本文整理汇总了C++中PartitionDownDiagonal函数的典型用法代码示例。如果您正苦于以下问题:C++ PartitionDownDiagonal函数的具体用法?C++ PartitionDownDiagonal怎么用?C++ PartitionDownDiagonal使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了PartitionDownDiagonal函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Sign
void Sylvester
( Int m,
Matrix<F>& W,
Matrix<F>& X,
SignCtrl<Base<F>> ctrl )
{
EL_DEBUG_CSE
Sign( W, ctrl );
Matrix<F> WTL, WTR,
WBL, WBR;
PartitionDownDiagonal
( W, WTL, WTR,
WBL, WBR, m );
// WTL and WBR should be the positive and negative identity, WBL should be
// zero, and WTR should be -2 X
X = WTR;
X *= -F(1)/F(2);
// TODO: Think of how to probe for checks on other quadrants.
/*
typedef Base<F> Real;
UpdateDiagonal( WTL, F(-1) );
const Real errorWTL = FrobeniusNorm( WTL );
const Int n = W.Height() - m;
UpdateDiagonal( WBR, F(1) );
const Real errorWBR = FrobeniusNorm( WBR );
const Real errorWBL = FrobeniusNorm( WBL );
*/
}
示例2: MakeExplicitlyHermitian
void MakeExplicitlyHermitian( UpperOrLower uplo, DistMatrix<F,MC,MR>& A )
{
const Grid& g = A.Grid();
DistMatrix<F,MC,MR> ATL(g), ATR(g), A00(g), A01(g), A02(g),
ABL(g), ABR(g), A10(g), A11(g), A12(g),
A20(g), A21(g), A22(g);
DistMatrix<F,MC,MR> A11Adj(g);
DistMatrix<F,MR,MC> A11_MR_MC(g);
DistMatrix<F,MR,MC> A21_MR_MC(g);
DistMatrix<F,MR,MC> A12_MR_MC(g);
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height() < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/
/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22 );
A11Adj.AlignWith( A11 );
A11_MR_MC.AlignWith( A11 );
A12_MR_MC.AlignWith( A21 );
A21_MR_MC.AlignWith( A12 );
//--------------------------------------------------------------------//
A11_MR_MC = A11;
A11Adj.ResizeTo( A11.Height(), A11.Width() );
Adjoint( A11_MR_MC.LocalMatrix(), A11Adj.LocalMatrix() );
if( uplo == LOWER )
{
MakeTrapezoidal( LEFT, UPPER, 1, A11Adj );
Axpy( (F)1, A11Adj, A11 );
A21_MR_MC = A21;
Adjoint( A21_MR_MC.LocalMatrix(), A12.LocalMatrix() );
}
else
{
MakeTrapezoidal( LEFT, LOWER, -1, A11Adj );
Axpy( (F)1, A11Adj, A11 );
A12_MR_MC = A12;
Adjoint( A12_MR_MC.LocalMatrix(), A21.LocalMatrix() );
}
//--------------------------------------------------------------------//
A21_MR_MC.FreeAlignments();
A12_MR_MC.FreeAlignments();
A11_MR_MC.FreeAlignments();
A11Adj.FreeAlignments();
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,
/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22 );
}
}
示例3: WProx
void Sylvester
( Int m,
ElementalMatrix<F>& WPre,
ElementalMatrix<F>& X,
SignCtrl<Base<F>> ctrl )
{
EL_DEBUG_CSE
DistMatrixReadProxy<F,F,MC,MR> WProx( WPre );
auto& W = WProx.Get();
const Grid& g = W.Grid();
Sign( W, ctrl );
DistMatrix<F> WTL(g), WTR(g),
WBL(g), WBR(g);
PartitionDownDiagonal
( W, WTL, WTR,
WBL, WBR, m );
// WTL and WBR should be the positive and negative identity, WBL should be
// zero, and WTR should be -2 X
Copy( WTR, X );
X *= -F(1)/F(2);
// TODO: Think of how to probe for checks on other quadrants.
// Add UpdateDiagonal routine to avoid explicit identity Axpy?
