本文整理汇总了C++中RETURN_ARRAYS_INCREMENT函数的典型用法代码示例。如果您正苦于以下问题:C++ RETURN_ARRAYS_INCREMENT函数的具体用法?C++ RETURN_ARRAYS_INCREMENT怎么用?C++ RETURN_ARRAYS_INCREMENT使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了RETURN_ARRAYS_INCREMENT函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: dnbinom_tau
/** negative log likelihood of negative binomial with mean and tau
\brief Negative binomial with mean=mu and variance = mu*tau
\author Mollie Brooks
\param x observed counts
\param mu is the predicted mean
\param tau is the overdispersion parameter like in the quasi-poisson. should be >1
\return negative log likelihood \f$ -( \ln(\Gamma(x+k))-\ln(\Gamma(k))-\ln(x!)+k\ln(k)+x\ln(\mu)-(k+x)\ln(k+\mu) )\f$
where \f$ k=\mu/(10^{-120}+\tau-1.0) \f$
\ingroup STATLIB
**/
dvariable dnbinom_tau(const dvector& x, const dvar_vector& mu, const dvar_vector& tau)
{
//the observed counts are in x
//mu is the predicted mean
//tau is the overdispersion parameter
RETURN_ARRAYS_INCREMENT();
int i,imin,imax;
imin=x.indexmin();
imax=x.indexmax();
dvariable loglike;
loglike=0.;
for(i = imin; i<=imax; i++)
{
if (value(tau(i))<1.0)
{
cerr<<"tau("<<i<<") is <=1.0 in dnbinom_tau()";
return(0.0);
}
loglike += log_negbinomial_density(x(i), mu(i), tau(i));
}
RETURN_ARRAYS_DECREMENT();
return(-loglike);
}
示例2: ghk
/**
* Description not yet available.
* \param
*/
dvariable ghk(const dvar_vector& lower,const dvar_vector& upper,
const dvar_matrix& Sigma, const dmatrix& eps,int _i)
{
RETURN_ARRAYS_INCREMENT();
int n=lower.indexmax();
dvar_matrix ch=choleski_decomp(Sigma);
dvar_vector l(1,n);
dvar_vector u(1,n);
ghk_test(eps,_i);
dvariable weight=1.0;
int k=_i;
{
l=lower;
u=upper;
for (int j=1;j<=n;j++)
{
l(j)/=ch(j,j);
u(j)/=ch(j,j);
dvariable Phiu=cumd_norm(u(j));
dvariable Phil=cumd_norm(l(j));
weight*=Phiu-Phil;
dvariable eta=inv_cumd_norm((Phiu-Phil)*eps(k,j)+Phil+1.e-30);
for (int i=j+1;i<=n;i++)
{
dvariable tmp=ch(i,j)*eta;
l(i)-=tmp;
u(i)-=tmp;
}
}
}
RETURN_ARRAYS_DECREMENT();
return weight;
}
示例3: ghk_m
/**
* Description not yet available.
* \param
*/
dvariable ghk_m(const dvar_vector& upper,const dvar_matrix& Sigma,
const dmatrix& eps)
{
RETURN_ARRAYS_INCREMENT();
int n=upper.indexmax();
int m=eps.indexmax();
dvariable ssum=0.0;
dvar_vector u(1,n);
dvar_matrix ch=choleski_decomp(Sigma);
for (int k=1;k<=m;k++)
{
dvariable weight=1.0;
u=upper;
for (int j=1;j<=n;j++)
{
u(j)/=ch(j,j);
dvariable Phiu=cumd_norm(u(j));
weight*=Phiu;
dvariable eta=inv_cumd_norm(1.e-30+Phiu*eps(k,j));
for (int i=j+1;i<=n;i++)
{
dvariable tmp=ch(i,j)*eta;
u(i)-=tmp;
}
}
ssum+=weight;
}
RETURN_ARRAYS_DECREMENT();
return ssum/m;
}
示例4: dpois
/**
\author Steven James Dean Martell UBC Fisheries Centre
\date 2011-06-24
\param k observed number
\param lambda epected mean of the distribution
\return returns the negative loglikelihood \f$ -k \ln( \lambda ) - \lambda + \ln(k!) \f$
\sa
**/
dvariable dpois(const prevariable& k, const prevariable& lambda)
{
RETURN_ARRAYS_INCREMENT();
dvariable tmp = -k*log(lambda)+lambda + gammln(k+1.);
RETURN_ARRAYS_DECREMENT();
return tmp;
}
示例5: old_cumd_norm
/**
* Description not yet available.
