本文整理汇总了C++中Phi函数的典型用法代码示例。如果您正苦于以下问题:C++ Phi函数的具体用法?C++ Phi怎么用?C++ Phi使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Phi函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Parenth
TString MillePedeTrees::PhiSwaps(double swapAround, const TString &tree1, const TString &tree2) const
{
// 'true'/1 if one phi is above, one below 'swapAround'
return
Parenth((Phi(tree1) += Form(">%f", swapAround)) +=
AndL() += Phi(tree2) += Form("<%f", swapAround))
+= OrL()
+= Parenth((Phi(tree1) += Form("<%f", swapAround)) +=
AndL() += Phi(tree2) += Form(">%f", swapAround));
}
示例2: chisq
double chisq(double z,int n)
{double s=0.,t=1.,q,h;
int i;
if(z<=0.) return (0.);
if(n>3000) return Phi((exp(log(z/n)/3.)-1.+2./(9*n))/sqrt(2./(9*n)));
h=.5*z;
if(n&1){q=sqrt(z); t=2*exp(-.5*z-.918938533204673)/q;
for(i=1;i<=(n-2);i+=2){ t=t*z/i; s+=t;}
return(2*Phi(q)-1-s);
}
for(i=1;i<n/2;i++) { t=t*h/i; s+=t;}
return (1.-(1+s)*exp(-h));
}
示例3: gspmodel
void gspmodel(void)
{
real beta_a, mcut, vcut, vfac;
static real *sig2 = NULL;
real r, vmax2, sigr, sig, x, y, vr, v1, v2;
bodyptr bp;
vector rhat, vec1, vec2, vtmp;
beta_a = getdparam("beta_a");
assert(beta_a <= 1.0);
nbody = getiparam("nbody");
assert(nbody > 0);
mcut = getdparam("mcut");
assert(0.0 < mcut && mcut <= 1.0);
vcut = getdparam("vcut");
assert(vcut > 0.0);
if (sig2 == NULL)
sig2 = calc_sig2_gsp(gsp, ggsp, beta_a);
if (btab == NULL)
btab = (bodyptr) allocate(nbody * SizeofBody);
vfac = rsqrt(1 - beta_a);
for (bp = btab; bp < NthBody(btab, nbody); bp = NextBody(bp)) {
Mass(bp) = gsp->mtot / nbody;
r = r_mass_gsp(gsp, xrandom(0.0, mcut * gsp->mtot));
vmax2 = -2 * rsqr(vcut) * phi_gsp(ggsp, r);
if (vfac > 1.0)
vmax2 = vmax2 / rsqr(vfac);
sigr = rsqrt(sig2_gsp(gsp, ggsp, beta_a, sig2, r));
sig = fixsigma(sigr, rsqrt(vmax2));
do {
vr = grandom(0.0, sig);
v1 = grandom(0.0, sig);
v2 = grandom(0.0, sig);
} while (vr*vr + v1*v1 + v2*v2 > vmax2);
picktriad(rhat, vec1, vec2);
MULVS(Pos(bp), rhat, r);
MULVS(Vel(bp), rhat, vr);
MULVS(vtmp, vec1, v1 * vfac);
ADDV(Vel(bp), Vel(bp), vtmp);
MULVS(vtmp, vec2, v2 * vfac);
ADDV(Vel(bp), Vel(bp), vtmp);
Phi(bp) = phi_gsp(ggsp, r);
Aux(bp) = Phi(bp) + 0.5 * dotvp(Vel(bp), Vel(bp));
}
if (getbparam("besort"))
qsort(btab, nbody, SizeofBody, berank);
if (getbparam("zerocm"))
snapcenter(btab, nbody, MassField.offset);
if (! strnull(getparam("auxvar")))
setauxvar(btab, nbody);
}
示例4: hqmforces
local void hqmforces(bodyptr btab, int nbody, real M, real a, real b,
real tol)
{
bodyptr bp;
double r, mr3i, params[4], phi0, aR0, az0, abserr[3];
static gsl_integration_workspace *wksp = NULL;
gsl_function FPhi, F_aR, F_az;
static double maxerr = 0.0;
int stat[3];
if (a == b) { // spherical case is easy!