/*
typedef Base<F> Real;
UpdateDiagonal( WTL, F(-1) );
const Real errorWTL = FrobeniusNorm( WTL );
const Int n = W.Height() - m;
UpdateDiagonal( WBR, F(1) );
const Real errorWBR = FrobeniusNorm( WBR );
const Real errorWBL = FrobeniusNorm( WBL );
*/
}
示例4: Lyapunov
inline int
Lyapunov( const DistMatrix<F>& A, const DistMatrix<F>& C, DistMatrix<F>& X )
{
#ifndef RELEASE
CallStackEntry cse("Sylvester");
if( A.Height() != A.Width() )
LogicError("A must be square");
if( C.Height() != A.Height() || C.Width() != A.Height() )
LogicError("C must conform with A");
if( A.Grid() != C.Grid() )
LogicError("A and C must have the same grid");
#endif
const Grid& g = A.Grid();
const Int m = A.Height();
DistMatrix<F> W(g), WTL(g), WTR(g),
WBL(g), WBR(g);
Zeros( W, 2*m, 2*m );
PartitionDownDiagonal
( W, WTL, WTR,
WBL, WBR, m );
WTL = A;
Adjoint( A, WBR ); Scale( F(-1), WBR );
WTR = C; Scale( F(-1), WTR );
return Sylvester( m, W, X );
}
示例5: WProx
void Riccati
( ElementalMatrix<F>& WPre,
ElementalMatrix<F>& X,
SignCtrl<Base<F>> ctrl )
{
DEBUG_CSE
DistMatrixReadProxy<F,F,MC,MR> WProx( WPre );
auto& W = WProx.Get();
const Grid& g = W.Grid();
Sign( W, ctrl );
const Int n = W.Height()/2;
DistMatrix<F> WTL(g), WTR(g),
WBL(g), WBR(g);
PartitionDownDiagonal
( W, WTL, WTR,
WBL, WBR, n );
// (ML, MR) = sgn(W) - I
ShiftDiagonal( W, F(-1) );
// Solve for X in ML X = -MR
DistMatrix<F> ML(g), MR(g);
PartitionRight( W, ML, MR, n );
MR *= -1;
ls::Overwrite( NORMAL, ML, MR, X );
}
示例6: Householder
inline void
Householder( Matrix<F>& A, Matrix<F>& t )
{
#ifndef RELEASE
CallStackEntry entry("lq::Householder");
#endif
t.ResizeTo( Min(A.Height(),A.Width()), 1 );
// Matrix views
Matrix<F>
ATL, ATR, A00, A01, A02, ATopPan, ABottomPan,
ABL, ABR, A10, A11, A12,
A20, A21, A22;
Matrix<F>
tT, t0,
tB, t1,
t2;
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
PartitionDown
( t, tT,
tB, 0 );
while( ATL.Height() < A.Height() && ATL.Width() < A.Width() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/
/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22 );
RepartitionDown
( tT, t0,
/**/ /**/
t1,
tB, t2 );
View1x2( ATopPan, A11, A12 );
View1x2( ABottomPan, A21, A22 );
//--------------------------------------------------------------------//
PanelHouseholder( ATopPan, t1 );
ApplyQ( RIGHT, ADJOINT, ATopPan, t1, ABottomPan );
//--------------------------------------------------------------------//
SlidePartitionDown
( tT, t0,
t1,
/**/ /**/
tB, t2 );
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,
/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22 );
}
}
示例7: L
void L( Matrix<F>& A, Matrix<F>& t )
{
#ifndef RELEASE
CallStackEntry entry("hermitian_tridiag::L");
if( A.Height() != A.Width() )
LogicError("A must be square");
#endif
typedef BASE(F) R;
const Int tHeight = Max(A.Height()-1,0);
t.ResizeTo( tHeight, 1 );
// Matrix views
Matrix<F>
ATL, ATR, A00, a01, A02, alpha21T,
ABL, ABR, a10, alpha11, a12, a21B,
A20, a21, A22;
// Temporary matrices
Matrix<F> w21;
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height()+1 < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ a01, A02,
/*************/ /**********************/