* \param
*/
dvariable old_cumd_norm(const prevariable& x)
{
RETURN_ARRAYS_INCREMENT();
const double b1=0.319381530;
const double b2=-0.356563782;
const double b3=1.781477937;
const double b4=-1.821255978;
const double b5=1.330274429;
const double p=.2316419;
if (x>=0)
{
dvariable u=1./(1+p*x);
dvariable y= ((((b5*u+b4)*u+b3)*u+b2)*u+b1)*u;
dvariable z=1.0-0.3989422804*exp(-.5*x*x)*y;
RETURN_ARRAYS_DECREMENT();
return z;
}
else
{
dvariable w=-x;
dvariable u=1./(1+p*w);
dvariable y= ((((b5*u+b4)*u+b3)*u+b2)*u+b1)*u;
dvariable z=0.3989422804*exp(-.5*x*x)*y;
RETURN_ARRAYS_DECREMENT();
return z;
}
}
示例6: ghk_choleski
/**
* Description not yet available.
* \param
*/
dvariable ghk_choleski(const dvar_vector& lower,const dvar_vector& upper,
const dvar_matrix& ch, const dmatrix& eps)
{
RETURN_ARRAYS_INCREMENT();
int n=lower.indexmax();
int m=eps.indexmax();
dvariable ssum=0.0;
dvar_vector l(1,n);
dvar_vector u(1,n);
for (int k=1;k<=m;k++)
{
dvariable weight=1.0;
l=lower;
u=upper;
for (int j=1;j<=n;j++)
{
l(j)/=ch(j,j);
u(j)/=ch(j,j);
dvariable Phiu=cumd_norm(u(j));
dvariable Phil=cumd_norm(l(j));
weight*=Phiu-Phil;
dvariable eta=inv_cumd_norm((Phiu-Phil)*eps(k,j)+Phil);
for (int i=j+1;i<=n;i++)
{
dvariable tmp=ch(i,j)*eta;
l(i)-=tmp;
u(i)-=tmp;
}
}
ssum+=weight;
}
RETURN_ARRAYS_DECREMENT();
return ssum/m;
}
示例7: negbinomial_density
/** Negative bionomial density; variable objects.
A local parameter r is used to make it robust.
\f$ r=\frac{\mu}{10.0^{-120}+\tau-1.0} \f$
\ingroup PDF
\param x
\param mu
\param tau
\return Log of NegativeBinomial density. \f$ \frac{\Gamma(x+r)}{\Gamma(r)x!}(\frac{r}{r+\mu})^r(\frac{\mu}{r+\mu})^x \f$
*/
dvariable negbinomial_density(double x,const prevariable& mu,
const prevariable& tau)
{
if (value(tau)-1.0<=0.0)
{
cerr << "tau <=1 in log_negbinomial_density " << endl;
ad_exit(1);
}
RETURN_ARRAYS_INCREMENT();
dvariable r=mu/(1.e-120+(tau-1));
dvariable tmp;
//tmp=exp(gammln(x+r)-gammln(r) -gammln(x+1)
// +r*log(r)+x*log(mu)-(r+x)*log(r+mu));
tmp=gammln(x+r);
tmp-=gammln(r);
tmp-=gammln(x+1);
tmp+=r*log(r);
tmp+=x*log(mu);
tmp-=(r+x)*log(r+mu);
tmp=exp(tmp);
RETURN_ARRAYS_DECREMENT();
return tmp;
}
示例8: mean
/**
* Description not yet available.
* \param
*/
dvariable mean(const dvar_vector& v)
{
dvariable tmp;
RETURN_ARRAYS_INCREMENT();
tmp=sum(v)/double(v.size());
RETURN_ARRAYS_DECREMENT();
return(tmp);
}
示例9: norm2
/**
* Description not yet available.
