本文整理汇总了C++中PetscMalloc2函数的典型用法代码示例。如果您正苦于以下问题:C++ PetscMalloc2函数的具体用法?C++ PetscMalloc2怎么用?C++ PetscMalloc2使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了PetscMalloc2函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: interval
/*@
PetscDTGaussTensorQuadrature - creates a tensor-product Gauss quadrature
Not Collective
Input Arguments:
+ dim - The spatial dimension
. npoints - number of points in one dimension
. a - left end of interval (often-1)
- b - right end of interval (often +1)
Output Argument:
. q - A PetscQuadrature object
Level: intermediate
.seealso: PetscDTGaussQuadrature(), PetscDTLegendreEval()
@*/
PetscErrorCode PetscDTGaussTensorQuadrature(PetscInt dim, PetscInt npoints, PetscReal a, PetscReal b, PetscQuadrature *q)
{
PetscInt totpoints = dim > 1 ? dim > 2 ? npoints*PetscSqr(npoints) : PetscSqr(npoints) : npoints, i, j, k;
PetscReal *x, *w, *xw, *ww;
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = PetscMalloc1(totpoints*dim,&x);CHKERRQ(ierr);
ierr = PetscMalloc1(totpoints,&w);CHKERRQ(ierr);
/* Set up the Golub-Welsch system */
switch (dim) {
case 0:
ierr = PetscFree(x);CHKERRQ(ierr);
ierr = PetscFree(w);CHKERRQ(ierr);
ierr = PetscMalloc1(1, &x);CHKERRQ(ierr);
ierr = PetscMalloc1(1, &w);CHKERRQ(ierr);
x[0] = 0.0;
w[0] = 1.0;
break;
case 1:
ierr = PetscDTGaussQuadrature(npoints, a, b, x, w);CHKERRQ(ierr);
break;
case 2:
ierr = PetscMalloc2(npoints,&xw,npoints,&ww);CHKERRQ(ierr);
ierr = PetscDTGaussQuadrature(npoints, a, b, xw, ww);CHKERRQ(ierr);
for (i = 0; i < npoints; ++i) {
for (j = 0; j < npoints; ++j) {
x[(i*npoints+j)*dim+0] = xw[i];
x[(i*npoints+j)*dim+1] = xw[j];
w[i*npoints+j] = ww[i] * ww[j];
}
}
ierr = PetscFree2(xw,ww);CHKERRQ(ierr);
break;
case 3:
ierr = PetscMalloc2(npoints,&xw,npoints,&ww);CHKERRQ(ierr);
ierr = PetscDTGaussQuadrature(npoints, a, b, xw, ww);CHKERRQ(ierr);
for (i = 0; i < npoints; ++i) {
for (j = 0; j < npoints; ++j) {
for (k = 0; k < npoints; ++k) {
x[((i*npoints+j)*npoints+k)*dim+0] = xw[i];
x[((i*npoints+j)*npoints+k)*dim+1] = xw[j];
x[((i*npoints+j)*npoints+k)*dim+2] = xw[k];
w[(i*npoints+j)*npoints+k] = ww[i] * ww[j] * ww[k];
}
}
}
ierr = PetscFree2(xw,ww);CHKERRQ(ierr);
break;
default:
SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "Cannot construct quadrature rule for dimension %d", dim);
}
ierr = PetscQuadratureCreate(PETSC_COMM_SELF, q);CHKERRQ(ierr);
ierr = PetscQuadratureSetData(*q, dim, totpoints, x, w);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例2: PetscSFSetGraph
/*@C
PetscSFWindowGetDataTypes - gets composite local and remote data types for each rank
Not Collective
Input Arguments:
+ sf - star forest
- unit - data type for each node
Output Arguments:
+ localtypes - types describing part of local leaf buffer referencing each remote rank
- remotetypes - types describing part of remote root buffer referenced for each remote rank
Level: developer
.seealso: PetscSFSetGraph(), PetscSFView()
@*/
static PetscErrorCode PetscSFWindowGetDataTypes(PetscSF sf,MPI_Datatype unit,const MPI_Datatype **localtypes,const MPI_Datatype **remotetypes)
{
PetscSF_Window *w = (PetscSF_Window*)sf->data;
PetscErrorCode ierr;
PetscSFDataLink link;
PetscInt i,nranks;
const PetscInt *roffset,*rmine,*rremote;
const PetscMPIInt *ranks;
PetscFunctionBegin;
/* Look for types in cache */
for (link=w->link; link; link=link->next) {
PetscBool match;
ierr = MPIPetsc_Type_compare(unit,link->unit,&match);CHKERRQ(ierr);
if (match) {
*localtypes = link->mine;
*remotetypes = link->remote;
PetscFunctionReturn(0);
}
}
/* Create new composite types for each send rank */
ierr = PetscSFGetRanks(sf,&nranks,&ranks,&roffset,&rmine,&rremote);CHKERRQ(ierr);
ierr = PetscMalloc(sizeof(*link),&link);CHKERRQ(ierr);
ierr = MPI_Type_dup(unit,&link->unit);CHKERRQ(ierr);
ierr = PetscMalloc2(nranks,&link->mine,nranks,&link->remote);CHKERRQ(ierr);
for (i=0; i<nranks; i++) {
PETSC_UNUSED PetscInt rcount = roffset[i+1] - roffset[i];
PetscMPIInt *rmine,*rremote;
#if !defined(PETSC_USE_64BIT_INDICES)
rmine = sf->rmine + sf->roffset[i];
