本文整理汇总了C++中RandomPermute函数的典型用法代码示例。如果您正苦于以下问题:C++ RandomPermute函数的具体用法?C++ RandomPermute怎么用?C++ RandomPermute使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了RandomPermute函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: FastRandomPermute
/*************************************************************************
* This file randomly permutes the contents of an array.
* flag == 0, don't initialize perm
* flag == 1, set p[i] = i
**************************************************************************/
void FastRandomPermute(int n, idxtype *p, int flag)
{
int i, u, v;
idxtype tmp;
/* this is for very small arrays */
if (n < 25) {
RandomPermute(n, p, flag);
return;
}
if (flag == 1) {
for (i=0; i<n; i++)
p[i] = i;
}
for (i=0; i<n; i+=8) {
v = RandomInRange(n-4);
u = RandomInRange(n-4);
SWAP(p[v], p[u], tmp);
SWAP(p[v+1], p[u+1], tmp);
SWAP(p[v+2], p[u+2], tmp);
SWAP(p[v+3], p[u+3], tmp);
}
}
示例2: Match_HEM
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void Match_HEM(CtrlType *ctrl, GraphType *graph)
{
int i, ii, j, k, nvtxs, cnvtxs, maxidx, dim;
idxtype *xadj, *vwgt, *adjncy;
idxtype *match, *cmap, *perm, *tperm;
realtype curwgt, maxwgt;
realtype *vvol, *vsurf, *adjwgt, *adjwgtsum;
dim = ctrl->dim;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
vwgt = graph->vwgt;
vvol = graph->vvol;
vsurf = graph->vsurf;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
adjwgtsum = graph->adjwgtsum;
cmap = graph->cmap = idxsmalloc(nvtxs, -1, "cmap");
match = idxsmalloc(nvtxs, -1, "match");
perm = idxmalloc(nvtxs, "perm");
tperm = idxmalloc(nvtxs, "tperm");
RandomPermute(nvtxs, tperm, 1);
BucketSortKeysInc(nvtxs, vwgt[iamax(nvtxs, vwgt)], vwgt, tperm, perm);
/* RandomPermute(nvtxs, perm, 1); */
cnvtxs = 0;
/* Compute a heavy-edge style matching giving preferance to small vertices */
for (ii=0; ii<nvtxs; ii++) {
i = perm[ii];
if (match[i] == UNMATCHED) {
maxidx = i;
maxwgt = 0.0;
/* Find a heavy-edge matching, subject to maxvwgt constraints */
for (j=xadj[i]; j<xadj[i+1]; j++) {
k = adjncy[j];
curwgt = 1.0/ARATIO2(dim, vsurf[i]+vsurf[k]+adjwgtsum[i]+adjwgtsum[k]-
2.0*adjwgt[j], vvol[i]+vvol[k]);
if (match[k] == UNMATCHED && vwgt[i]+vwgt[k] <= ctrl->maxsize &&
curwgt > maxwgt) {
maxwgt = curwgt;
maxidx = k;
}
}
cmap[i] = cmap[maxidx] = cnvtxs++;
match[i] = maxidx;
match[maxidx] = i;
}
}
CreateCoarseGraph(graph, cnvtxs, match, perm);
IMfree((void**)&tperm, &perm, &match, LTERM);
}
示例3: main
int main(int argc, char **argv) {
long *X, *Tmp, n, i;
double *D;
printf("Test RandomPermute: ");
n=1000 ;
X = (long *) malloc(n* sizeof(long)) ;
Tmp = (long *) malloc(n* sizeof(long)) ;
D = (double *) malloc(n* sizeof(double)) ;
if ( X == NULL || Tmp == NULL || D == NULL){
printf("Error\n") ;
exit(1);
}
for (i=0; i<n; i++){
X[i] = i ;
D[i] = i;
}
#ifdef INFO2
printf("RAND_MAX = %ld ", (long)(RAND_MAX) );
#endif
/* Permute randomly */
RandomPermute(X,NULL,D,NULL,0,n-1);
/* Check result values and corresponding indices */
for (i=0; i<n; i++){
if (X[i] != (long)(D[i]+0.5) || X[i] < 0 || X[i] >= n){
/* round to nearest integer */
printf("Error\n") ;
exit(1);
}
}
/* Check whether X is a permutation of 0..n-1.
