当前位置: 首页>>代码示例>>C++>>正文


C++ OS_REG_WRITE函数代码示例

本文整理汇总了C++中OS_REG_WRITE函数的典型用法代码示例。如果您正苦于以下问题:C++ OS_REG_WRITE函数的具体用法?C++ OS_REG_WRITE怎么用?C++ OS_REG_WRITE使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。


在下文中一共展示了OS_REG_WRITE函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。

示例1: ar5212ResetKeyCacheEntry

/*
 * Clear the specified key cache entry and any associated MIC entry.
 */
HAL_BOOL
ar5212ResetKeyCacheEntry(struct ath_hal *ah, uint16_t entry)
{
	uint32_t keyType;

	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: entry %u out of range\n",
		    __func__, entry);
		return AH_FALSE;
	}
	keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));

	/* XXX why not clear key type/valid bit first? */
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
		uint16_t micentry = entry+64;	/* MIC goes at slot+64 */

		HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
		/* NB: key type and MAC are known to be ok */
	}
	return AH_TRUE;
}
开发者ID:2asoft,项目名称:freebsd,代码行数:36,代码来源:ar5212_keycache.c

示例2: ar5210ResetTxQueue

HAL_BOOL
ar5210ResetTxQueue(struct ath_hal *ah, u_int q)
{
	struct ath_hal_5210 *ahp = AH5210(ah);
	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
	HAL_TX_QUEUE_INFO *qi;
	uint32_t cwMin;

	if (q >= HAL_NUM_TX_QUEUES) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
		    __func__, q);
		return AH_FALSE;
	}
	qi = &ahp->ah_txq[q];
	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
		    __func__, q);
		return AH_FALSE;
	}

	/*
	 * Ignore any non-data queue(s).
	 */
	if (qi->tqi_type != HAL_TX_QUEUE_DATA)
		return AH_TRUE;

	/* Set turbo mode / base mode parameters on or off */
	if (IEEE80211_IS_CHAN_TURBO(chan)) {
		OS_REG_WRITE(ah, AR_SLOT_TIME, INIT_SLOT_TIME_TURBO);
		OS_REG_WRITE(ah, AR_TIME_OUT, INIT_ACK_CTS_TIMEOUT_TURBO);
		OS_REG_WRITE(ah, AR_USEC, INIT_TRANSMIT_LATENCY_TURBO);
		OS_REG_WRITE(ah, AR_IFS0, 
			((INIT_SIFS_TURBO + qi->tqi_aifs * INIT_SLOT_TIME_TURBO)
				<< AR_IFS0_DIFS_S)
			| INIT_SIFS_TURBO);
		OS_REG_WRITE(ah, AR_IFS1, INIT_PROTO_TIME_CNTRL_TURBO);
		OS_REG_WRITE(ah, AR_PHY(17),
			(OS_REG_READ(ah, AR_PHY(17)) & ~0x7F) | 0x38);
		OS_REG_WRITE(ah, AR_PHY_FRCTL,
			AR_PHY_SERVICE_ERR | AR_PHY_TXURN_ERR |
			AR_PHY_ILLLEN_ERR | AR_PHY_ILLRATE_ERR |
			AR_PHY_PARITY_ERR | AR_PHY_TIMING_ERR |
			0x2020 |
			AR_PHY_TURBO_MODE | AR_PHY_TURBO_SHORT);
	} else {
		OS_REG_WRITE(ah, AR_SLOT_TIME, INIT_SLOT_TIME);
		OS_REG_WRITE(ah, AR_TIME_OUT, INIT_ACK_CTS_TIMEOUT);
		OS_REG_WRITE(ah, AR_USEC, INIT_TRANSMIT_LATENCY);
		OS_REG_WRITE(ah, AR_IFS0, 
			((INIT_SIFS + qi->tqi_aifs * INIT_SLOT_TIME)
				<< AR_IFS0_DIFS_S)
			| INIT_SIFS);
		OS_REG_WRITE(ah, AR_IFS1, INIT_PROTO_TIME_CNTRL);
		OS_REG_WRITE(ah, AR_PHY(17),
			(OS_REG_READ(ah, AR_PHY(17)) & ~0x7F) | 0x1C);
		OS_REG_WRITE(ah, AR_PHY_FRCTL,
			AR_PHY_SERVICE_ERR | AR_PHY_TXURN_ERR |
			AR_PHY_ILLLEN_ERR | AR_PHY_ILLRATE_ERR |
			AR_PHY_PARITY_ERR | AR_PHY_TIMING_ERR | 0x1020);
	}