/**/ a10, /**/ alpha11, a12,
ABL, /**/ ABR, A20, /**/ a21, A22, 1 );
PartitionDown
( a21, alpha21T,
a21B, 1 );
//--------------------------------------------------------------------//
const F tau = Reflector( alpha21T, a21B );
const R epsilon1 = alpha21T.GetRealPart(0,0);
t.Set(A00.Height(),0,tau);
alpha21T.Set(0,0,F(1));
Zeros( w21, a21.Height(), 1 );
Hemv( LOWER, tau, A22, a21, F(0), w21 );
const F alpha = -tau*Dot( w21, a21 )/F(2);
Axpy( alpha, a21, w21 );
Her2( LOWER, F(-1), a21, w21, A22 );
alpha21T.Set(0,0,epsilon1);
//--------------------------------------------------------------------//
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, a01, /**/ A02,
/**/ a10, alpha11, /**/ a12,
/*************/ /**********************/
ABL, /**/ ABR, A20, a21, /**/ A22 );
}
}
示例8: PushCallStack
inline void
LocalTrrkKernel
( UpperOrLower uplo,
Orientation orientationOfA,
Orientation orientationOfB,
T alpha, const DistMatrix<T,STAR,MC >& A,
const DistMatrix<T,MR, STAR>& B,
T beta, DistMatrix<T,MC, MR >& C )
{
#ifndef RELEASE
PushCallStack("LocalTrrkKernel");
CheckInput( orientationOfA, orientationOfB, A, B, C );
#endif
const Grid& g = C.Grid();
DistMatrix<T,STAR,MC> AL(g), AR(g);
DistMatrix<T,MR,STAR> BT(g),
BB(g);
DistMatrix<T,MC,MR> CTL(g), CTR(g),
CBL(g), CBR(g);
DistMatrix<T,MC,MR> DTL(g), DBR(g);
const int half = C.Height()/2;
ScaleTrapezoid( beta, LEFT, uplo, 0, C );
LockedPartitionRight( A, AL, AR, half );
LockedPartitionDown
( B, BT,
BB, half );
PartitionDownDiagonal
( C, CTL, CTR,
CBL, CBR, half );
DTL.AlignWith( CTL );
DBR.AlignWith( CBR );
DTL.ResizeTo( CTL.Height(), CTL.Width() );
DBR.ResizeTo( CBR.Height(), CBR.Width() );
//------------------------------------------------------------------------//
if( uplo == LOWER )
internal::LocalGemm
( orientationOfA, orientationOfB, alpha, AR, BT, T(1), CBL );
else
internal::LocalGemm
( orientationOfA, orientationOfB, alpha, AL, BB, T(1), CTR );
internal::LocalGemm
( orientationOfA, orientationOfB, alpha, AL, BT, T(0), DTL );
AxpyTriangle( uplo, T(1), DTL, CTL );
internal::LocalGemm
( orientationOfA, orientationOfB, alpha, AR, BB, T(0), DBR );
AxpyTriangle( uplo, T(1), DBR, CBR );
//------------------------------------------------------------------------//
#ifndef RELEASE
PopCallStack();
#endif
}
示例9: HermitianTridiagL
inline void HermitianTridiagL( Matrix<R>& A )
{
#ifndef RELEASE
PushCallStack("HermitianTridiagL");
if( A.Height() != A.Width() )
throw std::logic_error("A must be square");
#endif
// Matrix views
Matrix<R>
ATL, ATR, A00, a01, A02, alpha21T,
ABL, ABR, a10, alpha11, a12, a21B,
A20, a21, A22;
// Temporary matrices
Matrix<R> w21;
PushBlocksizeStack( 1 );
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height()+1 < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ a01, A02,
/*************/ /**********************/
/**/ a10, /**/ alpha11, a12,
ABL, /**/ ABR, A20, /**/ a21, A22 );
PartitionDown
( a21, alpha21T,
a21B, 1 );
w21.ResizeTo( a21.Height(), 1 );
//--------------------------------------------------------------------//
const R tau = Reflector( alpha21T, a21B );
const R epsilon1 = alpha21T.Get(0,0);
alpha21T.Set(0,0,R(1));