Use Tmp as a temporary array */
for (i=0; i<n; i++)
Tmp[i] = -1;
for (i=0; i<n; i++){
Tmp[X[i]]= X[i];
}
for (i=0; i<n; i++){
if (Tmp[i] != i){
printf("Error\n") ;
exit(1);
}
}
printf("OK\n") ;
exit(0);
} /* end main */
示例4: MCMatch_HEM
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void MCMatch_HEM(CtrlType *ctrl, GraphType *graph)
{
int i, ii, j, k, nvtxs, cnvtxs, ncon, maxidx, maxwgt;
idxtype *xadj, *adjncy, *adjwgt;
idxtype *match, *cmap, *perm;
float *nvwgt;
IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));
nvtxs = graph->nvtxs;
ncon = graph->ncon;
xadj = graph->xadj;
nvwgt = graph->nvwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
cmap = graph->cmap;
match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));
perm = idxwspacemalloc(ctrl, nvtxs);
RandomPermute(nvtxs, perm, 1);
cnvtxs = 0;
for (ii=0; ii<nvtxs; ii++) {
i = perm[ii];
if (match[i] == UNMATCHED) { /* Unmatched */
maxidx = i;
maxwgt = 0;
/* Find a heavy-edge matching, subject to maxvwgt constraints */
for (j=xadj[i]; j<xadj[i+1]; j++) {
k = adjncy[j];
if (match[k] == UNMATCHED && maxwgt <= adjwgt[j] &&
AreAllVwgtsBelowFast(ncon, nvwgt+i*ncon, nvwgt+k*ncon, ctrl->nmaxvwgt)) {
maxwgt = adjwgt[j];
maxidx = adjncy[j];
}
}
cmap[i] = cmap[maxidx] = cnvtxs++;
match[i] = maxidx;
match[maxidx] = i;
}
}
IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));
CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);
idxwspacefree(ctrl, nvtxs);
idxwspacefree(ctrl, nvtxs);
}
示例5: Match_RM
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void Match_RM(CtrlType *ctrl, GraphType *graph)
{
int i, ii, j, nvtxs, cnvtxs, maxidx;
idxtype *xadj, *vwgt, *adjncy, *adjwgt;
idxtype *match, *cmap, *perm;
IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->MatchTmr));
nvtxs = graph->nvtxs;
xadj = graph->xadj;
vwgt = graph->vwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
cmap = graph->cmap;
match = idxset(nvtxs, UNMATCHED, idxwspacemalloc(ctrl, nvtxs));
perm = idxwspacemalloc(ctrl, nvtxs);
RandomPermute(nvtxs, perm, 1);
cnvtxs = 0;
for (ii=0; ii<nvtxs; ii++) {
i = perm[ii];
if (match[i] == UNMATCHED) { /* Unmatched */
maxidx = i;
/* Find a random matching, subject to maxvwgt constraints */
for (j=xadj[i]; j<xadj[i+1]; j++) {
if (match[adjncy[j]] == UNMATCHED && vwgt[i]+vwgt[adjncy[j]] <= ctrl->maxvwgt) {
maxidx = adjncy[j];
break;
}
}
cmap[i] = cmap[maxidx] = cnvtxs++;
match[i] = maxidx;
match[maxidx] = i;
}
}
IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->MatchTmr));
CreateCoarseGraph(ctrl, graph, cnvtxs, match, perm);
idxwspacefree(ctrl, nvtxs);
idxwspacefree(ctrl, nvtxs);
}
示例6: RandomInit
/*************************************************************************
* This function generates random initialization
**************************************************************************/
void RandomInit(int n, int k, idxtype *label)
{
int i, chunksize, j;
idxtype tmp;
idxtype *p= idxmalloc(n, "Util: RandomInit\n");
RandomPermute(n, p, 1);
chunksize = n / k +1;
j=0;
for (i=0; i<n; i++){
label[p[i]] = j;
if ((i+1)% chunksize ==0)
j++;
}
free (p);
}
示例7: Match_RM
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void Match_RM(CtrlType *ctrl, GraphType *graph)
{
int i, ii, j, k, nvtxs, cnvtxs, maxidx;
idxtype *xadj, *vwgt, *adjncy;
idxtype *match, *cmap, *perm;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
vwgt = graph->vwgt;
adjncy = graph->adjncy;
cmap = graph->cmap = idxsmalloc(nvtxs, -1, "graph->cmap");
match = idxsmalloc(nvtxs, -1, "match");
perm = idxmalloc(nvtxs, "perm");
RandomPermute(nvtxs, perm, 1);
cnvtxs = 0;
for (ii=0; ii<nvtxs; ii++) {
i = perm[ii];
if (match[i] == UNMATCHED) {
maxidx = i;
/* Find a random matching, subject to maxvwgt constraints */
for (j=xadj[i]; j<xadj[i+1]; j++) {
k = adjncy[j];
if (match[k] == UNMATCHED && vwgt[i]+vwgt[k] <= ctrl->maxsize) {
maxidx = k;
break;
}
}
cmap[i] = cmap[maxidx] = cnvtxs++;
