本文整理汇总了C++中PyArray_Check函数的典型用法代码示例。如果您正苦于以下问题:C++ PyArray_Check函数的具体用法?C++ PyArray_Check怎么用?C++ PyArray_Check使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了PyArray_Check函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: sprintf
/** Makes sure a Numpy Array has the given type and dimension. Raises
a Python exception if it does not.
@param type_num See http://docs.scipy.org/doc/numpy/reference/c-api.dtype.html eg: NPY_DOUBLE */
PyArrayObject *check_dimensions(
PyObject *ovec,
std::string const &vname,
int type_num,
int ndim,
int const *dims,
int N_ndim)
{
// Check user and template #-dimensions match
if (ndim != N_ndim) {
char buf[200 + vname.size()];
sprintf(buf, "check_dimensions(%s): Number of template dimensions (%d) must match number of array dimensions (%d)", vname.c_str(), N_ndim, ndim);
fprintf(stderr, "%s\n", buf);
PyErr_SetString(PyExc_ValueError, buf);
throw std::exception();
}
// Check that it's not null
if (!ovec) {
std::string serr = "check_dimensions: Array object " + vname + " is null";
fprintf(stderr, "%s\n", serr.c_str());
PyErr_SetString(PyExc_ValueError, serr.c_str());
throw std::exception();
}
// Check that it's type PyArrayObject
if (!PyArray_Check(ovec)) {
std::string serr = "check_dimensions: Object " + vname + " is not a Numpy array";
fprintf(stderr, "%s\n", serr.c_str());
PyErr_SetString(PyExc_ValueError,
serr.c_str());
throw std::exception();
}
PyArrayObject *vec = (PyArrayObject *)ovec;
// Check the data type and number of dimensions
if (vec->descr->type_num != type_num || vec->nd != ndim) {
char buf[200 + vname.size()];
sprintf(buf, "check_dimensions: %s must be of type_num %d and %d dimensions (its is of type_num=%d and %d dimensions).", vname.c_str(), type_num, ndim, vec->descr->type_num, vec->nd);
fprintf(stderr, "%s\n", buf);
PyErr_SetString(PyExc_ValueError, buf);
throw std::exception();
}
// Check the dimensions themselves
for (int i=0; i<ndim; ++i) {
if (dims[i] < 0) continue; // Don't check this dimension
if (dims[i] != vec->dimensions[i]) {
char buf[200 + vname.size()];
sprintf(buf,
"%s: Array dimension #%d is %d, should be %d",
vname.c_str(), i, vec->dimensions[i], dims[i]);
fprintf(stderr, "%s\n", buf);
PyErr_SetString(PyExc_ValueError, buf);
throw std::exception();
}
}
return vec;
}
示例2: PyLWPR_S_init_alpha
static int PyLWPR_S_init_alpha(PyLWPR *self,PyObject *value, void *closure) {
if (!PyArray_Check(value)) {
PyErr_SetString(PyExc_TypeError, "Attribute 'init_alpha' must be a numpy array.");
return -1;
}
return set_matrix_from_array(self->model.nIn, self->model.nInStore, self->model.nIn,
self->model.init_alpha, (PyArrayObject *)value);
}
示例3: convert
static void convert(PyObject *src, T &dst) {
if (PyArray_Check(src)) {
Converter<PyArrayObject*, T>::convert(src, dst);
}
else {
throw std::string("Cannot convert object!");
}
}
示例4: string
static PyArrayObject *cast(PyObject *obj) {
if (PyArray_Check(obj)) {
return (PyArrayObject*)obj;
}
else {
throw std::string("Object must be a Python array!");
}
}
示例5: td_py_get_eltype
td_tag_t td_py_get_eltype(void *v)
{
if (PyArray_Check( (PyObject *) v)){
PyArrayObject *arr = (PyArrayObject *)v;
return numpy_type_to_td(PyArray_TYPE(v));
}
return TD_UNKNOWN;
}
示例6: _IsWriteable
NPY_NO_EXPORT npy_bool
_IsWriteable(PyArrayObject *ap)
{
PyObject *base=PyArray_BASE(ap);
#if defined(NPY_PY3K)
Py_buffer view;
#else
void *dummy;
Py_ssize_t n;
#endif
/* If we own our own data, then no-problem */
if ((base == NULL) || (PyArray_FLAGS(ap) & NPY_ARRAY_OWNDATA)) {
return NPY_TRUE;
}
/*
* Get to the final base object
* If it is a writeable array, then return TRUE
* If we can find an array object
* or a writeable buffer object as the final base object
* or a string object (for pickling support memory savings).