rremote = sf->rremote + sf->roffset[i];
#else
PetscInt j;
ierr = PetscMalloc2(rcount,&rmine,rcount,&rremote);CHKERRQ(ierr);
for (j=0; j<rcount; j++) {
ierr = PetscMPIIntCast(sf->rmine[sf->roffset[i]+j],rmine+j);CHKERRQ(ierr);
ierr = PetscMPIIntCast(sf->rremote[sf->roffset[i]+j],rremote+j);CHKERRQ(ierr);
}
#endif
ierr = MPI_Type_create_indexed_block(rcount,1,rmine,link->unit,&link->mine[i]);CHKERRQ(ierr);
ierr = MPI_Type_create_indexed_block(rcount,1,rremote,link->unit,&link->remote[i]);CHKERRQ(ierr);
#if defined(PETSC_USE_64BIT_INDICES)
ierr = PetscFree2(rmine,rremote);CHKERRQ(ierr);
#endif
ierr = MPI_Type_commit(&link->mine[i]);CHKERRQ(ierr);
ierr = MPI_Type_commit(&link->remote[i]);CHKERRQ(ierr);
}
link->next = w->link;
w->link = link;
*localtypes = link->mine;
*remotetypes = link->remote;
PetscFunctionReturn(0);
}
示例3: KSPSetUp_AGMRES
PetscErrorCode KSPSetUp_AGMRES(KSP ksp)
{
PetscErrorCode ierr;
PetscInt hes;
PetscInt nloc;
KSP_AGMRES *agmres = (KSP_AGMRES*)ksp->data;
PetscInt neig = agmres->neig;
PetscInt max_k = agmres->max_k;
PetscInt N = MAXKSPSIZE;
PetscInt lwork = PetscMax(8 * N + 16, 4 * neig * (N - neig));
PetscFunctionBegin;
if (ksp->pc_side == PC_SYMMETRIC) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_SUP,"no symmetric preconditioning for KSPAGMRES");
max_k = agmres->max_k;
N = MAXKSPSIZE;
/* Preallocate space during the call to KSPSetup_GMRES for the Krylov basis */
agmres->q_preallocate = PETSC_TRUE; /* No allocation on the fly */
/* Preallocate space to compute later the eigenvalues in GMRES */
ksp->calc_sings = PETSC_TRUE;
agmres->max_k = N; /* Set the augmented size to be allocated in KSPSetup_GMRES */
ierr = KSPSetUp_DGMRES(ksp);CHKERRQ(ierr);
agmres->max_k = max_k;
hes = (N + 1) * (N + 1);
/* Data for the Newton basis GMRES */
ierr = PetscMalloc4(max_k,PetscScalar,&agmres->Rshift,max_k,PetscScalar,&agmres->Ishift,hes,PetscScalar,&agmres->Rloc,((N+1)*4),PetscScalar,&agmres->wbufptr);CHKERRQ(ierr);
ierr = PetscMalloc7((N+1),PetscScalar,&agmres->Scale,(N+1),PetscScalar,&agmres->sgn,(N+1),PetscScalar,&agmres->tloc,(N+1),PetscScalar,&agmres->temp,(N+1),PetscScalar,&agmres->tau,lwork,PetscScalar,&agmres->work,(N+1),PetscScalar,&agmres->nrs);CHKERRQ(ierr);
ierr = PetscMemzero(agmres->Rshift, max_k*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->Ishift, max_k*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->Scale, (N+1)*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->Rloc, (N+1)*(N+1)*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->sgn, (N+1)*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->tloc, (N+1)*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->temp, (N+1)*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemzero(agmres->wbufptr, (N+1)*4*sizeof(PetscScalar));CHKERRQ(ierr);
/* Allocate space for the vectors in the orthogonalized basis*/
ierr = VecGetLocalSize(agmres->vecs[0], &nloc);CHKERRQ(ierr);
ierr = PetscMalloc(nloc*(N+1)*sizeof(PetscScalar), &agmres->Qloc);CHKERRQ(ierr);
/* Init the ring of processors for the roddec orthogonalization */
ierr = KSPAGMRESRoddecInitNeighboor(ksp);CHKERRQ(ierr);
if (agmres->neig < 1) PetscFunctionReturn(0);
/* Allocate space for the deflation */
ierr = PetscMalloc(N*sizeof(PetscScalar), &agmres->select);CHKERRQ(ierr);
ierr = VecDuplicateVecs(VEC_V(0), N, &agmres->TmpU);CHKERRQ(ierr);
ierr = PetscMalloc2(N*N, PetscScalar, &agmres->MatEigL, N*N, PetscScalar, &agmres->MatEigR);CHKERRQ(ierr);
/* ierr = PetscMalloc6(N*N, PetscScalar, &agmres->Q, N*N, PetscScalar, &agmres->Z, N, PetscScalar, &agmres->wr, N, PetscScalar, &agmres->wi, N, PetscScalar, &agmres->beta, N, PetscScalar, &agmres->modul);CHKERRQ(ierr); */
ierr = PetscMalloc3(N*N, PetscScalar, &agmres->Q, N*N, PetscScalar, &agmres->Z, N, PetscScalar, &agmres->beta);CHKERRQ(ierr);
ierr = PetscMalloc2((N+1),PetscInt,&agmres->perm,(2*neig*N),PetscInt,&agmres->iwork);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例4: PetscDrawLGSetDimension
/*@
PetscDrawLGSetDimension - Change the number of lines that are to be drawn.