match[i] = maxidx;
match[maxidx] = i;
}
}
CreateCoarseGraph(graph, cnvtxs, match, perm);
IMfree((void**)&match, &perm, LTERM);
}
示例8: EstimateCFraction
/*************************************************************************
* This function finds a matching using the HEM heuristic
**************************************************************************/
void EstimateCFraction(int nvtxs, idxtype *xadj, idxtype *adjncy, floattype *vfraction, floattype *efraction)
{
int i, ii, j, cnvtxs, cnedges, maxidx;
idxtype *match, *cmap, *perm;
cmap = idxmalloc(nvtxs, "cmap");
match = idxsmalloc(nvtxs, UNMATCHED, "match");
perm = idxmalloc(nvtxs, "perm");
RandomPermute(nvtxs, perm, 1);
cnvtxs = 0;
for (ii=0; ii<nvtxs; ii++) {
i = perm[ii];
if (match[i] == UNMATCHED) { /* Unmatched */
maxidx = i;
/* Find a random matching, subject to maxvwgt constraints */
for (j=xadj[i]; j<xadj[i+1]; j++) {
if (match[adjncy[j]] == UNMATCHED) {
maxidx = adjncy[j];
break;
}
}
cmap[i] = cmap[maxidx] = cnvtxs++;
match[i] = maxidx;
match[maxidx] = i;
}
}
cnedges = ComputeCoarseGraphSize(nvtxs, xadj, adjncy, cnvtxs, cmap, match, perm);
*vfraction = (1.0*cnvtxs)/(1.0*nvtxs);
*efraction = (1.0*cnedges)/(1.0*xadj[nvtxs]);
GKfree(&cmap, &match, &perm, LTERM);
}
示例9: MCRandom_KWayEdgeRefineHorizontal
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void MCRandom_KWayEdgeRefineHorizontal(CtrlType *ctrl, GraphType *graph, int nparts,
float *orgubvec, int npasses)
{
int i, ii, iii, j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nmoves, nbnd, myndegrees, same;
int from, me, to, oldcut, gain;
idxtype *xadj, *adjncy, *adjwgt;
idxtype *where, *perm, *bndptr, *bndind;
EDegreeType *myedegrees;
RInfoType *myrinfo;
float *npwgts, *nvwgt, *minwgt, *maxwgt, maxlb, minlb, ubvec[MAXNCON], tvec[MAXNCON];
nvtxs = graph->nvtxs;
ncon = graph->ncon;
xadj = graph->xadj;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
bndptr = graph->bndptr;
bndind = graph->bndind;
where = graph->where;
npwgts = graph->npwgts;
/* Setup the weight intervals of the various subdomains */
minwgt = fwspacemalloc(ctrl, nparts*ncon);
maxwgt = fwspacemalloc(ctrl, nparts*ncon);
/* See if the orgubvec consists of identical constraints */
maxlb = minlb = orgubvec[0];
for (i=1; i<ncon; i++) {
minlb = (orgubvec[i] < minlb ? orgubvec[i] : minlb);
maxlb = (orgubvec[i] > maxlb ? orgubvec[i] : maxlb);
}
same = (fabs(maxlb-minlb) < .01 ? 1 : 0);
/* Let's not get very optimistic. Let Balancing do the work */
ComputeHKWayLoadImbalance(ncon, nparts, npwgts, ubvec);
for (i=0; i<ncon; i++)
ubvec[i] = amax(ubvec[i], orgubvec[i]);
if (!same) {
for (i=0; i<nparts; i++) {
for (j=0; j<ncon; j++) {
maxwgt[i*ncon+j] = ubvec[j]/nparts;
minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts);
}
}
}
else {
maxlb = ubvec[0];
for (i=1; i<ncon; i++)
maxlb = (ubvec[i] > maxlb ? ubvec[i] : maxlb);
for (i=0; i<nparts; i++) {
for (j=0; j<ncon; j++) {
maxwgt[i*ncon+j] = maxlb/nparts;
minwgt[i*ncon+j] = 1.0/(maxlb*nparts);
}
}
}
perm = idxwspacemalloc(ctrl, nvtxs);
if (ctrl->dbglvl&DBG_REFINE) {
printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ",
npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)],
graph->nvtxs, graph->nbnd, graph->mincut);
ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec);
for (i=0; i<ncon; i++)
printf("%.3f ", tvec[i]);
printf("\n");
}
for (pass=0; pass<npasses; pass++) {
ASSERT(ComputeCut(graph, where) == graph->mincut);
oldcut = graph->mincut;
nbnd = graph->nbnd;
RandomPermute(nbnd, perm, 1);
for (nmoves=iii=0; iii<graph->nbnd; iii++) {
ii = perm[iii];
if (ii >= nbnd)
continue;
i = bndind[ii];
myrinfo = graph->rinfo+i;
if (myrinfo->ed >= myrinfo->id) { /* Total ED is too high */
from = where[i];
nvwgt = graph->nvwgt+i*ncon;
if (myrinfo->id > 0 && AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon))
continue; /* This cannot be moved! */
//.........这里部分代码省略.........