* - this last could be removed if a proper pickleable
* buffer was added to Python.
*
* MW: I think it would better to disallow switching from READONLY
* to WRITEABLE like this...
*/
while(PyArray_Check(base)) {
if (PyArray_CHKFLAGS((PyArrayObject *)base, NPY_ARRAY_OWNDATA)) {
return (npy_bool) (PyArray_ISWRITEABLE((PyArrayObject *)base));
}
base = PyArray_BASE((PyArrayObject *)base);
}
/*
* here so pickle support works seamlessly
* and unpickled array can be set and reset writeable
* -- could be abused --
*/
if (PyString_Check(base)) {
return NPY_TRUE;
}
#if defined(NPY_PY3K)
if (PyObject_GetBuffer(base, &view, PyBUF_WRITABLE|PyBUF_SIMPLE) < 0) {
PyErr_Clear();
return NPY_FALSE;
}
PyBuffer_Release(&view);
#else
if (PyObject_AsWriteBuffer(base, &dummy, &n) < 0) {
PyErr_Clear();
return NPY_FALSE;
}
#endif
return NPY_TRUE;
}
示例7: fast_scalar_power
/* optimize float array or complex array to a scalar power */
static PyObject *
fast_scalar_power(PyArrayObject *a1, PyObject *o2, int inplace)
{
double exp;
if (PyArray_Check(a1) && array_power_is_scalar(o2, &exp)) {
PyObject *fastop = NULL;
if (PyArray_ISFLOAT(a1) || PyArray_ISCOMPLEX(a1)) {
if (exp == 1.0) {
/* we have to do this one special, as the
"copy" method of array objects isn't set
up early enough to be added
by PyArray_SetNumericOps.
*/
if (inplace) {
Py_INCREF(a1);
return (PyObject *)a1;
} else {
return PyArray_Copy(a1);
}
}
else if (exp == -1.0) {
fastop = n_ops.reciprocal;
}
else if (exp == 0.0) {
fastop = n_ops.ones_like;
}
else if (exp == 0.5) {
fastop = n_ops.sqrt;
}
else if (exp == 2.0) {
fastop = n_ops.square;
}
else {
return NULL;
}
if (inplace) {
return PyArray_GenericInplaceUnaryFunction(a1, fastop);
} else {
return PyArray_GenericUnaryFunction(a1, fastop);
}
}
else if (exp==2.0) {
fastop = n_ops.multiply;
if (inplace) {
return PyArray_GenericInplaceBinaryFunction
(a1, (PyObject *)a1, fastop);
}
else {
return PyArray_GenericBinaryFunction
(a1, (PyObject *)a1, fastop);
}
}
}
return NULL;
}
示例8: evaluateTwoDimXY
/**
* Function to call to evaluate model
* @param args: input numpy array [x[],y[]]
* @return: numpy array object
*/
static PyObject * evaluateTwoDimXY( SCCrystalModel* model,
PyArrayObject *x, PyArrayObject *y)
{
PyArrayObject *result;
int x_len, y_len, dims[1];
//check validity of input vectors
if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
|| y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
|| y->dimensions[0] != x->dimensions[0]){
const char * message= "evaluateTwoDimXY expect 2 numpy arrays";
PyErr_SetString(PyExc_ValueError , message);
return NULL;
}
if (PyArray_Check(x) && PyArray_Check(y)) {
x_len = dims[0]= x->dimensions[0];
y_len = dims[0]= y->dimensions[0];
// Make a new double matrix of same dims
result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
if (result == NULL){
const char * message= "Could not create result ";
PyErr_SetString(PyExc_RuntimeError , message);
return NULL;
}
/* Do the calculation. */
#pragma omp parallel for
for (int i=0; i< x_len; i++) {
double x_value = *(double *)(x->data + i*x->strides[0]);
double y_value = *(double *)(y->data + i*y->strides[0]);
double *result_value = (double *)(result->data +
i*result->strides[0]);
*result_value = (*model)(x_value, y_value);
}
return PyArray_Return(result);
}else{
PyErr_SetString(CSCCrystalModelError,
"CSCCrystalModel.evaluateTwoDimXY couldn't run.");
return NULL;
}
}
示例9: new_points
/*
* new_points
*
* Stores the items of a Numerical Python array or a Python sequence in a
* C vector of double values. Returns the number of elements or -1.
* The C vector must be freed with g_free().