for (bp = btab; bp < NthBody(btab, nbody); bp = NextBody(bp)) {
r = absv(Pos(bp));
Phi(bp) = - M / (a + r);
mr3i = M * rsqr(r / (a + r)) / rqbe(r);
MULVS(Acc(bp), Pos(bp), - mr3i);
}
} else { // flattened case is harder
if (wksp == NULL) { // on first call, initialze
wksp = gsl_integration_workspace_alloc(1000);
gsl_set_error_handler_off(); // handle errors below
}
FPhi.function = &intPhi;
F_aR.function = &int_aR;
F_az.function = &int_az;
FPhi.params = F_aR.params = F_az.params = params;
a2(params) = rsqr(a);
b2(params) = rsqr(b);
for (bp = btab; bp < NthBody(btab, nbody); bp = NextBody(bp)) {
R(params) = rsqrt(rsqr(Pos(bp)[0]) + rsqr(Pos(bp)[1]));
z(params) = Pos(bp)[2];
stat[0] = gsl_integration_qagiu(&FPhi, 0.0, tol, 0.0,
1000, wksp, &phi0, &abserr[0]);
stat[1] = gsl_integration_qagiu(&F_aR, 0.0, tol, 0.0,
1000, wksp, &aR0, &abserr[1]);
stat[2] = gsl_integration_qagiu(&F_az, 0.0, tol, 0.0,
1000, wksp, &az0, &abserr[2]);
if (stat[0] || stat[1] || stat[2]) // any errors reported?
for (int i = 0; i < 3; i++)
if (stat[i] != 0 && abserr[i] > maxerr) {
eprintf("[%s.hqmforces: warning: %s abserr[%d] = %g]\n",
getprog(), gsl_strerror(stat[i]), i+1, abserr[i]);
maxerr = abserr[i]; // adjust reporting threshold
}
Phi(bp) = - M * phi0;
Acc(bp)[0] = - M * (Pos(bp)[0] / R(params)) * aR0;
Acc(bp)[1] = - M * (Pos(bp)[1] / R(params)) * aR0;
Acc(bp)[2] = - M * az0;
}
}
}
示例5: compute
void RBFInterpolation::interpolate(
const matrix & values,
matrix & valuesInterpolation
)
{
if ( cpu && not computed )
compute( positions, positionsInterpolation );
assert( computed );
if ( cpu )
{
matrix B, valuesLU( n_A, values.cols() ), Phi( n_B, n_A );
if ( polynomialTerm )
{
Phi.resize( n_B, n_A + dimGrid + 1 );
valuesLU.resize( n_A + dimGrid + 1, values.cols() );
}
valuesLU.setZero();
valuesLU.topLeftCorner( values.rows(), values.cols() ) = values;
B = lu.solve( valuesLU );
evaluatePhi( positions, positionsInterpolation, Phi );
if ( polynomialTerm )
{
// Include polynomial contributions in matrix Phi
for ( int i = 0; i < Phi.rows(); i++ )
Phi( i, n_A ) = 1;
Phi.topRightCorner( n_B, dimGrid ) = positionsInterpolation.block( 0, 0, n_B, dimGrid );
}
valuesInterpolation.noalias() = Phi * B;
}
if ( not cpu )
{
valuesInterpolation.noalias() = Hhat * values;
}
assert( valuesInterpolation.rows() == n_B );
assert( values.cols() == valuesInterpolation.cols() );
}
示例6: polymodel
void polymodel(void)
{
gsl_interp_accel *pmsplacc = gsl_interp_accel_alloc();
bodyptr p;
real rad, phi, vel, psi, vr, vp, a, E, J;
vector rhat, vtmp, vper;
for (p = btab; p < NthBody(btab, nbody); p = NextBody(p)) {
rad = rad_m(xrandom(0.0, mtot));
phi = gsl_spline_eval(pmspline, (double) rad, pmsplacc);
vel = pick_v(phi);
psi = pick_psi();
vr = vel * rcos(psi);
vp = vel * rsin(psi);
Mass(p) = mtot / nbody;
pickshell(rhat, NDIM, 1.0);
MULVS(Pos(p), rhat, rad);