示例10: MocGeneral2WayBalance2
/*************************************************************************
* This function performs an edge-based FM refinement
**************************************************************************/
void MocGeneral2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
{
int i, ii, j, k, l, kwgt, nvtxs, ncon, nbnd, nswaps, from, to, limit, tmp, cnum;
idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
idxtype *moved, *swaps, *perm, *qnum;
float *nvwgt, *npwgts, origbal[MAXNCON], minbal[MAXNCON], newbal[MAXNCON];
PQueueType parts[MAXNCON][2];
int higain, oldgain, mincut, newcut, mincutorder;
float *maxwgt, *minwgt, tvec[MAXNCON];
nvtxs = graph->nvtxs;
ncon = graph->ncon;
xadj = graph->xadj;
nvwgt = graph->nvwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
where = graph->where;
id = graph->id;
ed = graph->ed;
npwgts = graph->npwgts;
bndptr = graph->bndptr;
bndind = graph->bndind;
moved = idxwspacemalloc(ctrl, nvtxs);
swaps = idxwspacemalloc(ctrl, nvtxs);
perm = idxwspacemalloc(ctrl, nvtxs);
qnum = idxwspacemalloc(ctrl, nvtxs);
limit = amin(amax(0.01*nvtxs, 15), 100);
/* Setup the weight intervals of the two subdomains */
minwgt = fwspacemalloc(ctrl, 2*ncon);
maxwgt = fwspacemalloc(ctrl, 2*ncon);
for (i=0; i<2; i++) {
for (j=0; j<ncon; j++) {
maxwgt[i*ncon+j] = tpwgts[i]*ubvec[j];
minwgt[i*ncon+j] = tpwgts[i]*(1.0/ubvec[j]);
}
}
/* Initialize the queues */
for (i=0; i<ncon; i++) {
PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
}
for (i=0; i<nvtxs; i++)
qnum[i] = samax(ncon, nvwgt+i*ncon);
Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, origbal);
for (i=0; i<ncon; i++)
minbal[i] = origbal[i];
newcut = mincut = graph->mincut;
mincutorder = -1;
if (ctrl->dbglvl&DBG_REFINE) {
printf("Parts: [");
for (l=0; l<ncon; l++)
printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: ", tpwgts[0], tpwgts[1],
graph->nvtxs, graph->nbnd, graph->mincut);
for (i=0; i<ncon; i++)
printf("%.3f ", origbal[i]);
printf("[B]\n");
}
idxset(nvtxs, -1, moved);
ASSERT(ComputeCut(graph, where) == graph->mincut);
ASSERT(CheckBnd(graph));
/* Insert all nodes in the priority queues */
nbnd = graph->nbnd;
RandomPermute(nvtxs, perm, 1);
for (ii=0; ii<nvtxs; ii++) {
i = perm[ii];
PQueueInsert(&parts[qnum[i]][where[i]], i, ed[i]-id[i]);
}
for (nswaps=0; nswaps<nvtxs; nswaps++) {
if (AreAllBelow(ncon, minbal, ubvec))
break;
SelectQueue3(ncon, npwgts, tpwgts, &from, &cnum, parts, maxwgt);
to = (from+1)%2;
if (from == -1 || (higain = PQueueGetMax(&parts[cnum][from])) == -1)
break;
saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
newcut -= (ed[higain]-id[higain]);
Compute2WayHLoadImbalanceVec(ncon, npwgts, tpwgts, newbal);
//.........这里部分代码省略.........