Symv( LOWER, tau, A22, a21, R(0), w21 );
const R alpha = -tau*Dot( w21, a21 )/R(2);
Axpy( alpha, a21, w21 );
Syr2( LOWER, R(-1), a21, w21, A22 );
alpha21T.Set(0,0,epsilon1);
//--------------------------------------------------------------------//
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, a01, /**/ A02,
/**/ a10, alpha11, /**/ a12,
/*************/ /**********************/
ABL, /**/ ABR, A20, a21, /**/ A22 );
}
PopBlocksizeStack();
#ifndef RELEASE
PopCallStack();
#endif
}
示例10: DEBUG_ONLY
inline void
RepartitionDownDiagonal
( DM& ATL, DM& ATR, DM& A00, DM& A01, DM& A02,
DM& A10, DM& A11, DM& A12,
DM& ABL, DM& ABR, DM& A20, DM& A21, DM& A22, Int bsize=Blocksize() )
{
DEBUG_ONLY(CallStackEntry cse("RepartitionDownDiagonal"))
View( A00, ATL );
PartitionDownDiagonal( ABR, A11, A12,
A21, A22, bsize );
PartitionDown( ABL, A10, A20, A11.Height() );
PartitionRight( ATR, A01, A02, A11.Width() );
}
示例11: CholeskyUVar2
inline void
CholeskyUVar2( Matrix<F>& A )
{
#ifndef RELEASE
PushCallStack("hpd_inverse::CholeskyUVar2");
if( A.Height() != A.Width() )
throw std::logic_error("Nonsquare matrices cannot be triangular");
#endif
// Matrix views
Matrix<F>
ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,
A20, A21, A22;
// Start the algorithm
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height() < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/
/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22 );
//--------------------------------------------------------------------//
Cholesky( UPPER, A11 );
Trsm( RIGHT, UPPER, NORMAL, NON_UNIT, F(1), A11, A01 );
Trsm( LEFT, UPPER, ADJOINT, NON_UNIT, F(1), A11, A12 );
Herk( UPPER, NORMAL, F(1), A01, F(1), A00 );
Gemm( NORMAL, NORMAL, F(-1), A01, A12, F(1), A02 );
Herk( UPPER, ADJOINT, F(-1), A12, F(1), A22 );
Trsm( RIGHT, UPPER, ADJOINT, NON_UNIT, F(1), A11, A01 );
Trsm( LEFT, UPPER, NORMAL, NON_UNIT, F(-1), A11, A12 );
TriangularInverse( UPPER, NON_UNIT, A11 );
Trtrmm( ADJOINT, UPPER, A11 );
//--------------------------------------------------------------------//
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,
/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22 );
}
#ifndef RELEASE
PopCallStack();
#endif
}
示例12: cse
inline void
RepartitionDownDiagonal
( DM& ATL, DM& ATR, DM& A00, DM& A01, DM& A02,
DM& A10, DM& A11, DM& A12,
DM& ABL, DM& ABR, DM& A20, DM& A21, DM& A22, Int bsize )
{
#ifndef RELEASE
CallStackEntry cse("RepartitionDownDiagonal [DistMatrix]");
#endif
View( A00, ATL );
PartitionDownDiagonal( ABR, A11, A12,
A21, A22, bsize );
PartitionDown( ABL, A10, A20, A11.Height() );
PartitionRight( ATR, A01, A02, A11.Width() );
}
示例13: TrdtrmmUVar1
inline void
TrdtrmmUVar1( Orientation orientation, Matrix<F>& U )
{
#ifndef RELEASE
PushCallStack("internal::TrtdrmmUVar1");
if( U.Height() != U.Width() )
throw std::logic_error("U must be square");
if( orientation == NORMAL )
throw std::logic_error("Orientation must be (conjugate-)transpose");
#endif
Matrix<F>
UTL, UTR, U00, U01, U02,
UBL, UBR, U10, U11, U12,
U20, U21, U22;
Matrix<F> d1, S01;
PartitionDownDiagonal
( U, UTL, UTR,
UBL, UBR, 0 );