pickshell(vtmp, NDIM, 1.0);
a = dotvp(vtmp, rhat);
MULVS(vper, rhat, - a);
ADDV(vper, vper, vtmp);
a = absv(vper);
MULVS(vper, vper, vp / a);
MULVS(Vel(p), rhat, vr);
ADDV(Vel(p), Vel(p), vper);
Phi(p) = phi;
E = phi + 0.5 * rsqr(vel);
J = rad * ABS(vp);
Aux(p) = Kprime * rpow(phi1 - E, npol - 1.5) * rpow(J, 2 * mpol);
}
gsl_interp_accel_free(pmsplacc);
}
示例7: sum1force
local void sum1force(bodyptr btab, int nbody, int i0, real eps2)
{
bodyptr bp0, bp;
double phi0, acc0[NDIM];
vector pos0, dr;
real dr2, drab, mri, mr3i;
int j;
bp0 = NthBody(btab, i0);
phi0 = 0.0;
CLRV(acc0);
SETV(pos0, Pos(bp0));
for (j = 0; j < nbody; j++)
if (j != i0) {
bp = NthBody(btab, j);
DOTPSUBV(dr2, dr, Pos(bp), pos0);
dr2 += eps2;
drab = rsqrt(dr2);
mri = Mass(bp) / drab;
phi0 -= mri;
mr3i = mri / dr2;
ADDMULVS(acc0, dr, mr3i);
}
Phi(bp0) = phi0;
SETV(Acc(bp0), acc0);
}
示例8: main
/********************************************************************
* The executable "e" runs as: ./e <File> <Size>, where:
* File: is the text file with the network (graph) info
* Size: is the number of Monte Carlo trials.
* Seed: is the seed for the random numbers generator
********************************************************************/
int main(int argc, char *argv[]){
int i,j,k,S,size;
double X,V,Q,t;
pt_net n;
clock_t ti;
if(argc<4){
printf("\n Some input data is missing! Run as:\n");
printf("\n ./executable <File> <Size> <Seed>\n\n");
exit(1);
}
if(argc>4){
printf("\n You've entered more data than necessary! Run as:\n\n");
printf("\n ./executable <File> <Size> <Seed>\n\n");
exit(1);
}
if((size=atoi(argv[2]))<1){
printf("\n The number of trials can not be less than 1! Run as:\n");
printf("\n ./executable <File> <Size> <Seed>\n\n");
exit(1);
}
if((seed=atoi(argv[3]))<0){
printf("\n The seed can not be negative! Run as:\n");
printf("\n ./executable <File> <Size> <Seed>\n\n");
exit(1);
}
n=Initialize(argv[1]);
//---------------- THE CRUDE MONTE CARLO ALGORITHM ----------------
ti = clock();
S=0;
X=0.0;
V=0.0;
for(k=0;k<size;k++){
Fail(n);
X=(1-Phi(n));
S+=X;
V+=X*X;
}
Q=(double)S/size;
V=(V/size-Q*Q)/(size-1);
t=(double)(clock()-ti)/CLOCKS_PER_SEC;
//------------------ PRINT OF OUTPUT AND RESULTS ------------------
printf("\n CRUDE MONTE CARLO:");
printf("\n Network: %s Replications: %d ExecTime=%f",argv[1],size,t);
printf("\n\n Q =%1.16f = %1.2e (Unreliability)",Q,Q);
printf("\n V =%1.16f = %1.2e (Variance)",V,V);
printf("\n SD=%1.16f = %1.2e (Standard Deviation)",sqrt(V),sqrt(V));
printf("\n RE=%1.16f = %1.2f%% (Relative Error)",sqrt(V)/Q,100*sqrt(V)/Q);
printf("\n ------------------------------------------------------------\n\n");
//-----------------------------------------------------------------
return 0;
}
示例9: hackgrav
EXTERN_ENV
#define global extern
#include "stdinc.h"
/*
* HACKGRAV: evaluate grav field at a given particle.