示例11: FM_2WayNodeBalance
/*************************************************************************
* This function performs a node-based FM refinement
**************************************************************************/
void FM_2WayNodeBalance(CtrlType *ctrl, GraphType *graph, float ubfactor)
{
idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps;
idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
idxtype *perm, *moved;
PQueueType parts;
NRInfoType *rinfo;
idxtype higain, oldgain;
idxtype pass, to, other;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
vwgt = graph->vwgt;
bndind = graph->bndind;
bndptr = graph->bndptr;
where = graph->where;
pwgts = graph->pwgts;
rinfo = graph->nrinfo;
if (idxtype_abs(pwgts[0]-pwgts[1]) < (int)((ubfactor-1.0)*(pwgts[0]+pwgts[1])))
return;
if (idxtype_abs(pwgts[0]-pwgts[1]) < 3*idxsum(nvtxs, vwgt, 1)/nvtxs)
return;
to = (pwgts[0] < pwgts[1] ? 0 : 1);
other = (to+1)%2;
PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt));
perm = idxwspacemalloc(ctrl, nvtxs);
moved = idxset(nvtxs, -1, idxwspacemalloc(ctrl, nvtxs));
IFSET(ctrl->dbglvl, DBG_REFINE,
mprintf("Partitions: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D [B]\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));
nbnd = graph->nbnd;
RandomPermute(nbnd, perm, 1);
for (ii=0; ii<nbnd; ii++) {
i = bndind[perm[ii]];
ASSERT(where[i] == 2);
PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[other]);
}
ASSERT(CheckNodeBnd(graph, nbnd));
ASSERT(CheckNodePartitionParams(graph));
/******************************************************
* Get into the FM loop
*******************************************************/
for (nswaps=0; nswaps<nvtxs; nswaps++) {
if ((higain = PQueueGetMax(&parts)) == -1)
break;
moved[higain] = 1;
if (pwgts[other] - rinfo[higain].edegrees[other] < (pwgts[0]+pwgts[1])/2)
continue;
#ifdef XXX
if (pwgts[other] - rinfo[higain].edegrees[other] < pwgts[to]+vwgt[higain])
break;
#endif
ASSERT(bndptr[higain] != -1);
pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);
BNDDelete(nbnd, bndind, bndptr, higain);
pwgts[to] += vwgt[higain];
where[higain] = to;
IFSET(ctrl->dbglvl, DBG_MOVEINFO,
mprintf("Moved %6D to %3D, Gain: %3D, \t[%5D %5D %5D]\n", higain, to, vwgt[higain]-rinfo[higain].edegrees[other], pwgts[0], pwgts[1], pwgts[2]));
/**********************************************************
* Update the degrees of the affected nodes
***********************************************************/
for (j=xadj[higain]; j<xadj[higain+1]; j++) {
k = adjncy[j];
if (where[k] == 2) { /* For the in-separator vertices modify their edegree[to] */
rinfo[k].edegrees[to] += vwgt[higain];
}
else if (where[k] == other) { /* This vertex is pulled into the separator */
ASSERTP(bndptr[k] == -1, ("%d %d %d\n", k, bndptr[k], where[k]));
BNDInsert(nbnd, bndind, bndptr, k);
where[k] = 2;
pwgts[other] -= vwgt[k];
edegrees = rinfo[k].edegrees;
edegrees[0] = edegrees[1] = 0;
for (jj=xadj[k]; jj<xadj[k+1]; jj++) {
kk = adjncy[jj];
if (where[kk] != 2)
edegrees[where[kk]] += vwgt[kk];
//.........这里部分代码省略.........
示例12: FM_2WayNodeRefineEqWgt
/*************************************************************************
* This function performs a node-based FM refinement
**************************************************************************/
void FM_2WayNodeRefineEqWgt(CtrlType *ctrl, GraphType *graph, idxtype npasses)
{
idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind;
idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
idxtype *mptr, *mind, *moved, *swaps, *perm;
PQueueType parts[2];
NRInfoType *rinfo;
idxtype higain, oldgain, mincut, initcut, mincutorder;
idxtype pass, to, other, limit;
idxtype mindiff, newdiff;
idxtype u[2], g[2];
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
vwgt = graph->vwgt;
bndind = graph->bndind;
bndptr = graph->bndptr;
where = graph->where;
pwgts = graph->pwgts;
rinfo = graph->nrinfo;
i = ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt);
PQueueInit(ctrl, &parts[0], nvtxs, i);
PQueueInit(ctrl, &parts[1], nvtxs, i);
moved = idxwspacemalloc(ctrl, nvtxs);
swaps = idxwspacemalloc(ctrl, nvtxs);
mptr = idxwspacemalloc(ctrl, nvtxs+1);
mind = idxwspacemalloc(ctrl, nvtxs);
perm = idxwspacemalloc(ctrl, nvtxs);
IFSET(ctrl->dbglvl, DBG_REFINE,
mprintf("Partitions: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));
for (pass=0; pass<npasses; pass++) {
idxset(nvtxs, -1, moved);
PQueueReset(&parts[0]);
PQueueReset(&parts[1]);
mincutorder = -1;
initcut = mincut = graph->mincut;
nbnd = graph->nbnd;