Logically Collective over PetscDrawLG
Input Parameter:
+ lg - the line graph context.
- dim - the number of curves.
Level: intermediate
Concepts: line graph^setting number of lines
@*/
PetscErrorCode PetscDrawLGSetDimension(PetscDrawLG lg,PetscInt dim)
{
PetscErrorCode ierr;
PetscInt i;
PetscFunctionBegin;
if (lg && ((PetscObject)lg)->classid == PETSC_DRAW_CLASSID) PetscFunctionReturn(0);
PetscValidHeaderSpecific(lg,PETSC_DRAWLG_CLASSID,1);
PetscValidLogicalCollectiveInt(lg,dim,2);
if (lg->dim == dim) PetscFunctionReturn(0);
ierr = PetscFree2(lg->x,lg->y);CHKERRQ(ierr);
if (lg->legend) {
for (i=0; i<lg->dim; i++) {
ierr = PetscFree(lg->legend[i]);CHKERRQ(ierr);
}
ierr = PetscFree(lg->legend);CHKERRQ(ierr);
}
ierr = PetscFree(lg->colors);CHKERRQ(ierr);
lg->dim = dim;
ierr = PetscMalloc2(dim*CHUNCKSIZE,PetscReal,&lg->x,dim*CHUNCKSIZE,PetscReal,&lg->y);CHKERRQ(ierr);
ierr = PetscLogObjectMemory(lg,2*dim*CHUNCKSIZE*sizeof(PetscReal));CHKERRQ(ierr);
lg->len = dim*CHUNCKSIZE;
PetscFunctionReturn(0);
}
示例5: MatGetDiagonalHermitian_Normal
PetscErrorCode MatGetDiagonalHermitian_Normal(Mat N,Vec v)
{
Mat_Normal *Na = (Mat_Normal*)N->data;
Mat A = Na->A;
PetscErrorCode ierr;
PetscInt i,j,rstart,rend,nnz;
const PetscInt *cols;
PetscScalar *diag,*work,*values;
const PetscScalar *mvalues;
PetscFunctionBegin;
ierr = PetscMalloc2(A->cmap->N,&diag,A->cmap->N,&work);CHKERRQ(ierr);
ierr = PetscMemzero(work,A->cmap->N*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = MatGetOwnershipRange(A,&rstart,&rend);CHKERRQ(ierr);
for (i=rstart; i<rend; i++) {
ierr = MatGetRow(A,i,&nnz,&cols,&mvalues);CHKERRQ(ierr);
for (j=0; j<nnz; j++) {
work[cols[j]] += mvalues[j]*PetscConj(mvalues[j]);
}
ierr = MatRestoreRow(A,i,&nnz,&cols,&mvalues);CHKERRQ(ierr);
}
ierr = MPIU_Allreduce(work,diag,A->cmap->N,MPIU_SCALAR,MPIU_SUM,PetscObjectComm((PetscObject)N));CHKERRQ(ierr);
rstart = N->cmap->rstart;
rend = N->cmap->rend;
ierr = VecGetArray(v,&values);CHKERRQ(ierr);
ierr = PetscMemcpy(values,diag+rstart,(rend-rstart)*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = VecRestoreArray(v,&values);CHKERRQ(ierr);
ierr = PetscFree2(diag,work);CHKERRQ(ierr);
ierr = VecScale(v,Na->scale);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例6: PetscDrawLGDestroy
/*@
PetscDrawLGCreate - Creates a line graph data structure.
Collective over PetscDraw
Input Parameters:
+ draw - the window where the graph will be made.