*/
void hackgrav(bodyptr p, long ProcessId)
{
Local[ProcessId].pskip = p;
SETV(Local[ProcessId].pos0, Pos(p));
Local[ProcessId].phi0 = 0.0;
CLRV(Local[ProcessId].acc0);
Local[ProcessId].myn2bterm = 0;
Local[ProcessId].mynbcterm = 0;
Local[ProcessId].skipself = FALSE;
hackwalk(ProcessId);
Phi(p) = Local[ProcessId].phi0;
SETV(Acc(p), Local[ProcessId].acc0);
#ifdef QUADPOLE
Cost(p) = Local[ProcessId].myn2bterm + NDIM * Local[ProcessId].mynbcterm;
#else
Cost(p) = Local[ProcessId].myn2bterm + Local[ProcessId].mynbcterm;
#endif
}
示例10: rotate_data
//function reads in the real and imaginary data, and rotates them to output signal into R and noise into I.
void rotate_data(double * R, double * I, const int size)
{
double phi;
double sumR=0, sumI=0;
std::complex<double> m(0,-1);
for(unsigned int h=0; h<30;h++)
{
sumR=sumR+R[h];
sumI=sumI+I[h];
}
phi = atan2(sumI,sumR);
std::complex<double> Phi(phi,0);
for(unsigned int ii=0;ii<size;ii++)
{
std::complex<double> M(R[ii],I[ii]);
M=M*exp(m*Phi);
R[ii]=real(M);
I[ii]=imag(M);
}
}
示例11: trajectory
inline void trajectory(double* act) {
/*trajectory tau, t, d, p*/
int k, j = 1;
p_str[1].t = p_str[1].p = 0.;
while ( p_str[j].t <= Tmax ) {
p_str[j].tau = log( 1/(RAND() + 0.0000001 ) ) / kappa;
p_str[j].d = randd();
j++;
p_str[j].t = p_str[j-1].t + p_str[j-1].tau;
p_str[j].p = p_str[j-1].p + p_str[j-1].d;
}
if (j>1) p_str[j-1].tau = Tmax - p_str[j-1].t;
else p_str[j].t = Tmax;
/*end trajectory*/
j--;
if (j == 1) act[1] = act[2] = act[3] = act[4] = 0.;
else {
act[1] = j-1;
act[2] = p_str[j].p;
act[3] = act[4] = 0.;
for (k=1; k<=j-1; k++) {
act[3] += p_str[k].tau * (p_str[k].p + E0*(p_str[k+1].t-p_str[k].tau/2.));
act[4] += Phi(p_str[k].d) +
( M_PI + p_str[k].tau*( p_str[k].p + E0*( p_str[k].t-p_str[k].tau/2. )*( p_str[k].t-p_str[k].tau/2. )
+ E0*E0 * p_str[k].tau * p_str[k].tau * p_str[k].tau / 12. )
) / 2.;
}
}
}
示例12: evaluateFields
void XZHydrostatic_GeoPotential<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
#ifndef ALBANY_KOKKOS_UNDER_DEVELOPMENT
for (int cell=0; cell < workset.numCells; ++cell) {
for (int node=0; node < numNodes; ++node) {
for (int level=0; level < numLevels; ++level) {
ScalarT sum =
PhiSurf(cell,node) +
0.5 * Pi(cell,node,level) * E.delta(level) / density(cell,node,level);
for (int j=level+1; j < numLevels; ++j) sum += Pi(cell,node,j) * E.delta(j) / density(cell,node,j);
Phi(cell,node,level) = sum;
//std::cout <<"Inside GeoP, cell, node, PhiSurf(cell,node)="<<cell<<
//", "<<node<<", "<<PhiSurf(cell,node) <<std::endl;