RandomPermute(nbnd, perm, 1);
for (ii=0; ii<nbnd; ii++) {
i = bndind[perm[ii]];
ASSERT(where[i] == 2);
PQueueInsert(&parts[0], i, vwgt[i]-rinfo[i].edegrees[1]);
PQueueInsert(&parts[1], i, vwgt[i]-rinfo[i].edegrees[0]);
}
ASSERT(CheckNodeBnd(graph, nbnd));
ASSERT(CheckNodePartitionParams(graph));
limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300));
/******************************************************
* Get into the FM loop
*******************************************************/
mptr[0] = nmind = 0;
mindiff = idxtype_abs(pwgts[0]-pwgts[1]);
to = (pwgts[0] < pwgts[1] ? 0 : 1);
for (nswaps=0; nswaps<nvtxs; nswaps++) {
to = (pwgts[0] < pwgts[1] ? 0 : 1);
if (pwgts[0] == pwgts[1]) {
u[0] = PQueueSeeMax(&parts[0]);
u[1] = PQueueSeeMax(&parts[1]);
if (u[0] != -1 && u[1] != -1) {
g[0] = vwgt[u[0]]-rinfo[u[0]].edegrees[1];
g[1] = vwgt[u[1]]-rinfo[u[1]].edegrees[0];
to = (g[0] > g[1] ? 0 : (g[0] < g[1] ? 1 : pass%2));
}
}
other = (to+1)%2;
if ((higain = PQueueGetMax(&parts[to])) == -1)
break;
if (moved[higain] == -1) /* Delete if it was in the separator originally */
PQueueDelete(&parts[other], higain, vwgt[higain]-rinfo[higain].edegrees[to]);
ASSERT(bndptr[higain] != -1);
pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);
newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other]));
if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
mincut = pwgts[2];
mincutorder = nswaps;
mindiff = newdiff;
}
else {
//.........这里部分代码省略.........
示例13: FM_2WayNodeRefine_OneSided
/*************************************************************************
* This function performs a node-based FM refinement. This is the
* one-way version
**************************************************************************/
void FM_2WayNodeRefine_OneSided(CtrlType *ctrl, GraphType *graph, float ubfactor, idxtype npasses)
{
idxtype i, ii, j, k, jj, kk, nvtxs, nbnd, nswaps, nmind;
idxtype *xadj, *vwgt, *adjncy, *where, *pwgts, *edegrees, *bndind, *bndptr;
idxtype *mptr, *mind, *swaps, *perm;
PQueueType parts;
NRInfoType *rinfo;
idxtype higain, oldgain, mincut, initcut, mincutorder;
idxtype pass, to, other, limit;
idxtype badmaxpwgt, mindiff, newdiff;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
adjncy = graph->adjncy;
vwgt = graph->vwgt;
bndind = graph->bndind;
bndptr = graph->bndptr;
where = graph->where;
pwgts = graph->pwgts;
rinfo = graph->nrinfo;
PQueueInit(ctrl, &parts, nvtxs, ComputeMaxNodeGain(nvtxs, xadj, adjncy, vwgt));
perm = idxwspacemalloc(ctrl, nvtxs);
swaps = idxwspacemalloc(ctrl, nvtxs);
mptr = idxwspacemalloc(ctrl, nvtxs+1);
mind = idxwspacemalloc(ctrl, nvtxs);
IFSET(ctrl->dbglvl, DBG_REFINE,
mprintf("Partitions-N1: [%6D %6D] Nv-Nb[%6D %6D]. ISep: %6D\n", pwgts[0], pwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));
badmaxpwgt = (int)(ubfactor*(pwgts[0]+pwgts[1]+pwgts[2])/2);
to = (pwgts[0] < pwgts[1] ? 1 : 0);
for (pass=0; pass<npasses; pass++) {
other = to;
to = (to+1)%2;
PQueueReset(&parts);
mincutorder = -1;
initcut = mincut = graph->mincut;
nbnd = graph->nbnd;
RandomPermute(nbnd, perm, 1);
for (ii=0; ii<nbnd; ii++) {
i = bndind[perm[ii]];
ASSERT(where[i] == 2);
PQueueInsert(&parts, i, vwgt[i]-rinfo[i].edegrees[other]);
}
ASSERT(CheckNodeBnd(graph, nbnd));
ASSERT(CheckNodePartitionParams(graph));
limit = (ctrl->oflags&OFLAG_COMPRESS ? amin(5*nbnd, 400) : amin(2*nbnd, 300));
/******************************************************
* Get into the FM loop
*******************************************************/
mptr[0] = nmind = 0;
mindiff = idxtype_abs(pwgts[0]-pwgts[1]);
for (nswaps=0; nswaps<nvtxs; nswaps++) {
if ((higain = PQueueGetMax(&parts)) == -1)
break;
ASSERT(bndptr[higain] != -1);
if (pwgts[to]+vwgt[higain] > badmaxpwgt)
break; /* No point going any further. Balance will be bad */
pwgts[2] -= (vwgt[higain]-rinfo[higain].edegrees[other]);
newdiff = idxtype_abs(pwgts[to]+vwgt[higain] - (pwgts[other]-rinfo[higain].edegrees[other]));
if (pwgts[2] < mincut || (pwgts[2] == mincut && newdiff < mindiff)) {
mincut = pwgts[2];
mincutorder = nswaps;
mindiff = newdiff;
}
else {
if (nswaps - mincutorder > limit) {
pwgts[2] += (vwgt[higain]-rinfo[higain].edegrees[other]);
break; /* No further improvement, break out */
}
}
BNDDelete(nbnd, bndind, bndptr, higain);
pwgts[to] += vwgt[higain];
where[higain] = to;
swaps[nswaps] = higain;
/**********************************************************
* Update the degrees of the affected nodes
***********************************************************/
//.........这里部分代码省略.........