	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT)
		cwMin = INIT_CWMIN;
	else
		cwMin = qi->tqi_cwmin;

	/* Set cwmin and retry limit values */
	OS_REG_WRITE(ah, AR_RETRY_LMT, 
		  (cwMin << AR_RETRY_LMT_CW_MIN_S)
		 | SM(INIT_SLG_RETRY, AR_RETRY_LMT_SLG_RETRY)
		 | SM(INIT_SSH_RETRY, AR_RETRY_LMT_SSH_RETRY)
		 | SM(qi->tqi_lgretry, AR_RETRY_LMT_LG_RETRY)
		 | SM(qi->tqi_shretry, AR_RETRY_LMT_SH_RETRY)
	);

	if (qi->tqi_qflags & HAL_TXQ_TXOKINT_ENABLE)
		ahp->ah_txOkInterruptMask |= 1 << q;
	else
		ahp->ah_txOkInterruptMask &= ~(1 << q);
	if (qi->tqi_qflags & HAL_TXQ_TXERRINT_ENABLE)
		ahp->ah_txErrInterruptMask |= 1 << q;
	else
		ahp->ah_txErrInterruptMask &= ~(1 << q);
	if (qi->tqi_qflags & HAL_TXQ_TXDESCINT_ENABLE)
		ahp->ah_txDescInterruptMask |= 1 << q;
	else
		ahp->ah_txDescInterruptMask &= ~(1 << q);
	if (qi->tqi_qflags & HAL_TXQ_TXEOLINT_ENABLE)
		ahp->ah_txEolInterruptMask |= 1 << q;
	else
		ahp->ah_txEolInterruptMask &= ~(1 << q);
	if (qi->tqi_qflags & HAL_TXQ_TXURNINT_ENABLE)
		ahp->ah_txUrnInterruptMask |= 1 << q;
	else
		ahp->ah_txUrnInterruptMask &= ~(1 << q);

	return AH_TRUE;
}
开发者ID:FreeBSDFoundation,项目名称:freebsd,代码行数:98,代码来源:ar5210_xmit.c

示例3: ar5211SetMulticastFilter

/*
 * Set multicast filter 0 (lower 32-bits)
 *			   filter 1 (upper 32-bits)
 */
void
ar5211SetMulticastFilter(struct ath_hal *ah, uint32_t filter0, uint32_t filter1)
{
	OS_REG_WRITE(ah, AR_MCAST_FIL0, filter0);
	OS_REG_WRITE(ah, AR_MCAST_FIL1, filter1);
}
开发者ID:ele7enxxh,项目名称:dtrace-pf,代码行数:10,代码来源:ar5211_recv.c

示例4: ar5212SetRxDP

/*
 * Set the RxDP.
 */
void
ar5212SetRxDP(struct ath_hal *ah, uint32_t rxdp)
{
	OS_REG_WRITE(ah, AR_RXDP, rxdp);
	HALASSERT(OS_REG_READ(ah, AR_RXDP) == rxdp);
}
开发者ID:roccozhang,项目名称:wtp-simulator,代码行数:9,代码来源:ar5212_recv.c

示例5: ar9287AniSetup


//.........这里部分代码省略.........
#endif

	/* Initialise Japan arrays */
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirNormal,
	    ar9287Common_normal_cck_fir_coeff_9287_1_1, 2);
	HAL_INI_INIT(&ahp9287->ah_ini_cckFirJapan2484,
	    ar9287Common_japan_2484_cck_fir_coeff_9287_1_1, 2);

	ar5416AttachPCIE(ah);

	ecode = ath_hal_9287EepromAttach(ah);
	if (ecode != HAL_OK)
		goto bad;

	if (!ar5416ChipReset(ah, AH_NULL)) {	/* reset chip */
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: chip reset failed\n", __func__);
		ecode = HAL_EIO;
		goto bad;
	}

