本文整理汇总了C++中PCL_WARN函数的典型用法代码示例。如果您正苦于以下问题:C++ PCL_WARN函数的具体用法?C++ PCL_WARN怎么用?C++ PCL_WARN使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了PCL_WARN函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: switch
template <typename PointT> bool
pcl::PackedRGBComparison<PointT>::evaluate (const PointT &point) const
{
// extract the component value
uint8_t* pt_data = (uint8_t*)&point;
uint8_t my_val = *(pt_data + component_offset_);
// now do the comparison
switch (this->op_)
{
case pcl::ComparisonOps::GT :
return (my_val > this->compare_val_);
case pcl::ComparisonOps::GE :
return (my_val >= this->compare_val_);
case pcl::ComparisonOps::LT :
return (my_val < this->compare_val_);
case pcl::ComparisonOps::LE :
return (my_val <= this->compare_val_);
case pcl::ComparisonOps::EQ :
return (my_val == this->compare_val_);
default:
PCL_WARN ("[pcl::PackedRGBComparison::evaluate] unrecognized op_!\n");
return (false);
}
}
示例2: PCL_ERROR
template <typename GeneratorT> int
pcl::common::CloudGenerator<pcl::PointXY, GeneratorT>::fill (int width, int height, pcl::PointCloud<pcl::PointXY>& cloud)
{
if (width < 1)
{
PCL_ERROR ("[pcl::common::CloudGenerator] Cloud width must be >= 1\n!");
return (-1);
}
if (height < 1)
{
PCL_ERROR ("[pcl::common::CloudGenerator] Cloud height must be >= 1\n!");
return (-1);
}
if (!cloud.empty ())
PCL_WARN ("[pcl::common::CloudGenerator] Cloud data will be erased with new data\n!");
cloud.width = width;
cloud.height = height;
cloud.resize (cloud.width * cloud.height);
cloud.is_dense = true;
for (pcl::PointCloud<pcl::PointXY>::iterator points_it = cloud.begin ();
points_it != cloud.end ();
++points_it)
{
points_it->x = x_generator_.run ();
points_it->y = y_generator_.run ();
}
return (0);
}
示例3: histogram_
pcl::FeatureHistogram::FeatureHistogram (size_t const number_of_bins,
const float min, const float max) :
histogram_ (number_of_bins, 0)
{
// Initialize thresholds.
if (min < max)
{
threshold_min_ = min;
threshold_max_ = max;
step_ = (max - min) / static_cast<float> (number_of_bins_);
}
else
{
threshold_min_ = 0.0f;
threshold_max_ = static_cast<float> (number_of_bins);
step_ = 1.0f;
PCL_WARN ("[FeatureHistogram::setThresholds] Variable \"max\" must be greater then \"min\".\n");
}
// Initialize sum.
number_of_elements_ = 0;
// Initialize size;
number_of_bins_ = number_of_bins;
}
示例4: CHECK
void
SACNormalsPlaneExtractor<PointT>::compute()
{
CHECK ( cloud_ ) << "Input cloud is not organized!";
all_planes_.clear();
// ---[ PassThroughFilter
typename pcl::PointCloud<PointT>::Ptr cloud_filtered (new pcl::PointCloud<PointT> ());
pcl::PassThrough<PointT> pass;
pass.setFilterLimits (0, max_z_bounds_);
pass.setFilterFieldName ("z");
pass.setInputCloud (cloud_);
pass.filter (*cloud_filtered);
if ( cloud_filtered->points.size () < k_)
{
PCL_WARN ("[DominantPlaneSegmentation] Filtering returned %lu points! Aborting.",
cloud_filtered->points.size ());
return;
}
// Downsample the point cloud
typename pcl::PointCloud<PointT>::Ptr cloud_downsampled (new pcl::PointCloud<PointT> ());
pcl::VoxelGrid<PointT> grid;
grid.setLeafSize (downsample_leaf_, downsample_leaf_, downsample_leaf_);
grid.setDownsampleAllData (false);
grid.setInputCloud (cloud_filtered);
grid.filter (*cloud_downsampled);
// ---[ Estimate the point normals
pcl::PointCloud<pcl::Normal>::Ptr cloud_normals (new pcl::PointCloud<pcl::Normal> ());
pcl::NormalEstimation<PointT, pcl::Normal> n3d;
typename pcl::search::KdTree<PointT>::Ptr normals_tree_ (new pcl::search::KdTree<PointT>);