* \param
*/
dvariable norm2(const dvar_vector& t1)
{
RETURN_ARRAYS_INCREMENT();
dvariable tmp;
tmp=t1*t1;
RETURN_ARRAYS_DECREMENT();
return(tmp);
}
示例10: A
/** generalized Ricker function, first parameerization; vectorized
\param x independent variable; data vector
\param x0 ; differentiable vector
\param A ; differentiable vector
\param alpha ; differentiable scalar
\return \f$ A(\frac{x}{x0}e^{(1.0-\frac{x}{x0})})^{\alpha} \f$
\ingroup ECOL
**/
dvar_vector generalized_Ricker1(const dvector& x, const dvar_vector& x0, const dvar_vector& A, const prevariable& alpha)
{
RETURN_ARRAYS_INCREMENT();
dvar_vector y;
y=elem_prod(A, pow(elem_prod(elem_div(x, x0), exp(1.0-elem_div(x, x0))), alpha));
RETURN_ARRAYS_DECREMENT();
return (y);
}
示例11: a
/** monomoleular function; vectorized
\param x independent variable; data vector
\param a ; differentiable vector
\param b ; differentiable vector
\return \f$ a(1-e^{-bx}) \f$
\ingroup ECOL
**/
dvar_vector monomolecular(const dvector& x, const dvar_vector& a, const dvar_vector& b)
{
RETURN_ARRAYS_INCREMENT();
dvar_vector y;
y=elem_prod(a, 1.0-exp(-1.0*elem_prod(b,x)));
RETURN_ARRAYS_DECREMENT();
return (y);
}
示例12: logisticK
/** ecologically parameterized logistic function with carrying capacity K; vectorized
\param t independent variable; data vector
\param K carrying capacity; differentiable vector
\param r growth rate; differentiable vector
\param n0 initial population size at t=0; differentiable scalar
\return \f$ \frac{K}{1+(\frac{K}{n0}-1)e^{-rt}} \f$
\ingroup ECOL
**/
dvar_vector logisticK( const dvector& t, const dvar_vector& K, const dvar_vector& r, const prevariable& n0)
{
RETURN_ARRAYS_INCREMENT();
dvar_vector y;
y=elem_div(K, 1.0 + elem_prod(K/n0-1.0, exp(-1.0*elem_prod(r,t))));
RETURN_ARRAYS_DECREMENT();
return (y);
}
示例13: logistic
/** logistic function; vectorized
\param x independent variable; data vector
\param a ; differentiable vector
\param b ; differentiable scalar
\return \f$ \frac{e^{a+bx}}{(1+e^{a+bx})} \f$
\ingroup ECOL
**/
dvar_vector logistic(const dvector& x, const dvar_vector& a, const prevariable& b)
{
RETURN_ARRAYS_INCREMENT();
dvar_vector y;
y=elem_div(exp(a+b*x), 1.0+exp(a+b*x));
RETURN_ARRAYS_DECREMENT();
return (y);
}
示例14: Ricker
/** Ricker function; vectorized
\param x independent variable; data vector
\param a ; differentiable vector
\param b ; differentiable vector
\return \f$ axe^{-bx} \f$
\ingroup ECOL
**/
dvar_vector Ricker(const dvector& x, const dvar_vector& a, const dvar_vector& b)
{
RETURN_ARRAYS_INCREMENT();
dvar_vector y;
y=elem_prod(a, elem_prod(x, exp(-1.0*elem_prod(b, x))));
RETURN_ARRAYS_DECREMENT();
return (y);
}
示例15: dgamma
dvariable dgamma(const prevariable& x, const double& a, const double& b)
{
//returns the gamma density with a & b as parameters
RETURN_ARRAYS_INCREMENT();
dvariable t1 = 1./(pow(b,a)*mfexp(gammln(a)));
dvariable t2 = (a-1.)*log(x)-x/b;
RETURN_ARRAYS_DECREMENT();
return(t1*mfexp(t2));
}