while( UTL.Height() < U.Height() && UTL.Width() < U.Height() )
{
RepartitionDownDiagonal
( UTL, /**/ UTR, U00, /**/ U01, U02,
/*************/ /******************/
/**/ U10, /**/ U11, U12,
UBL, /**/ UBR, U20, /**/ U21, U22 );
//--------------------------------------------------------------------/
U11.GetDiagonal( d1 );
S01 = U01;
DiagonalSolve( LEFT, NORMAL, d1, U01, true );
Trrk( UPPER, NORMAL, orientation, F(1), U01, S01, F(1), U00 );
Trmm( RIGHT, UPPER, ADJOINT, UNIT, F(1), U11, U01 );
TrdtrmmUUnblocked( orientation, U11 );
//--------------------------------------------------------------------/
SlidePartitionDownDiagonal
( UTL, /**/ UTR, U00, U01, /**/ U02,
/**/ U10, U11, /**/ U12,
/*************/ /******************/
UBL, /**/ UBR, U20, U21, /**/ U22 );
}
#ifndef RELEASE
PopCallStack();
#endif
}
示例14: CholeskyLVar2
inline void
CholeskyLVar2( Matrix<F>& A )
{
#ifndef RELEASE
PushCallStack("internal::CholeskyLVar2");
if( A.Height() != A.Width() )
throw std::logic_error
("Can only compute Cholesky factor of square matrices");
#endif
// Matrix views
Matrix<F>
ATL, ATR, A00, A01, A02,
ABL, ABR, A10, A11, A12,
A20, A21, A22;
// Start the algorithm
PartitionDownDiagonal
( A, ATL, ATR,
ABL, ABR, 0 );
while( ATL.Height() < A.Height() )
{
RepartitionDownDiagonal
( ATL, /**/ ATR, A00, /**/ A01, A02,
/*************/ /******************/
/**/ A10, /**/ A11, A12,
ABL, /**/ ABR, A20, /**/ A21, A22 );
//--------------------------------------------------------------------//
Herk( LOWER, NORMAL, F(-1), A10, F(1), A11 );
CholeskyLVar3Unb( A11 );
Gemm( NORMAL, ADJOINT, F(-1), A20, A10, F(1), A21 );
Trsm( RIGHT, LOWER, ADJOINT, NON_UNIT, F(1), A11, A21 );
//--------------------------------------------------------------------//
SlidePartitionDownDiagonal
( ATL, /**/ ATR, A00, A01, /**/ A02,
/**/ A10, A11, /**/ A12,
/*************/ /******************/
ABL, /**/ ABR, A20, A21, /**/ A22 );
}
#ifndef RELEASE
PopCallStack();
#endif
}
示例15: TrdtrmmLVar1
inline void
TrdtrmmLVar1( Orientation orientation, Matrix<F>& L )
{
#ifndef RELEASE
CallStackEntry entry("internal::TrdtrmmLVar1");
if( L.Height() != L.Width() )
LogicError("L must be square");
if( orientation == NORMAL )
LogicError("Orientation must be (conjugate-)transpose");
#endif
Matrix<F>
LTL, LTR, L00, L01, L02,
LBL, LBR, L10, L11, L12,
L20, L21, L22;
Matrix<F> d1, S10;
PartitionDownDiagonal
( L, LTL, LTR,
LBL, LBR, 0 );
while( LTL.Height() < L.Height() && LTL.Width() < L.Height() )
{
RepartitionDownDiagonal
( LTL, /**/ LTR, L00, /**/ L01, L02,
/*************/ /******************/
/**/ L10, /**/ L11, L12,
LBL, /**/ LBR, L20, /**/ L21, L22 );
//--------------------------------------------------------------------/
L11.GetDiagonal( d1 );
S10 = L10;
DiagonalSolve( LEFT, NORMAL, d1, L10, true );
Trrk( LOWER, orientation, NORMAL, F(1), S10, L10, F(1), L00 );
Trmm( LEFT, LOWER, orientation, UNIT, F(1), L11, L10 );
TrdtrmmLUnblocked( orientation, L11 );
//--------------------------------------------------------------------/
SlidePartitionDownDiagonal
( LTL, /**/ LTR, L00, L01, /**/ L02,
/**/ L10, L11, /**/ L12,
/*************/ /******************/
LBL, /**/ LBR, L20, L21, /**/ L22 );
}
}