- dim - the number of curves which will be drawn
Output Parameters:
. outctx - the line graph context
Level: intermediate
Concepts: line graph^creating
.seealso: PetscDrawLGDestroy()
@*/
PetscErrorCode PetscDrawLGCreate(PetscDraw draw,PetscInt dim,PetscDrawLG *outctx)
{
PetscErrorCode ierr;
PetscBool isnull;
PetscObject obj = (PetscObject)draw;
PetscDrawLG lg;
PetscFunctionBegin;
PetscValidHeaderSpecific(draw,PETSC_DRAW_CLASSID,1);
PetscValidPointer(outctx,2);
ierr = PetscObjectTypeCompare(obj,PETSC_DRAW_NULL,&isnull);CHKERRQ(ierr);
if (isnull) {
ierr = PetscDrawOpenNull(((PetscObject)obj)->comm,(PetscDraw*)outctx);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
ierr = PetscHeaderCreate(lg,_p_PetscDrawLG,int,PETSC_DRAWLG_CLASSID,0,"PetscDrawLG","Line graph","Draw",((PetscObject)obj)->comm,PetscDrawLGDestroy,0);CHKERRQ(ierr);
lg->view = 0;
lg->destroy = 0;
lg->nopts = 0;
lg->win = draw;
lg->dim = dim;
lg->xmin = 1.e20;
lg->ymin = 1.e20;
lg->xmax = -1.e20;
lg->ymax = -1.e20;
ierr = PetscMalloc2(dim*CHUNCKSIZE,PetscReal,&lg->x,dim*CHUNCKSIZE,PetscReal,&lg->y);CHKERRQ(ierr);
ierr = PetscLogObjectMemory(lg,2*dim*CHUNCKSIZE*sizeof(PetscReal));CHKERRQ(ierr);
lg->len = dim*CHUNCKSIZE;
lg->loc = 0;
lg->use_dots= PETSC_FALSE;
ierr = PetscDrawAxisCreate(draw,&lg->axis);CHKERRQ(ierr);
ierr = PetscLogObjectParent(lg,lg->axis);CHKERRQ(ierr);
*outctx = lg;
PetscFunctionReturn(0);
}
示例7: sizeof
/*@C
PetscGatherNumberOfMessages - Computes the number of messages a node expects to receive
Collective on MPI_Comm
Input Parameters:
+ comm - Communicator
. iflags - an array of integers of length sizeof(comm). A '1' in ilengths[i] represent a
message from current node to ith node. Optionally NULL
- ilengths - Non zero ilengths[i] represent a message to i of length ilengths[i].
Optionally NULL.
Output Parameters:
. nrecvs - number of messages received
Level: developer
Concepts: mpi utility
Notes:
With this info, the correct message lengths can be determined using
PetscGatherMessageLengths()
Either iflags or ilengths should be provided. If iflags is not
provided (NULL) it can be computed from ilengths. If iflags is
provided, ilengths is not required.
.seealso: PetscGatherMessageLengths()
@*/
PetscErrorCode PetscGatherNumberOfMessages(MPI_Comm comm,const PetscMPIInt iflags[],const PetscMPIInt ilengths[],PetscMPIInt *nrecvs)
{
PetscMPIInt size,rank,*recv_buf,i,*iflags_local = NULL,*iflags_localm = NULL;
PetscErrorCode ierr;
PetscFunctionBegin;
ierr = MPI_Comm_size(comm,&size);CHKERRQ(ierr);
ierr = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);
ierr = PetscMalloc2(size,&recv_buf,size,&iflags_localm);CHKERRQ(ierr);
/* If iflags not provided, compute iflags from ilengths */
if (!iflags) {
if (!ilengths) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Either iflags or ilengths should be provided");
iflags_local = iflags_localm;
for (i=0; i<size; i++) {
if (ilengths[i]) iflags_local[i] = 1;
else iflags_local[i] = 0;
}
} else iflags_local = (PetscMPIInt*) iflags;
/* Post an allreduce to determine the numer of messages the current node will receive */
ierr = MPIU_Allreduce(iflags_local,recv_buf,size,MPI_INT,MPI_SUM,comm);CHKERRQ(ierr);
*nrecvs = recv_buf[rank];
ierr = PetscFree2(recv_buf,iflags_localm);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例8: ISGatherTotal_Private
static PetscErrorCode ISGatherTotal_Private(IS is)
{
PetscErrorCode ierr;
PetscInt i,n,N;
const PetscInt *lindices;
MPI_Comm comm;
PetscMPIInt rank,size,*sizes = NULL,*offsets = NULL,nn;
PetscFunctionBegin;
PetscValidHeaderSpecific(is,IS_CLASSID,1);
ierr = PetscObjectGetComm((PetscObject)is,&comm);CHKERRQ(ierr);
ierr = MPI_Comm_size(comm,&size);CHKERRQ(ierr);
ierr = MPI_Comm_rank(comm,&rank);CHKERRQ(ierr);
ierr = ISGetLocalSize(is,&n);CHKERRQ(ierr);
ierr = PetscMalloc2(size,PetscMPIInt,&sizes,size,PetscMPIInt,&offsets);CHKERRQ(ierr);
ierr = PetscMPIIntCast(n,&nn);CHKERRQ(ierr);
ierr = MPI_Allgather(&nn,1,MPI_INT,sizes,1,MPI_INT,comm);CHKERRQ(ierr);
offsets[0] = 0;
for (i=1; i<size; ++i) offsets[i] = offsets[i-1] + sizes[i-1];
N = offsets[size-1] + sizes[size-1];
ierr = PetscMalloc(N*sizeof(PetscInt),&(is->total));CHKERRQ(ierr);
ierr = ISGetIndices(is,&lindices);CHKERRQ(ierr);
ierr = MPI_Allgatherv((void*)lindices,nn,MPIU_INT,is->total,sizes,offsets,MPIU_INT,comm);CHKERRQ(ierr);
ierr = ISRestoreIndices(is,&lindices);CHKERRQ(ierr);
is->local_offset = offsets[rank];
ierr = PetscFree2(sizes,offsets);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例9: PetscDrawLGAddPoints
/*@
PetscDrawLGAddPoint - Adds another point to each of the line graphs.