n3d.setKSearch ( (int) k_);
n3d.setSearchMethod (normals_tree_);
n3d.setInputCloud (cloud_downsampled);
n3d.compute (*cloud_normals);
// ---[ Perform segmentation
pcl::SACSegmentationFromNormals<PointT, pcl::Normal> seg;
seg.setDistanceThreshold (sac_distance_threshold_);
seg.setMaxIterations (2000);
seg.setNormalDistanceWeight (0.1);
seg.setOptimizeCoefficients (true);
seg.setModelType (pcl::SACMODEL_NORMAL_PLANE);
seg.setMethodType (pcl::SAC_RANSAC);
seg.setProbability (0.99);
seg.setInputCloud (cloud_downsampled);
seg.setInputNormals (cloud_normals);
pcl::PointIndices table_inliers;
pcl::ModelCoefficients coefficients;
seg.segment ( table_inliers, coefficients);
Eigen::Vector4f plane = Eigen::Vector4f(coefficients.values[0], coefficients.values[1],
coefficients.values[2], coefficients.values[3]);
all_planes_.resize(1);
all_planes_[0] = plane;
}
示例5: PCL_WARN
void
ScreenshotManager::saveImage(const Eigen::Affine3f &camPose, pcl::gpu::PtrStepSz<const PixelRGB> rgb24)
{
PCL_WARN ("[o] [o] [o] [o] Saving screenshot [o] [o] [o] [o]\n");
std::string file_extension_image = ".png";
std::string file_extension_pose = ".txt";
std::string filename_image = "KinFuSnapshots/";
std::string filename_pose = "KinFuSnapshots/";
// Get Pose
Eigen::Matrix<float, 3, 3, Eigen::RowMajor> erreMats = camPose.linear ();
Eigen::Vector3f teVecs = camPose.translation ();
// Create filenames
filename_pose += std::to_string(screenshot_counter) + file_extension_pose;
filename_image += std::to_string(screenshot_counter) + file_extension_image;
// Write files
writePose (filename_pose, teVecs, erreMats);
// Save Image
pcl::io::saveRgbPNGFile (filename_image, (unsigned char*)rgb24.data, 640,480);
screenshot_counter++;
}
示例6: waitForUser
/** @brief Asks the user to press enter to continue
* @param[in] str Message to display */
void
waitForUser (std::string str = "Press enter to continue")
{
PCL_WARN (str.c_str ());
std::cout.flush ();
getc (stdin);
}
示例7: PCL_WARN
template <typename PointT> bool
pcl::visualization::PCLHistogramVisualizer::updateFeatureHistogram (
const pcl::PointCloud<PointT> &cloud, int hsize,
const std::string &id)
{
RenWinInteractMap::iterator am_it = wins_.find (id);
if (am_it == wins_.end ())
{
PCL_WARN ("[updateFeatureHistogram] A window with id <%s> does not exists!.\n", id.c_str ());
return (false);
}
RenWinInteract* renwinupd = &wins_[id];
vtkSmartPointer<vtkDoubleArray> xy_array = vtkSmartPointer<vtkDoubleArray>::New ();
xy_array->SetNumberOfComponents (2);
xy_array->SetNumberOfTuples (hsize);
// Parse the cloud data and store it in the array
double xy[2];
for (int d = 0; d < hsize; ++d)
{
xy[0] = d;
xy[1] = cloud.points[0].histogram[d];
xy_array->SetTuple (d, xy);
}
reCreateActor (xy_array, renwinupd, hsize);
return (true);
}
示例8: main
/** @brief Main function
* @param argc
* @param argv
* @return Exit status */
int
main (int argc,
char *argv[])
{
if (argc != 2)
{
PCL_ERROR ("Usage:\n%s 192.168.100.65\n", argv[0]);
return (-1);
}
davidsdk_ptr.reset (new pcl::DavidSDKGrabber);
davidsdk_ptr->connect (argv[1]);
if (!davidsdk_ptr->isConnected ())
return (-1);
PCL_WARN ("davidSDK connected\n");
boost::function<void
(const boost::shared_ptr<pcl::PCLImage> &)> f = boost::bind (&grabberCallback, _1);
davidsdk_ptr->registerCallback (f);
davidsdk_ptr->start ();
waitForUser ("Press enter to quit");
return (0);
}
示例9: PCL_WARN
template<typename PointType, typename PointRfType> void
