
out_free_acl:
if (default_acl)
_ACL_FREE(default_acl);
return -error;
}
示例9: xfs_generic_create
STATIC int
xfs_generic_create(
struct inode *dir,
struct dentry *dentry,
umode_t mode,
dev_t rdev,
bool tmpfile) /* unnamed file */
{
struct inode *inode;
struct xfs_inode *ip = NULL;
struct posix_acl *default_acl, *acl;
struct xfs_name name;
int error;
/*
* Irix uses Missed'em'V split, but doesn't want to see
* the upper 5 bits of (14bit) major.
*/
if (S_ISCHR(mode) || S_ISBLK(mode)) {
if (unlikely(!sysv_valid_dev(rdev) || MAJOR(rdev) & ~0x1ff))
return -EINVAL;
rdev = sysv_encode_dev(rdev);
} else {
rdev = 0;
}
error = posix_acl_create(dir, &mode, &default_acl, &acl);
if (error)
return error;
if (!tmpfile) {
xfs_dentry_to_name(&name, dentry, mode);
error = xfs_create(XFS_I(dir), &name, mode, rdev, &ip);
} else {
error = xfs_create_tmpfile(XFS_I(dir), dentry, mode, &ip);
}
if (unlikely(error))
goto out_free_acl;
inode = VFS_I(ip);
error = xfs_init_security(inode, dir, &dentry->d_name);
if (unlikely(error))
goto out_cleanup_inode;
#ifdef CONFIG_XFS_POSIX_ACL
if (default_acl) {
error = xfs_set_acl(inode, default_acl, ACL_TYPE_DEFAULT);
if (error)
goto out_cleanup_inode;
}
if (acl) {
error = xfs_set_acl(inode, acl, ACL_TYPE_ACCESS);
if (error)
goto out_cleanup_inode;
}
#endif
if (tmpfile)
d_tmpfile(dentry, inode);
else
d_instantiate(dentry, inode);
xfs_finish_inode_setup(ip);
out_free_acl:
if (default_acl)
posix_acl_release(default_acl);
if (acl)
posix_acl_release(acl);
return error;
out_cleanup_inode:
xfs_finish_inode_setup(ip);
if (!tmpfile)
xfs_cleanup_inode(dir, inode, dentry);
iput(inode);
goto out_free_acl;
}
示例10: xfs_iget_cache_miss
static int
xfs_iget_cache_miss(
struct xfs_mount *mp,
struct xfs_perag *pag,
xfs_trans_t *tp,
xfs_ino_t ino,
struct xfs_inode **ipp,
int flags,
int lock_flags)
{
struct xfs_inode *ip;
int error;
xfs_agino_t agino = XFS_INO_TO_AGINO(mp, ino);
ip = xfs_inode_alloc(mp, ino);
if (!ip)
return ENOMEM;
error = xfs_iread(mp, tp, ip, flags);
if (error)
goto out_destroy;
trace_xfs_iget_miss(ip);
if ((ip->i_d.di_mode == 0) && !(flags & XFS_IGET_CREATE)) {
error = ENOENT;
goto out_destroy;
}
/*
* Preload the radix tree so we can insert safely under the
* write spinlock. Note that we cannot sleep inside the preload
* region.
*/
if (radix_tree_preload(GFP_KERNEL)) {
error = EAGAIN;
goto out_destroy;
}
/*
* Because the inode hasn't been added to the radix-tree yet it can't
* be found by another thread, so we can do the non-sleeping lock here.
*/
if (lock_flags) {
if (!xfs_ilock_nowait(ip, lock_flags))
BUG();
}
spin_lock(&pag->pag_ici_lock);
/* insert the new inode */
error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
if (unlikely(error)) {
WARN_ON(error != -EEXIST);
XFS_STATS_INC(xs_ig_dup);
error = EAGAIN;
goto out_preload_end;
}
/* These values _must_ be set before releasing the radix tree lock! */
ip->i_udquot = ip->i_gdquot = NULL;
xfs_iflags_set(ip, XFS_INEW);
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
*ipp = ip;
return 0;
out_preload_end:
spin_unlock(&pag->pag_ici_lock);
radix_tree_preload_end();
if (lock_flags)
xfs_iunlock(ip, lock_flags);
out_destroy:
__destroy_inode(VFS_I(ip));
xfs_inode_free(ip);
return error;
}
示例11: xfs_bui_recover
/*
* Process a bmap update intent item that was recovered from the log.
* We need to update some inode's bmbt.