The new point must have an X coordinate larger than the old points.
Not Collective, but ignored by all processors except processor 0 in PetscDrawLG
Input Parameters:
+ lg - the LineGraph data structure
- x, y - the points to two vectors containing the new x and y
point for each curve.
Level: intermediate
Concepts: line graph^adding points
.seealso: PetscDrawLGAddPoints()
@*/
PetscErrorCode PetscDrawLGAddPoint(PetscDrawLG lg,PetscReal *x,PetscReal *y)
{
PetscErrorCode ierr;
int i;
PetscFunctionBegin;
if (lg && ((PetscObject)lg)->classid == PETSC_DRAW_CLASSID) PetscFunctionReturn(0);
PetscValidHeaderSpecific(lg,PETSC_DRAWLG_CLASSID,1);
if (lg->loc+lg->dim >= lg->len) { /* allocate more space */
PetscReal *tmpx,*tmpy;
ierr = PetscMalloc2(lg->len+lg->dim*CHUNCKSIZE,PetscReal,&tmpx,lg->len+lg->dim*CHUNCKSIZE,PetscReal,&tmpy);CHKERRQ(ierr);
ierr = PetscLogObjectMemory(lg,2*lg->dim*CHUNCKSIZE*sizeof(PetscReal));CHKERRQ(ierr);
ierr = PetscMemcpy(tmpx,lg->x,lg->len*sizeof(PetscReal));CHKERRQ(ierr);
ierr = PetscMemcpy(tmpy,lg->y,lg->len*sizeof(PetscReal));CHKERRQ(ierr);
ierr = PetscFree2(lg->x,lg->y);CHKERRQ(ierr);
lg->x = tmpx;
lg->y = tmpy;
lg->len += lg->dim*CHUNCKSIZE;
}
for (i=0; i<lg->dim; i++) {
if (x[i] > lg->xmax) lg->xmax = x[i];
if (x[i] < lg->xmin) lg->xmin = x[i];
if (y[i] > lg->ymax) lg->ymax = y[i];
if (y[i] < lg->ymin) lg->ymin = y[i];
lg->x[lg->loc] = x[i];
lg->y[lg->loc++] = y[i];
}
lg->nopts++;
PetscFunctionReturn(0);
}
示例10: value
/*@C
KSPMonitorSAWs - monitor solution using SAWs
Logically Collective on KSP
Input Parameters:
+ ksp - iterative context
. n - iteration number
. rnorm - 2-norm (preconditioned) residual value (may be estimated).