pcl::Hough3DGrouping<PointModelT, PointSceneT, PointModelRfT, PointSceneRfT>::computeRf (const boost::shared_ptr<const pcl::PointCloud<PointType> > &input, pcl::PointCloud<PointRfType> &rf)
{
if (local_rf_search_radius_ == 0)
{
PCL_WARN ("[pcl::Hough3DGrouping::computeRf()] Warning! Reference frame search radius not set. Computing with default value. Results might be incorrect, algorithm might be slow.\n");
local_rf_search_radius_ = static_cast<float> (hough_bin_size_);
}
pcl::PointCloud<Normal>::Ptr normal_cloud (new pcl::PointCloud<Normal> ());
NormalEstimation<PointType, Normal> norm_est;
norm_est.setInputCloud (input);
if (local_rf_normals_search_radius_ <= 0.0f)
{
norm_est.setKSearch (15);
}
else
{
norm_est.setRadiusSearch (local_rf_normals_search_radius_);
}
norm_est.compute (*normal_cloud);
BOARDLocalReferenceFrameEstimation<PointType, Normal, PointRfType> rf_est;
rf_est.setInputCloud (input);
rf_est.setInputNormals (normal_cloud);
rf_est.setFindHoles (true);
rf_est.setRadiusSearch (local_rf_search_radius_);
rf_est.compute (rf);
}
示例10: PCL_WARN
void
computeFacesImpl <pcl::PointXYZ, pcl::PointXYZ>
(v4r::Model<pcl::PointXYZ> & model)
{
(void) model;
PCL_WARN("Not implemented for pcl::PointXYZ... this function would be available for PCL1.7.2 or higher\n");
}
示例11: PCL_WARN
template <typename PointT> void
pcl::SupervoxelClustering<PointT>::reseedSupervoxels ()
{
//Go through each supervoxel and remove all it's leaves
for (typename HelperListT::iterator sv_itr = supervoxel_helpers_.begin (); sv_itr != supervoxel_helpers_.end (); ++sv_itr)
{
sv_itr->removeAllLeaves ();
}
std::vector<int> closest_index;
std::vector<float> distance;
//Now go through each supervoxel, find voxel closest to its center, add it in
for (typename HelperListT::iterator sv_itr = supervoxel_helpers_.begin (); sv_itr != supervoxel_helpers_.end (); ++sv_itr)
{
PointT point;
sv_itr->getXYZ (point.x, point.y, point.z);
voxel_kdtree_->nearestKSearch (point, 1, closest_index, distance);
LeafContainerT* seed_leaf = adjacency_octree_->at (closest_index[0]);
if (seed_leaf)
{
sv_itr->addLeaf (seed_leaf);
}
else
{
PCL_WARN ("Could not find leaf in pcl::SupervoxelClustering<PointT>::reseedSupervoxels - supervoxel will be deleted \n");
}
}
}
示例12: setCylinderModel
void setCylinderModel(const Cylinder &cylinderModel){
cylinderModel_.color=cylinderModel.color;
cylinderModel_.diameter=cylinderModel.diameter;
cylinderModel_.height=cylinderModel.height;
cylinderModelSet_=true;
if (debug_) PCL_WARN("Set cylinder model to diameter: %f, height: %f\n",cylinderModel_.diameter,cylinderModel_.height);
}
示例13: PCL_WARN
template <typename PointT> bool
pcl::visualization::PCLHistogramVisualizer::addFeatureHistogram (
const pcl::PointCloud<PointT> &cloud, int hsize,
const std::string &id, int win_width, int win_height)
{
RenWinInteractMap::iterator am_it = wins_.find (id);
if (am_it != wins_.end ())
{
PCL_WARN ("[addFeatureHistogram] A window with id <%s> already exists! Please choose a different id and retry.\n", id.c_str ());
return (false);
}
vtkSmartPointer<vtkDoubleArray> xy_array = vtkSmartPointer<vtkDoubleArray>::New ();
xy_array->SetNumberOfComponents (2);
xy_array->SetNumberOfTuples (hsize);
// Parse the cloud data and store it in the array
double xy[2];
for (int d = 0; d < hsize; ++d)
{
xy[0] = d;
xy[1] = cloud.points[0].histogram[d];
xy_array->SetTuple (d, xy);
}
RenWinInteract renwinint;
createActor (xy_array, renwinint, id, win_width, win_height);
// Save the pointer/ID pair to the global window map
wins_[id] = renwinint;