	AH_PRIVATE(ah)->ah_phyRev = OS_REG_READ(ah, AR_PHY_CHIP_ID);

	if (!ar5212ChipTest(ah)) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: hardware self-test failed\n",
		    __func__);
		ecode = HAL_ESELFTEST;
		goto bad;
	}

	/*
	 * Set correct Baseband to analog shift
	 * setting to access analog chips.
	 */
	OS_REG_WRITE(ah, AR_PHY(0), 0x00000007);

	/* Read Radio Chip Rev Extract */
	AH_PRIVATE(ah)->ah_analog5GhzRev = ar5416GetRadioRev(ah);
	switch (AH_PRIVATE(ah)->ah_analog5GhzRev & AR_RADIO_SREV_MAJOR) {
        case AR_RAD2133_SREV_MAJOR:	/* Sowl: 2G/3x3 */
	case AR_RAD5133_SREV_MAJOR:	/* Sowl: 2+5G/3x3 */
		break;
	default:
		if (AH_PRIVATE(ah)->ah_analog5GhzRev == 0) {
			AH_PRIVATE(ah)->ah_analog5GhzRev =
				AR_RAD5133_SREV_MAJOR;
			break;
		}
#ifdef AH_DEBUG
		HALDEBUG(ah, HAL_DEBUG_ANY,
		    "%s: 5G Radio Chip Rev 0x%02X is not supported by "
		    "this driver\n", __func__,
		    AH_PRIVATE(ah)->ah_analog5GhzRev);
		ecode = HAL_ENOTSUPP;
		goto bad;
#endif
	}
	rfStatus = ar9287RfAttach(ah, &ecode);
	if (!rfStatus) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: RF setup failed, status %u\n",
		    __func__, ecode);
		goto bad;
	}

	/*
	 * We only implement open-loop TX power control
	 * for the AR9287 in this codebase.
开发者ID:dcui,项目名称:FreeBSD-9.3_kernel,代码行数:67,代码来源:ar9287_attach.c

示例6: ar2316SetChannel

/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 */
static HAL_BOOL
ar2316SetChannel(struct ath_hal *ah,  struct ieee80211_channel *chan)
{
	uint16_t freq = ath_hal_gethwchannel(ah, chan);
	uint32_t channelSel  = 0;
	uint32_t bModeSynth  = 0;
	uint32_t aModeRefSel = 0;
	uint32_t reg32       = 0;

	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);

	if (freq < 4800) {
		uint32_t txctl;

		if (((freq - 2192) % 5) == 0) {
			channelSel = ((freq - 672) * 2 - 3040)/10;
			bModeSynth = 0;
		} else if (((freq - 2224) % 5) == 0) {
			channelSel = ((freq - 704) * 2 - 3040) / 10;
			bModeSynth = 1;
		} else {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: invalid channel %u MHz\n",
			    __func__, freq);
			return AH_FALSE;
		}

		channelSel = (channelSel << 2) & 0xff;
		channelSel = ath_hal_reverseBits(channelSel, 8);

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}
	} else if ((freq % 20) == 0 && freq >= 5120) {
		channelSel = ath_hal_reverseBits(
			((freq - 4800) / 20 << 2), 8);
		aModeRefSel = ath_hal_reverseBits(3, 2);
	} else if ((freq % 10) == 0) {
		channelSel = ath_hal_reverseBits(
			((freq - 4800) / 10 << 1), 8);
		aModeRefSel = ath_hal_reverseBits(2, 2);
	} else if ((freq % 5) == 0) {
		channelSel = ath_hal_reverseBits(
			(freq - 4800) / 5, 8);
		aModeRefSel = ath_hal_reverseBits(1, 2);
	} else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
		    __func__, freq);
		return AH_FALSE;
	}

	reg32 = (channelSel << 4) | (aModeRefSel << 2) | (bModeSynth << 1) |
			(1 << 12) | 0x1;
	OS_REG_WRITE(ah, AR_PHY(0x27), reg32 & 0xff);

	reg32 >>= 8;
	OS_REG_WRITE(ah, AR_PHY(0x36), reg32 & 0x7f);

	AH_PRIVATE(ah)->ah_curchan = chan;
	return AH_TRUE;
}
开发者ID:coyizumi,项目名称:cs111,代码行数:72,代码来源:ar2316.c