}
}
}
/* OG Debugging statements
std::cout << "Printing PHI at level 0 ----------------------------------------- \n";
//for(int level=0; level < numLevels; ++level){
for (int node=0; node < numNodes; ++node) {
//std::cout << "lev= " << level << ", phi = " << Phi(23,0,level) <<"\n";
std::cout << "node = " << node << ", phi = " << Phi(23,node,0) <<"\n";
}
//}*/
#else
Kokkos::parallel_for(XZHydrostatic_GeoPotential_Policy(0,workset.numCells),*this);
cudaCheckError();
#endif
}
示例13: setauxvar
void setauxvar(bodyptr btab, int nbody)
{
bodyptr bp;
vector jvec;
real jtot, etot, r0, r1, r;
if (streq(getparam("auxvar"), "mass"))
for (bp = btab; bp < NthBody(btab, nbody); bp = NextBody(bp))
Aux(bp) = mass_gsp(ggsp, absv(Pos(bp)));
else if (streq(getparam("auxvar"), "rperi"))
for (bp = btab; bp < NthBody(btab, nbody); bp = NextBody(bp)) {
CROSSVP(jvec, Pos(bp), Vel(bp));
jtot = absv(jvec);
etot = 0.5 * dotvp(Vel(bp), Vel(bp)) + Phi(bp);
r0 = 0.0;
r1 = absv(Pos(bp));
r = 0.5 * (r0 + r1);
while ((r1 - r0) > TOL * r) {
if (rsqrt(2 * (etot - phi_gsp(ggsp, r))) > jtot/r)
r1 = r;
else
r0 = r;
r = 0.5 * (r0 + r1);
}
Aux(bp) = r;
}
else
error("%s: unknown auxvar option %s\n",
getargv0(), getparam("auxvar"));
}
示例14: sumforces
local void sumforces(bodyptr btab, int nbody, bodyptr gtab, int ngrav,
real eps2)
{
bodyptr bp, gp;
double phi0, acc0[NDIM];
vector pos0, dr;
real dr2, dr2i, dr1i, mdr1i, mdr3i;
for (bp = btab; bp < NthBody(btab, nbody); bp = NextBody(bp)) {
phi0 = 0.0;
CLRV(acc0);
SETV(pos0, Pos(bp));
for (gp = gtab; gp < NthBody(gtab, ngrav); gp = NextBody(gp)) {
DOTPSUBV(dr2, dr, Pos(gp), pos0);
dr2i = ((real) 1.0) / (dr2 + eps2);
dr1i = rsqrt(dr2i);
mdr1i = Mass(gp) * dr1i;
mdr3i = mdr1i * dr2i;
phi0 -= mdr1i;
ADDMULVS(acc0, dr, mdr3i);
}
Phi(bp) = phi0;
SETV(Acc(bp), acc0);
}
}
示例15: Phi
void RBFInterpolation::buildPhi(
const matrix & positions,
const matrix & positionsInterpolation
)
{
n_A = positions.rows();
n_B = positionsInterpolation.rows();
int phiColsOld = Phi.cols();
if ( polynomialTerm )
Phi.conservativeResize( n_B, n_A + dimGrid + 1 );
else
Phi.conservativeResize( n_B, n_A );
int nNewPoints = Phi.cols() - phiColsOld;
if ( nNewPoints == Phi.cols() )
nNewPoints = n_A;
scalar r = 0;
for ( int i = 0; i < nNewPoints; i++ )
{
int index = Phi.cols() - (i + 1);
if ( polynomialTerm )
index = Phi.cols() - 1 - dimGrid - (i + 1);
for ( int j = 0; j < n_B; j++ )
{
r = ( positions.row( index ) - positionsInterpolation.row( j ) ).norm();
Phi( j, index ) = rbfFunction->evaluate( r );
}
}
}