- ctx - PetscViewer of type SAWs
Level: advanced
.keywords: KSP, CG, monitor, SAWs, singular values
.seealso: KSPMonitorSingularValue(), KSPComputeExtremeSingularValues(), PetscViewerSAWsOpen()
@*/
PetscErrorCode KSPMonitorSAWs(KSP ksp,PetscInt n,PetscReal rnorm,void *ctx)
{
PetscErrorCode ierr;
KSPMonitor_SAWs *mon = (KSPMonitor_SAWs*)ctx;
PetscReal emax,emin;
PetscMPIInt rank;
PetscFunctionBegin;
PetscValidHeaderSpecific(ksp,KSP_CLASSID,1);
ierr = KSPComputeExtremeSingularValues(ksp,&emax,&emin);CHKERRQ(ierr);
ierr = PetscFree2(mon->eigr,mon->eigi);CHKERRQ(ierr);
ierr = PetscMalloc2(n,&mon->eigr,n,&mon->eigi);CHKERRQ(ierr);
if (n) {
ierr = KSPComputeEigenvalues(ksp,n,mon->eigr,mon->eigi,&mon->neigs);CHKERRQ(ierr);
ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
if (!rank) {
SAWs_Delete("/PETSc/ksp_monitor_saws/eigr");
SAWs_Delete("/PETSc/ksp_monitor_saws/eigi");
PetscStackCallSAWs(SAWs_Register,("/PETSc/ksp_monitor_saws/rnorm",&ksp->rnorm,1,SAWs_READ,SAWs_DOUBLE));
PetscStackCallSAWs(SAWs_Register,("/PETSc/ksp_monitor_saws/neigs",&mon->neigs,1,SAWs_READ,SAWs_INT));
if (mon->neigs > 0) {
PetscStackCallSAWs(SAWs_Register,("/PETSc/ksp_monitor_saws/eigr",mon->eigr,mon->neigs,SAWs_READ,SAWs_DOUBLE));
PetscStackCallSAWs(SAWs_Register,("/PETSc/ksp_monitor_saws/eigi",mon->eigi,mon->neigs,SAWs_READ,SAWs_DOUBLE));
}
ierr = PetscInfo2(ksp,"KSP extreme singular values min=%g max=%g\n",(double)emin,(double)emax);CHKERRQ(ierr);
ierr = PetscSAWsBlock();CHKERRQ(ierr);
}
}
PetscFunctionReturn(0);
}
示例11: KSPSolve_SpecEst
static PetscErrorCode KSPSolve_SpecEst(KSP ksp)
{
PetscErrorCode ierr;
KSP_SpecEst *spec = (KSP_SpecEst*)ksp->data;
PetscFunctionBegin;
if (spec->current) {
ierr = KSPSolve(spec->kspcheap,ksp->vec_rhs,ksp->vec_sol);CHKERRQ(ierr);
ierr = KSPSpecEstPropagateUp(ksp,spec->kspcheap);CHKERRQ(ierr);
} else {
PetscInt i,its,neig;
PetscReal *real,*imag,rad = 0;
ierr = KSPSolve(spec->kspest,ksp->vec_rhs,ksp->vec_sol);CHKERRQ(ierr);
ierr = KSPSpecEstPropagateUp(ksp,spec->kspest);CHKERRQ(ierr);
ierr = KSPComputeExtremeSingularValues(spec->kspest,&spec->max,&spec->min);CHKERRQ(ierr);
ierr = KSPGetIterationNumber(spec->kspest,&its);CHKERRQ(ierr);
ierr = PetscMalloc2(its,PetscReal,&real,its,PetscReal,&imag);CHKERRQ(ierr);
ierr = KSPComputeEigenvalues(spec->kspest,its,real,imag,&neig);CHKERRQ(ierr);
for (i=0; i<neig; i++) {
/* We would really like to compute w (nominally 1/radius) to minimize |1-wB|. Empirically it
is better to compute rad = |1-B| than rad = |B|. There must be a cheap way to do better. */
rad = PetscMax(rad,PetscRealPart(PetscSqrtScalar((PetscScalar)(PetscSqr(real[i]-1.) + PetscSqr(imag[i])))));
}
ierr = PetscFree2(real,imag);CHKERRQ(ierr);
spec->radius = rad;
ierr = KSPChebyshevSetEigenvalues(spec->kspcheap,spec->max*spec->maxfactor,spec->min*spec->minfactor);CHKERRQ(ierr);
ierr = KSPRichardsonSetScale(spec->kspcheap,spec->richfactor/spec->radius);
ierr = PetscInfo3(ksp,"Estimated singular value min=%G max=%G, spectral radius=%G",spec->min,spec->max,spec->radius);CHKERRQ(ierr);
spec->current = PETSC_TRUE;
}
PetscFunctionReturn(0);
}
示例12: VecStashExpand_Private
PetscErrorCode VecStashExpand_Private(VecStash *stash,PetscInt incr)
{
PetscErrorCode ierr;
PetscInt *n_idx,newnmax,bs=stash->bs;
PetscScalar *n_array;
PetscFunctionBegin;
/* allocate a larger stash. */
if (!stash->oldnmax && !stash->nmax) { /* new stash */
if (stash->umax) newnmax = stash->umax/bs;
else newnmax = DEFAULT_STASH_SIZE/bs;
} else if (!stash->nmax) { /* resuing stash */
if (stash->umax > stash->oldnmax) newnmax = stash->umax/bs;
else newnmax = stash->oldnmax/bs;
} else newnmax = stash->nmax*2;
if (newnmax < (stash->nmax + incr)) newnmax += 2*incr;
ierr = PetscMalloc2(bs*newnmax,&n_array,newnmax,&n_idx);CHKERRQ(ierr);
ierr = PetscMemcpy(n_array,stash->array,bs*stash->nmax*sizeof(PetscScalar));CHKERRQ(ierr);
ierr = PetscMemcpy(n_idx,stash->idx,stash->nmax*sizeof(PetscInt));CHKERRQ(ierr);
ierr = PetscFree2(stash->array,stash->idx);CHKERRQ(ierr);
stash->array = n_array;
stash->idx = n_idx;
stash->nmax = newnmax;
stash->reallocs++;
PetscFunctionReturn(0);
}
示例13: interval
/*@
PetscDTGaussQuadrature - create Gauss quadrature
Not Collective
Input Arguments:
+ npoints - number of points
. a - left end of interval (often-1)
- b - right end of interval (often +1)
Output Arguments:
+ x - quadrature points
- w - quadrature weights
Level: intermediate
References:
Golub and Welsch, Calculation of Quadrature Rules, Math. Comp. 23(106), 221--230, 1969.