*/
static gint
new_points(PyObject *sequence, gdouble **out_points, int *out_array_type)
{
int n = 0;
gdouble *points = NULL;
*out_array_type = PyArray_NOTYPE;
#ifndef WITHOUT_NUMPY
if (PyArray_Check(sequence)) {
PyArrayObject *array;
array = (PyArrayObject *)
PyArray_ContiguousFromObject(sequence, PyArray_DOUBLE, 1, 1);
if (!array)
return -1;
n = array->dimensions[0];
points = g_new(gdouble, n);
memcpy(points, array->data, n * sizeof(double));
Py_DECREF(array);
*out_array_type = ((PyArrayObject *) sequence)->descr->type_num;
} else
#endif
if (PySequence_Check(sequence)) {
n = PySequence_Length(sequence);
if (n > 0) {
int i;
points = g_new(gdouble, n);
for (i = 0; i < n; ++i) {
PyObject *item, *value;
item = PySequence_GetItem(sequence, i);
if (PyFloat_Check(item)) {
points[i] = PyFloat_AS_DOUBLE(item);
} else if (PyNumber_Check(item)
&& (value = PyNumber_Float(item))) {
points[i] = PyFloat_AS_DOUBLE(value);
Py_DECREF(value);
} else {
PyErr_SetString(PyExc_TypeError,
"sequence items must be numbers");
Py_DECREF(item);
g_free(points);
points = NULL;
return -1;
}
Py_DECREF(item);
}
}
} else if (sequence != Py_None) {
PyErr_SetString(PyExc_TypeError, "argument must be sequence or None");
return -1;
}
*out_points = points;
return n;
}
示例10: try_pyarr_from_string
static int try_pyarr_from_string(PyObject *obj,const string str) {
PyArrayObject *arr = NULL;
if (PyArray_Check(obj) && (!((arr = (PyArrayObject *)obj) == NULL)))
{ STRINGCOPYN(arr->data,str,PyArray_NBYTES(arr)); }
return 1;
capi_fail:
PRINTPYOBJERR(obj);
PyErr_SetString(_lbfgsb_error,"try_pyarr_from_string failed");
return 0;
}
示例11: array
/*NUMPY_API
Compute the size of an array (in number of items)
*/
NPY_NO_EXPORT intp
PyArray_Size(PyObject *op)
{
if (PyArray_Check(op)) {
return PyArray_SIZE((PyArrayObject *)op);
}
else {
return 0;
}
}
示例12: PyArray_CopyObject
/*NUMPY_API*/
NPY_NO_EXPORT int
PyArray_CopyObject(PyArrayObject *dest, PyObject *src_object)
{
PyArrayObject *src;
PyObject *r;
int ret;
/*
* Special code to mimic Numeric behavior for
* character arrays.
*/
if (dest->descr->type == PyArray_CHARLTR && dest->nd > 0 \
&& PyString_Check(src_object)) {
intp n_new, n_old;
char *new_string;
PyObject *tmp;
n_new = dest->dimensions[dest->nd-1];
n_old = PyString_Size(src_object);
if (n_new > n_old) {
new_string = (char *)malloc(n_new);
memmove(new_string, PyString_AS_STRING(src_object), n_old);
memset(new_string + n_old, ' ', n_new - n_old);
tmp = PyString_FromStringAndSize(new_string, n_new);
free(new_string);
src_object = tmp;
}
}
if (PyArray_Check(src_object)) {
src = (PyArrayObject *)src_object;
Py_INCREF(src);
}
else if (!PyArray_IsScalar(src_object, Generic) &&
PyArray_HasArrayInterface(src_object, r)) {
src = (PyArrayObject *)r;
}
else {
PyArray_Descr* dtype;
dtype = dest->descr;
Py_INCREF(dtype);
src = (PyArrayObject *)PyArray_FromAny(src_object, dtype, 0,
dest->nd,
FORTRAN_IF(dest),
NULL);
}
if (src == NULL) {
return -1;
}
ret = PyArray_MoveInto(dest, src);
Py_DECREF(src);
return ret;
}
示例13: py_type_to_td
static td_tag_t py_type_to_td(PyObject *pVal)
{
if (PyInt_Check(pVal)){
#if INT32_MAX==LONG_MAX
return TD_INT32;
#else
return longlong_to_td(PyInt_AS_LONG(pVal));
#endif
}
else if (PyLong_Check(pVal)){
PyObject *pErr;
long long v;
v = PyLong_AsLongLong(pVal);
if ( v == -1 && PyErr_Occurred()) {
// could not eval as long long try unsigned long long later
PyErr_Clear();