*/
int
xfs_bui_recover(
struct xfs_mount *mp,
struct xfs_bui_log_item *buip)
{
int error = 0;
unsigned int bui_type;
struct xfs_map_extent *bmap;
xfs_fsblock_t startblock_fsb;
xfs_fsblock_t inode_fsb;
xfs_filblks_t count;
bool op_ok;
struct xfs_bud_log_item *budp;
enum xfs_bmap_intent_type type;
int whichfork;
xfs_exntst_t state;
struct xfs_trans *tp;
struct xfs_inode *ip = NULL;
struct xfs_defer_ops dfops;
struct xfs_bmbt_irec irec;
xfs_fsblock_t firstfsb;
ASSERT(!test_bit(XFS_BUI_RECOVERED, &buip->bui_flags));
/* Only one mapping operation per BUI... */
if (buip->bui_format.bui_nextents != XFS_BUI_MAX_FAST_EXTENTS) {
set_bit(XFS_BUI_RECOVERED, &buip->bui_flags);
xfs_bui_release(buip);
return -EIO;
}
/*
* First check the validity of the extent described by the
* BUI. If anything is bad, then toss the BUI.
*/
bmap = &buip->bui_format.bui_extents[0];
startblock_fsb = XFS_BB_TO_FSB(mp,
XFS_FSB_TO_DADDR(mp, bmap->me_startblock));
inode_fsb = XFS_BB_TO_FSB(mp, XFS_FSB_TO_DADDR(mp,
XFS_INO_TO_FSB(mp, bmap->me_owner)));
switch (bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK) {
case XFS_BMAP_MAP:
case XFS_BMAP_UNMAP:
op_ok = true;
break;
default:
op_ok = false;
break;
}
if (!op_ok || startblock_fsb == 0 ||
bmap->me_len == 0 ||
inode_fsb == 0 ||
startblock_fsb >= mp->m_sb.sb_dblocks ||
bmap->me_len >= mp->m_sb.sb_agblocks ||
inode_fsb >= mp->m_sb.sb_dblocks ||
(bmap->me_flags & ~XFS_BMAP_EXTENT_FLAGS)) {
/*
* This will pull the BUI from the AIL and
* free the memory associated with it.
*/
set_bit(XFS_BUI_RECOVERED, &buip->bui_flags);
xfs_bui_release(buip);
return -EIO;
}
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate,
XFS_EXTENTADD_SPACE_RES(mp, XFS_DATA_FORK), 0, 0, &tp);
if (error)
return error;
budp = xfs_trans_get_bud(tp, buip);
/* Grab the inode. */
error = xfs_iget(mp, tp, bmap->me_owner, 0, XFS_ILOCK_EXCL, &ip);
if (error)
goto err_inode;
if (VFS_I(ip)->i_nlink == 0)
xfs_iflags_set(ip, XFS_IRECOVERY);
xfs_defer_init(&dfops, &firstfsb);
/* Process deferred bmap item. */
state = (bmap->me_flags & XFS_BMAP_EXTENT_UNWRITTEN) ?
XFS_EXT_UNWRITTEN : XFS_EXT_NORM;
whichfork = (bmap->me_flags & XFS_BMAP_EXTENT_ATTR_FORK) ?
XFS_ATTR_FORK : XFS_DATA_FORK;
bui_type = bmap->me_flags & XFS_BMAP_EXTENT_TYPE_MASK;
switch (bui_type) {
case XFS_BMAP_MAP:
case XFS_BMAP_UNMAP:
type = bui_type;
break;
default:
error = -EFSCORRUPTED;
goto err_dfops;
}
xfs_trans_ijoin(tp, ip, 0);
//.........这里部分代码省略.........
示例12: xfs_vget_fsop_handlereq
/*
* Convert userspace handle data into inode.
*
* We use the fact that all the fsop_handlereq ioctl calls have a data
* structure argument whose first component is always a xfs_fsop_handlereq_t,
* so we can pass that sub structure into this handy, shared routine.
*
* If no error, caller must always iput the returned inode.
*/
STATIC int
xfs_vget_fsop_handlereq(
xfs_mount_t *mp,
struct inode *parinode, /* parent inode pointer */
xfs_fsop_handlereq_t *hreq,
struct inode **inode)
{
void __user *hanp;
size_t hlen;
xfs_fid_t *xfid;
xfs_handle_t *handlep;
xfs_handle_t handle;
xfs_inode_t *ip;
xfs_ino_t ino;
__u32 igen;
int error;
/*
* Only allow handle opens under a directory.