.seealso: PetscDTLegendreEval()
@*/
PetscErrorCode PetscDTGaussQuadrature(PetscInt npoints,PetscReal a,PetscReal b,PetscReal *x,PetscReal *w)
{
PetscErrorCode ierr;
PetscInt i;
PetscReal *work;
PetscScalar *Z;
PetscBLASInt N,LDZ,info;
PetscFunctionBegin;
/* Set up the Golub-Welsch system */
for (i=0; i<npoints; i++) {
x[i] = 0; /* diagonal is 0 */
if (i) w[i-1] = 0.5 / PetscSqrtReal(1 - 1./PetscSqr(2*i));
}
ierr = PetscRealView(npoints-1,w,PETSC_VIEWER_STDOUT_SELF);CHKERRQ(ierr);
ierr = PetscMalloc2(npoints*npoints,PetscScalar,&Z,PetscMax(1,2*npoints-2),PetscReal,&work);CHKERRQ(ierr);
ierr = PetscBLASIntCast(npoints,&N);CHKERRQ(ierr);
LDZ = N;
ierr = PetscFPTrapPush(PETSC_FP_TRAP_OFF);CHKERRQ(ierr);
PetscStackCall("LAPACKsteqr",LAPACKsteqr_("I",&N,x,w,Z,&LDZ,work,&info));
ierr = PetscFPTrapPop();CHKERRQ(ierr);
if (info) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"xSTEQR error");
for (i=0; i<(npoints+1)/2; i++) {
PetscReal y = 0.5 * (-x[i] + x[npoints-i-1]); /* enforces symmetry */
x[i] = (a+b)/2 - y*(b-a)/2;
x[npoints-i-1] = (a+b)/2 + y*(b-a)/2;
w[i] = w[npoints-1-i] = (b-a)*PetscSqr(0.5*PetscAbsScalar(Z[i*npoints] + Z[(npoints-i-1)*npoints]));
}
ierr = PetscFree2(Z,work);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例14: MatBlockMatSetPreallocation_BlockMat
PetscErrorCode MatBlockMatSetPreallocation_BlockMat(Mat A,PetscInt bs,PetscInt nz,PetscInt *nnz)
{
Mat_BlockMat *bmat = (Mat_BlockMat*)A->data;
PetscErrorCode ierr;
PetscInt i;
PetscFunctionBegin;
ierr = PetscLayoutSetBlockSize(A->rmap,bs);CHKERRQ(ierr);
ierr = PetscLayoutSetBlockSize(A->cmap,bs);CHKERRQ(ierr);
ierr = PetscLayoutSetUp(A->rmap);CHKERRQ(ierr);
ierr = PetscLayoutSetUp(A->cmap);CHKERRQ(ierr);
ierr = PetscLayoutGetBlockSize(A->rmap,&bs);CHKERRQ(ierr);
if (nz == PETSC_DEFAULT || nz == PETSC_DECIDE) nz = 5;
if (nz < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nz cannot be less than 0: value %d",nz);
if (nnz) {
for (i=0; i<A->rmap->n/bs; i++) {
if (nnz[i] < 0) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nnz cannot be less than 0: local row %d value %d",i,nnz[i]);
if (nnz[i] > A->cmap->n/bs) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"nnz cannot be greater than row length: local row %d value %d rowlength %d",i,nnz[i],A->cmap->n/bs);
}
}
bmat->mbs = A->rmap->n/bs;
ierr = VecCreateSeqWithArray(PETSC_COMM_SELF,1,bs,NULL,&bmat->right);CHKERRQ(ierr);
ierr = VecCreateSeqWithArray(PETSC_COMM_SELF,1,bs,NULL,&bmat->middle);CHKERRQ(ierr);
ierr = VecCreateSeq(PETSC_COMM_SELF,bs,&bmat->left);CHKERRQ(ierr);
if (!bmat->imax) {
ierr = PetscMalloc2(A->rmap->n,&bmat->imax,A->rmap->n,&bmat->ilen);CHKERRQ(ierr);
ierr = PetscLogObjectMemory((PetscObject)A,2*A->rmap->n*sizeof(PetscInt));CHKERRQ(ierr);
}
if (nnz) {
nz = 0;
for (i=0; i<A->rmap->n/A->rmap->bs; i++) {
bmat->imax[i] = nnz[i];
nz += nnz[i];
}
} else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Currently requires block row by row preallocation");
/* bmat->ilen will count nonzeros in each row so far. */
for (i=0; i<bmat->mbs; i++) bmat->ilen[i] = 0;