}
else {
return longlong_to_td(PyInt_AS_LONG(v));
}
unsigned long long vv;
vv = PyLong_AsUnsignedLongLong(pVal);
if ( v == (unsigned long long) -1 && PyErr_Occurred() ) {
PyErr_Clear();
return TD_OBJECT;
}
else {
return TD_UINT64;
}
}
else if (PyFloat_Check(pVal)) {
return TD_DOUBLE;
}
else if (PyUnicode_Check(pVal)){
PyObject *pStr;
pStr = PyUnicode_AsUTF8String(pVal);
if ( pStr && PyErr_Occurred() ){
PyErr_Clear();
return TD_OBJECT;
}
else {
return TD_UTF8;
}
}
else if (PyString_Check(pVal)) {
return TD_UTF8;
}
else if (PyArray_Check(pVal)) {
return TD_ARRAY;
}
return TD_OBJECT;
}
示例14: PyGILState_Ensure
PyArrayObject *call_funGetData(PyObject *func, double size)
{
PyObject *args;
PyObject *kwargs;
PyObject *result;
PyArrayObject *retval;
/* Make sure we own the GIL */
PyGILState_STATE state = PyGILState_Ensure();
/* Verify that func is a proper callable */
if (!PyCallable_Check(func)) {
fprintf(stderr, "call_func: expected a callable\n");
goto fail;
}
/* Build arguments */
args = Py_BuildValue("(d)", size);
kwargs = NULL;
/* Call the function */
result = PyObject_Call(func, args, kwargs);
Py_DECREF(args);
Py_XDECREF(kwargs);
/* Check for Python exceptions (if any) */
if (PyErr_Occurred()) {
PyErr_Print();
goto fail;
}
/* Verify the result is a float object */
if (!PyArray_Check( result )) {
fprintf( stderr, "call_func: callable didn't return a array\n" );
goto fail;
}
retval = (PyArrayObject*)PyArray_FROM_OTF( result, NPY_DOUBLE, NPY_ARRAY_IN_ARRAY );
/* Create the return value */
//retval = (PyArrayObject *)(result);
//col = (double*)PyArray_GETPTR2( retval, TICA_FIRST_ROW, 0);
Py_DECREF(result);
/* Restore previous GIL state and return */
PyGILState_Release(state);
return retval;
fail:
Py_XDECREF(result);
PyGILState_Release(state);
return NULL;
abort(); // Change to something more appropriate
}
示例15: python_convert
// assume numDerivVars x numDerivVars as helper in Hessian conversion
// and lower triangular storage in Hessians
// returns false if conversion failed
bool NRELPythonApplicInterface::python_convert(PyObject *pym,
RealSymMatrix &rm)
{
// for now, the numpy case isn't called (since handled in calling
// Hessian array convert)
#ifdef DAKOTA_PYTHON_NUMPY
if (userNumpyFlag) {
if (!PyArray_Check(pym) || PyArray_NDIM(pym) != 2 ||
PyArray_DIM(pym,0) != numDerivVars ||
PyArray_DIM(pym,1) != numDerivVars) {
Cerr << "Python numpy array not 2D of size " << numDerivVars << "x"
<< numDerivVars << "." << std::endl;
return(false);
}
PyArrayObject *pao = (PyArrayObject *) pym;
for (int i=0; i<numDerivVars; ++i)
for (int j=0; j<=i; ++j)
rm(i,j) = *(double *)(pao->data + i*(pao->strides[0]) +
j*(pao->strides[1]));
}
else
#endif
{
if (!PyList_Check(pym) || PyList_Size(pym) != numDerivVars) {
Cerr << "Python matrix must have " << numDerivVars << "rows." <<std::endl;
return(false);
}
PyObject *pyv, *val;
for (int i=0; i<numDerivVars; ++i) {
pyv = PyList_GetItem(pym, i);
if (!PyList_Check(pyv) || PyList_Size(pyv) != numDerivVars) {
Cerr << "Python vector must have length " << numDerivVars << "."
<< std::endl;
return(false);
}
for (int j=0; j<=i; ++j) {
val = PyList_GetItem(pyv, j);
if (PyFloat_Check(val))
rm(i,j) = PyFloat_AsDouble(val);
else if (PyInt_Check(val))
rm(i,j) = (double) PyInt_AsLong(val);
else {
Cerr << "Unsupported Python data type converting vector."
<< std::endl;
Py_DECREF(val);
return(false);
}
}
}
}
return(true);
}