示例14: MCGreedy_KWayEdgeBalanceHorizontal
/*************************************************************************
* This function performs k-way refinement
**************************************************************************/
void MCGreedy_KWayEdgeBalanceHorizontal(CtrlType *ctrl, GraphType *graph, int nparts,
float *ubvec, int npasses)
{
int i, ii, /*iii,*/ j, /*jj,*/ k, /*l,*/ pass, nvtxs, ncon, nbnd, myndegrees, oldgain, gain, nmoves;
int from, me, to, oldcut;
idxtype *xadj, *adjncy, *adjwgt;
idxtype *where, *perm, *bndptr, *bndind, *moved;
EDegreeType *myedegrees;
RInfoType *myrinfo;
PQueueType queue;
float *npwgts, *nvwgt, *minwgt, *maxwgt, tvec[MAXNCON];
nvtxs = graph->nvtxs;
ncon = graph->ncon;
xadj = graph->xadj;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
bndind = graph->bndind;
bndptr = graph->bndptr;
where = graph->where;
npwgts = graph->npwgts;
/* Setup the weight intervals of the various subdomains */
minwgt = fwspacemalloc(ctrl, ncon*nparts);
maxwgt = fwspacemalloc(ctrl, ncon*nparts);
for (i=0; i<nparts; i++) {
for (j=0; j<ncon; j++) {
maxwgt[i*ncon+j] = ubvec[j]/nparts;
minwgt[i*ncon+j] = 1.0/(ubvec[j]*nparts);
}
}
perm = idxwspacemalloc(ctrl, nvtxs);
moved = idxwspacemalloc(ctrl, nvtxs);
PQueueInit(ctrl, &queue, nvtxs, graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)]);
if (ctrl->dbglvl&DBG_REFINE) {
printf("Partitions: [%5.4f %5.4f], Nv-Nb[%6d %6d]. Cut: %6d, LB: ",
npwgts[samin(ncon*nparts, npwgts)], npwgts[samax(ncon*nparts, npwgts)],
graph->nvtxs, graph->nbnd, graph->mincut);
ComputeHKWayLoadImbalance(ncon, nparts, npwgts, tvec);
for (i=0; i<ncon; i++)
printf("%.3f ", tvec[i]);
printf("[B]\n");
}
for (pass=0; pass<npasses; pass++) {
ASSERT(ComputeCut(graph, where) == graph->mincut);
/* Check to see if things are out of balance, given the tolerance */
if (MocIsHBalanced(ncon, nparts, npwgts, ubvec))
break;
PQueueReset(&queue);
idxset(nvtxs, -1, moved);
oldcut = graph->mincut;
nbnd = graph->nbnd;
RandomPermute(nbnd, perm, 1);
for (ii=0; ii<nbnd; ii++) {
i = bndind[perm[ii]];
PQueueInsert(&queue, i, graph->rinfo[i].ed - graph->rinfo[i].id);
moved[i] = 2;
}
nmoves = 0;
for (;;) {
if ((i = PQueueGetMax(&queue)) == -1)
break;
moved[i] = 1;
myrinfo = graph->rinfo+i;
from = where[i];
nvwgt = graph->nvwgt+i*ncon;
if (AreAllHVwgtsBelow(ncon, 1.0, npwgts+from*ncon, -1.0, nvwgt, minwgt+from*ncon))
continue; /* This cannot be moved! */
myedegrees = myrinfo->edegrees;
myndegrees = myrinfo->ndegrees;
for (k=0; k<myndegrees; k++) {
to = myedegrees[k].pid;
if (IsHBalanceBetterFT(ncon, nparts, npwgts+from*ncon, npwgts+to*ncon, nvwgt, ubvec))
break;
}
if (k == myndegrees)
continue; /* break out if you did not find a candidate */
for (j=k+1; j<myndegrees; j++) {
to = myedegrees[j].pid;
//.........这里部分代码省略.........