/* allocate the matrix space */
ierr = MatSeqXAIJFreeAIJ(A,(PetscScalar**)&bmat->a,&bmat->j,&bmat->i);CHKERRQ(ierr);
ierr = PetscMalloc3(nz,&bmat->a,nz,&bmat->j,A->rmap->n+1,&bmat->i);CHKERRQ(ierr);
ierr = PetscLogObjectMemory((PetscObject)A,(A->rmap->n+1)*sizeof(PetscInt)+nz*(sizeof(PetscScalar)+sizeof(PetscInt)));CHKERRQ(ierr);
bmat->i[0] = 0;
for (i=1; i<bmat->mbs+1; i++) {
bmat->i[i] = bmat->i[i-1] + bmat->imax[i-1];
}
bmat->singlemalloc = PETSC_TRUE;
bmat->free_a = PETSC_TRUE;
bmat->free_ij = PETSC_TRUE;
bmat->nz = 0;
bmat->maxnz = nz;
A->info.nz_unneeded = (double)bmat->maxnz;
ierr = MatSetOption(A,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_TRUE);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例15: KSPComputeShifts_GMRES
static PetscErrorCode KSPComputeShifts_GMRES(KSP ksp)
{
PetscErrorCode ierr;
KSP_AGMRES *agmres = (KSP_AGMRES*)(ksp->data);
KSP kspgmres;
Mat Amat, Pmat;
MatStructure flag;
PetscInt max_k = agmres->max_k;
PC pc;
PetscInt m;
PetscScalar *Rshift, *Ishift;
PetscFunctionBegin;
/* Perform one cycle of classical GMRES (with the Arnoldi process) to get the Hessenberg matrix
We assume here that the ksp is AGMRES and that the operators for the
linear system have been set in this ksp */
ierr = KSPCreate(PetscObjectComm((PetscObject)ksp), &kspgmres);CHKERRQ(ierr);
if (!ksp->pc) { ierr = KSPGetPC(ksp,&ksp->pc);CHKERRQ(ierr); }
ierr = PCGetOperators(ksp->pc, &Amat, &Pmat);CHKERRQ(ierr);
ierr = KSPSetOperators(kspgmres, Amat, Pmat);CHKERRQ(ierr);
ierr = KSPSetFromOptions(kspgmres);CHKERRQ(ierr);
ierr = PetscOptionsHasName(NULL, "-ksp_view", &flg);CHKERRQ(ierr);
if (flag) { ierr = PetscOptionsClearValue("-ksp_view");CHKERRQ(ierr); }
ierr = KSPSetType(kspgmres, KSPGMRES);CHKERRQ(ierr);
ierr = KSPGMRESSetRestart(kspgmres, max_k);CHKERRQ(ierr);
ierr = KSPGetPC(ksp, &pc);CHKERRQ(ierr);
ierr = KSPSetPC(kspgmres, pc);CHKERRQ(ierr);
/* Copy common options */
kspgmres->pc_side = ksp->pc_side;
/* Setup KSP context */
ierr = KSPSetComputeEigenvalues(kspgmres, PETSC_TRUE);CHKERRQ(ierr);
ierr = KSPSetUp(kspgmres);CHKERRQ(ierr);
kspgmres->max_it = max_k; /* Restrict the maximum number of iterations to one cycle of GMRES */
kspgmres->rtol = ksp->rtol;
ierr = KSPSolve(kspgmres, ksp->vec_rhs, ksp->vec_sol);CHKERRQ(ierr);
ksp->guess_zero = PETSC_FALSE;
ksp->rnorm = kspgmres->rnorm;
ksp->its = kspgmres->its;
if (kspgmres->reason == KSP_CONVERGED_RTOL) {
ksp->reason = KSP_CONVERGED_RTOL;
PetscFunctionReturn(0);
} else ksp->reason = KSP_CONVERGED_ITERATING;
/* Now, compute the Shifts values */
ierr = PetscMalloc2(max_k,&Rshift,max_k,&Ishift);CHKERRQ(ierr);
ierr = KSPComputeEigenvalues(kspgmres, max_k, Rshift, Ishift, &m);CHKERRQ(ierr);
if (m < max_k) SETERRQ(PetscObjectComm((PetscObject)ksp),PETSC_ERR_PLIB, "Unable to compute the Shifts for the Newton basis");
else {
ierr = KSPAGMRESLejaOrdering(Rshift, Ishift, agmres->Rshift, agmres->Ishift, max_k);CHKERRQ(ierr);
agmres->HasShifts = PETSC_TRUE;
}
/* Restore KSP view options */
if (flg) { ierr = PetscOptionsSetValue("-ksp_view", "");CHKERRQ(ierr); }
PetscFunctionReturn(0);
}