*/
if (!S_ISDIR(parinode->i_mode))
return XFS_ERROR(ENOTDIR);
hanp = hreq->ihandle;
hlen = hreq->ihandlen;
handlep = &handle;
if (hlen < sizeof(handlep->ha_fsid) || hlen > sizeof(*handlep))
return XFS_ERROR(EINVAL);
if (copy_from_user(handlep, hanp, hlen))
return XFS_ERROR(EFAULT);
if (hlen < sizeof(*handlep))
memset(((char *)handlep) + hlen, 0, sizeof(*handlep) - hlen);
if (hlen > sizeof(handlep->ha_fsid)) {
if (handlep->ha_fid.fid_len !=
(hlen - sizeof(handlep->ha_fsid) -
sizeof(handlep->ha_fid.fid_len)) ||
handlep->ha_fid.fid_pad)
return XFS_ERROR(EINVAL);
}
/*
* Crack the handle, obtain the inode # & generation #
*/
xfid = (struct xfs_fid *)&handlep->ha_fid;
if (xfid->fid_len == sizeof(*xfid) - sizeof(xfid->fid_len)) {
ino = xfid->fid_ino;
igen = xfid->fid_gen;
} else {
return XFS_ERROR(EINVAL);
}
/*
* Get the XFS inode, building a Linux inode to go with it.
*/
error = xfs_iget(mp, NULL, ino, 0, XFS_ILOCK_SHARED, &ip, 0);
if (error)
return error;
if (ip == NULL)
return XFS_ERROR(EIO);
if (ip->i_d.di_gen != igen) {
xfs_iput_new(ip, XFS_ILOCK_SHARED);
return XFS_ERROR(ENOENT);
}
xfs_iunlock(ip, XFS_ILOCK_SHARED);
*inode = VFS_I(ip);
return 0;
}
示例13: xfs_setattr_size
/*
* Truncate file. Must have write permission and not be a directory.
*/
int
xfs_setattr_size(
struct xfs_inode *ip,
struct iattr *iattr)
{
struct xfs_mount *mp = ip->i_mount;
struct inode *inode = VFS_I(ip);
xfs_off_t oldsize, newsize;
struct xfs_trans *tp;
int error;
uint lock_flags = 0;
uint commit_flags = 0;
trace_xfs_setattr(ip);
if (mp->m_flags & XFS_MOUNT_RDONLY)
return XFS_ERROR(EROFS);
if (XFS_FORCED_SHUTDOWN(mp))
return XFS_ERROR(EIO);
error = -inode_change_ok(inode, iattr);
if (error)
return XFS_ERROR(error);
ASSERT(xfs_isilocked(ip, XFS_IOLOCK_EXCL));
ASSERT(S_ISREG(ip->i_d.di_mode));
ASSERT((iattr->ia_valid & (ATTR_UID|ATTR_GID|ATTR_ATIME|ATTR_ATIME_SET|
ATTR_MTIME_SET|ATTR_KILL_PRIV|ATTR_TIMES_SET)) == 0);
oldsize = inode->i_size;
newsize = iattr->ia_size;
/*
* Short circuit the truncate case for zero length files.
*/
if (newsize == 0 && oldsize == 0 && ip->i_d.di_nextents == 0) {
if (!(iattr->ia_valid & (ATTR_CTIME|ATTR_MTIME)))
return 0;
/*
* Use the regular setattr path to update the timestamps.
*/
iattr->ia_valid &= ~ATTR_SIZE;
return xfs_setattr_nonsize(ip, iattr, 0);
}
/*
* Make sure that the dquots are attached to the inode.
*/
error = xfs_qm_dqattach(ip, 0);
if (error)
return error;
/*
* Now we can make the changes. Before we join the inode to the
* transaction, take care of the part of the truncation that must be
* done without the inode lock. This needs to be done before joining
* the inode to the transaction, because the inode cannot be unlocked
* once it is a part of the transaction.
*/
if (newsize > oldsize) {
/*
* Do the first part of growing a file: zero any data in the
* last block that is beyond the old EOF. We need to do this
* before the inode is joined to the transaction to modify
* i_size.
*/
error = xfs_zero_eof(ip, newsize, oldsize);
if (error)
return error;
}
/*
* We are going to log the inode size change in this transaction so
* any previous writes that are beyond the on disk EOF and the new
* EOF that have not been written out need to be written here. If we
* do not write the data out, we expose ourselves to the null files
* problem.
*
* Only flush from the on disk size to the smaller of the in memory
* file size or the new size as that's the range we really care about
* here and prevents waiting for other data not within the range we
* care about here.
*/
if (oldsize != ip->i_d.di_size && newsize > ip->i_d.di_size) {
error = -filemap_write_and_wait_range(VFS_I(ip)->i_mapping,
ip->i_d.di_size, newsize);
if (error)
return error;
}
/*
* Wait for all direct I/O to complete.
*/
inode_dio_wait(inode);
//.........这里部分代码省略.........