示例15: Bnd2WayBalance
/*************************************************************************
* This function balances two partitions by moving boundary nodes
* from the domain that is overweight to the one that is underweight.
**************************************************************************/
void Bnd2WayBalance(CtrlType *ctrl, GraphType *graph, int *tpwgts)
{
int i, ii, j, k, kwgt, nvtxs, nbnd, nswaps, from, to, pass, me, tmp;
idxtype *xadj, *vwgt, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind, *pwgts;
idxtype *moved, *perm;
PQueueType parts;
int higain, oldgain, mincut, mindiff;
nvtxs = graph->nvtxs;
xadj = graph->xadj;
vwgt = graph->vwgt;
adjncy = graph->adjncy;
adjwgt = graph->adjwgt;
where = graph->where;
id = graph->id;
ed = graph->ed;
pwgts = graph->pwgts;
bndptr = graph->bndptr;
bndind = graph->bndind;
moved = idxwspacemalloc(ctrl, nvtxs);
perm = idxwspacemalloc(ctrl, nvtxs);
/* Determine from which domain you will be moving data */
mindiff = abs(tpwgts[0]-pwgts[0]);
from = (pwgts[0] < tpwgts[0] ? 1 : 0);
to = (from+1)%2;
IFSET(ctrl->dbglvl, DBG_REFINE,
printf("Partitions: [%6d %6d] T[%6d %6d], Nv-Nb[%6d %6d]. ICut: %6d [B]\n",
pwgts[0], pwgts[1], tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut));
tmp = graph->adjwgtsum[idxamax(nvtxs, graph->adjwgtsum)];
PQueueInit(ctrl, &parts, nvtxs, tmp);
idxset(nvtxs, -1, moved);
ASSERT(ComputeCut(graph, where) == graph->mincut);
ASSERT(CheckBnd(graph));
/* Insert the boundary nodes of the proper partition whose size is OK in the priority queue */
nbnd = graph->nbnd;
RandomPermute(nbnd, perm, 1);
for (ii=0; ii<nbnd; ii++) {
i = perm[ii];
ASSERT(ed[bndind[i]] > 0 || id[bndind[i]] == 0);
ASSERT(bndptr[bndind[i]] != -1);
if (where[bndind[i]] == from && vwgt[bndind[i]] <= mindiff)
PQueueInsert(&parts, bndind[i], ed[bndind[i]]-id[bndind[i]]);
}
mincut = graph->mincut;
for (nswaps=0; nswaps<nvtxs; nswaps++) {
if ((higain = PQueueGetMax(&parts)) == -1)
break;
ASSERT(bndptr[higain] != -1);
if (pwgts[to]+vwgt[higain] > tpwgts[to])
break;
mincut -= (ed[higain]-id[higain]);
INC_DEC(pwgts[to], pwgts[from], vwgt[higain]);
where[higain] = to;
moved[higain] = nswaps;
IFSET(ctrl->dbglvl, DBG_MOVEINFO,
printf("Moved %6d from %d. [%3d %3d] %5d [%4d %4d]\n", higain, from, ed[higain]-id[higain], vwgt[higain], mincut, pwgts[0], pwgts[1]));
/**************************************************************
* Update the id[i]/ed[i] values of the affected nodes
***************************************************************/
SWAP(id[higain], ed[higain], tmp);
if (ed[higain] == 0 && xadj[higain] < xadj[higain+1])
BNDDelete(nbnd, bndind, bndptr, higain);
for (j=xadj[higain]; j<xadj[higain+1]; j++) {
k = adjncy[j];
oldgain = ed[k]-id[k];
kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
INC_DEC(id[k], ed[k], kwgt);
/* Update its boundary information and queue position */
if (bndptr[k] != -1) { /* If k was a boundary vertex */
if (ed[k] == 0) { /* Not a boundary vertex any more */
BNDDelete(nbnd, bndind, bndptr, k);
if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff) /* Remove it if in the queues */
PQueueDelete(&parts, k, oldgain);
}
else { /* If it has not been moved, update its position in the queue */
if (moved[k] == -1 && where[k] == from && vwgt[k] <= mindiff)
PQueueUpdate(&parts, k, oldgain, ed[k]-id[k]);
}
}
else {
//.........这里部分代码省略.........