resetStoppedFlag ();
return (true);
}
示例14: PCL_WARN
template <typename PointT> void
pcl::ProjectInliers<PointT>::applyFilter (PointCloud &output)
{
if (indices_->empty ())
{
PCL_WARN ("[pcl::%s::applyFilter] No indices given or empty indices!\n", getClassName ().c_str ());
output.width = output.height = 0;
output.points.clear ();
return;
}
//Eigen::Map<Eigen::VectorXf, Eigen::Aligned> model_coefficients (&model_->values[0], model_->values.size ());
// More expensive than a map but safer (32bit architectures seem to complain)
Eigen::VectorXf model_coefficients (model_->values.size ());
for (size_t i = 0; i < model_->values.size (); ++i)
model_coefficients[i] = model_->values[i];
// Initialize the Sample Consensus model and set its parameters
if (!initSACModel (model_type_))
{
PCL_ERROR ("[pcl::%s::segment] Error initializing the SAC model!\n", getClassName ().c_str ());
output.width = output.height = 0;
output.points.clear ();
return;
}
if (copy_all_data_)
sacmodel_->projectPoints (*indices_, model_coefficients, output, true);
else
sacmodel_->projectPoints (*indices_, model_coefficients, output, false);
}
示例15: PCL_ERROR
void
pcl::ImageGrabberBase::ImageGrabberImpl::loadDepthAndRGBFiles (const std::string &depth_dir, const std::string &rgb_dir)
{
if (!boost::filesystem::exists (depth_dir) || !boost::filesystem::is_directory (depth_dir))
{
PCL_ERROR ("[pcl::ImageGrabber::loadDepthAndRGBFiles] Error: attempted to instantiate a pcl::ImageGrabber from a path which"
" is not a directory: %s", depth_dir.c_str ());
return;
}
if (!boost::filesystem::exists (rgb_dir) || !boost::filesystem::is_directory (rgb_dir))
{
PCL_ERROR ("[pcl::ImageGrabber::loadDepthAndRGBFiles] Error: attempted to instantiate a pcl::ImageGrabber from a path which"
" is not a directory: %s", rgb_dir.c_str ());
return;
}
std::string pathname;
std::string extension;
std::string basename;
boost::filesystem::directory_iterator end_itr;
// First iterate over depth images
for (boost::filesystem::directory_iterator itr (depth_dir); itr != end_itr; ++itr)
{
extension = boost::algorithm::to_upper_copy (boost::filesystem::extension (itr->path ()));
pathname = itr->path ().string ();
basename = boost::filesystem::basename (itr->path ());
if (!boost::filesystem::is_directory (itr->status ())
&& isValidExtension (extension))
{
if (basename.find ("depth") < std::string::npos)
{
depth_image_files_.push_back (pathname);
}
}
}
// Then iterate over RGB images
for (boost::filesystem::directory_iterator itr (rgb_dir); itr != end_itr; ++itr)
{
extension = boost::algorithm::to_upper_copy (boost::filesystem::extension (itr->path ()));
pathname = itr->path ().string ();
basename = boost::filesystem::basename (itr->path ());
if (!boost::filesystem::is_directory (itr->status ())
&& isValidExtension (extension))
{
if (basename.find ("rgb") < std::string::npos)
{
rgb_image_files_.push_back (pathname);
}
}
}
if (depth_image_files_.size () != rgb_image_files_.size () )
PCL_WARN ("[pcl::ImageGrabberBase::ImageGrabberImpl::loadDepthAndRGBFiles] : Watch out not same amount of depth and rgb images");
if (!depth_image_files_.empty ())
sort (depth_image_files_.begin (), depth_image_files_.end ());
else
PCL_ERROR ("[pcl::ImageGrabberBase::ImageGrabberImpl::loadDepthAndRGBFiles] : no depth images added");
if (!rgb_image_files_.empty ())
sort (rgb_image_files_.begin (), rgb_image_files_.end ());
else
PCL_ERROR ("[pcl::ImageGrabberBase::ImageGrabberImpl::loadDepthAndRGBFiles] : no rgb images added");
}