示例14: ASSERT
ASSERT(completion_done(&ip->i_flush));
kmem_zone_free(xfs_inode_zone, ip);
}
/*
* Check the validity of the inode we just found it the cache
*/
static int
xfs_iget_cache_hit(
struct xfs_perag *pag,
struct xfs_inode *ip,
int flags,
int lock_flags) __releases(pag->pag_ici_lock)
{
struct inode *inode = VFS_I(ip);
struct xfs_mount *mp = ip->i_mount;
int error;
spin_lock(&ip->i_flags_lock);
/*
* If we are racing with another cache hit that is currently
* instantiating this inode or currently recycling it out of
* reclaimabe state, wait for the initialisation to complete
* before continuing.
*
* XXX(hch): eventually we should do something equivalent to
* wait_on_inode to wait for these flags to be cleared
* instead of polling for it.
*/
示例15: xfs_reflink_remap_extent
/*
* Unmap a range of blocks from a file, then map other blocks into the hole.
* The range to unmap is (destoff : destoff + srcioff + irec->br_blockcount).
* The extent irec is mapped into dest at irec->br_startoff.
*/
STATIC int
xfs_reflink_remap_extent(
struct xfs_inode *ip,
struct xfs_bmbt_irec *irec,
xfs_fileoff_t destoff,
xfs_off_t new_isize)
{
struct xfs_mount *mp = ip->i_mount;
bool real_extent = xfs_bmap_is_real_extent(irec);
struct xfs_trans *tp;
xfs_fsblock_t firstfsb;
unsigned int resblks;
struct xfs_defer_ops dfops;
struct xfs_bmbt_irec uirec;
xfs_filblks_t rlen;
xfs_filblks_t unmap_len;
xfs_off_t newlen;
int error;
unmap_len = irec->br_startoff + irec->br_blockcount - destoff;
trace_xfs_reflink_punch_range(ip, destoff, unmap_len);
/* No reflinking if we're low on space */
if (real_extent) {
error = xfs_reflink_ag_has_free_space(mp,
XFS_FSB_TO_AGNO(mp, irec->br_startblock));
if (error)
goto out;
}
/* Start a rolling transaction to switch the mappings */
resblks = XFS_EXTENTADD_SPACE_RES(ip->i_mount, XFS_DATA_FORK);
error = xfs_trans_alloc(mp, &M_RES(mp)->tr_write, resblks, 0, 0, &tp);
if (error)
goto out;
xfs_ilock(ip, XFS_ILOCK_EXCL);
xfs_trans_ijoin(tp, ip, 0);
/* If we're not just clearing space, then do we have enough quota? */
if (real_extent) {
error = xfs_trans_reserve_quota_nblks(tp, ip,
irec->br_blockcount, 0, XFS_QMOPT_RES_REGBLKS);
if (error)
goto out_cancel;
}
trace_xfs_reflink_remap(ip, irec->br_startoff,
irec->br_blockcount, irec->br_startblock);
/* Unmap the old blocks in the data fork. */
rlen = unmap_len;
while (rlen) {
xfs_defer_init(&dfops, &firstfsb);
error = __xfs_bunmapi(tp, ip, destoff, &rlen, 0, 1,
&firstfsb, &dfops);
if (error)
goto out_defer;
/*
* Trim the extent to whatever got unmapped.
* Remember, bunmapi works backwards.
*/
uirec.br_startblock = irec->br_startblock + rlen;
uirec.br_startoff = irec->br_startoff + rlen;
uirec.br_blockcount = unmap_len - rlen;
unmap_len = rlen;
/* If this isn't a real mapping, we're done. */
if (!real_extent || uirec.br_blockcount == 0)
goto next_extent;
trace_xfs_reflink_remap(ip, uirec.br_startoff,
uirec.br_blockcount, uirec.br_startblock);
/* Update the refcount tree */
error = xfs_refcount_increase_extent(mp, &dfops, &uirec);
if (error)
goto out_defer;
/* Map the new blocks into the data fork. */
error = xfs_bmap_map_extent(mp, &dfops, ip, &uirec);
if (error)
goto out_defer;
/* Update quota accounting. */
xfs_trans_mod_dquot_byino(tp, ip, XFS_TRANS_DQ_BCOUNT,
uirec.br_blockcount);
/* Update dest isize if needed. */
newlen = XFS_FSB_TO_B(mp,
uirec.br_startoff + uirec.br_blockcount);
newlen = min_t(xfs_off_t, newlen, new_isize);
if (newlen > i_size_read(VFS_I(ip))) {
trace_xfs_reflink_update_inode_size(ip, newlen);
//.........这里部分代码省略.........