示例7: ar5312MacReset

HAL_BOOL
ar5312MacReset(struct ath_hal *ah, unsigned int RCMask)
{
	int wlanNum = AR5312_UNIT(ah);
	uint32_t resetBB, resetBits, regMask;
	uint32_t reg;

	if (RCMask == 0)
		return(AH_FALSE);
#if ( AH_SUPPORT_2316 || AH_SUPPORT_2317 )
	    if (IS_5315(ah)) {
			switch(wlanNum) {
			case 0:
				resetBB = AR5315_RC_BB0_CRES | AR5315_RC_WBB0_RES; 
				/* Warm and cold reset bits for wbb */
				resetBits = AR5315_RC_WMAC0_RES;
				break;
			case 1:
				resetBB = AR5315_RC_BB1_CRES | AR5315_RC_WBB1_RES; 
				/* Warm and cold reset bits for wbb */
				resetBits = AR5315_RC_WMAC1_RES;
				break;
			default:
				return(AH_FALSE);
			}		
			regMask = ~(resetBB | resetBits);

			/* read before */
			reg = OS_REG_READ(ah, 
							  (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh) + AR5315_RESET));

			if (RCMask == AR_RC_BB) {
				/* Put baseband in reset */
				reg |= resetBB;    /* Cold and warm reset the baseband bits */
			} else {
				/*
				 * Reset the MAC and baseband.  This is a bit different than
				 * the PCI version, but holding in reset causes problems.
				 */
				reg &= regMask;
				reg |= (resetBits | resetBB) ;
			}
			OS_REG_WRITE(ah, 
						 (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh)+AR5315_RESET),
						 reg);
			/* read after */
			OS_REG_READ(ah, 
						(AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh) +AR5315_RESET));
			OS_DELAY(100);

			/* Bring MAC and baseband out of reset */
			reg &= regMask;
			/* read before */
			OS_REG_READ(ah, 
						(AR5315_RSTIMER_BASE- ((uint32_t) ah->ah_sh) +AR5315_RESET));
			OS_REG_WRITE(ah, 
						 (AR5315_RSTIMER_BASE - ((uint32_t) ah->ah_sh)+AR5315_RESET),
						 reg);
			/* read after */
			OS_REG_READ(ah,
						(AR5315_RSTIMER_BASE- ((uint32_t) ah->ah_sh) +AR5315_RESET));


		} 
        else 
#endif
		{

			switch(wlanNum) {
			case 0:
				resetBB = AR5312_RC_BB0_CRES | AR5312_RC_WBB0_RES;
				/* Warm and cold reset bits for wbb */
				resetBits = AR5312_RC_WMAC0_RES;
				break;
			case 1:
				resetBB = AR5312_RC_BB1_CRES | AR5312_RC_WBB1_RES;
				/* Warm and cold reset bits for wbb */
				resetBits = AR5312_RC_WMAC1_RES;
				break;
			default:
				return(AH_FALSE);
			}
			regMask = ~(resetBB | resetBits);

			/* read before */
			reg = OS_REG_READ(ah,
							  (AR5312_RSTIMER_BASE - ((uint32_t) ah->ah_sh) + AR5312_RESET));

			if (RCMask == AR_RC_BB) {
				/* Put baseband in reset */
				reg |= resetBB;    /* Cold and warm reset the baseband bits */
			} else {
				/*
				 * Reset the MAC and baseband.  This is a bit different than
				 * the PCI version, but holding in reset causes problems.
				 */
				reg &= regMask;
				reg |= (resetBits | resetBB) ;
			}
			OS_REG_WRITE(ah,
//.........这里部分代码省略.........
开发者ID:syedzubairahmed,项目名称:FreeBSD-7.3-dyntick,代码行数:101,代码来源:ar5312_reset.c

示例8: ar5416ResetKeyCacheEntry

/*
 * Clear the specified key cache entry and any associated MIC entry.
 */
HAL_BOOL
ar5416ResetKeyCacheEntry(struct ath_hal *ah, u_int16_t entry)
{
	u_int32_t keyType;
	struct ath_hal_5416 *ahp = AH5416(ah);

	if (entry >= AH_PRIVATE(ah)->ah_caps.halKeyCacheSize) {
		HDPRINTF(ah, HAL_DBG_KEYCACHE, "%s: entry %u out of range\n", __func__, entry);
		return AH_FALSE;
	}
	keyType = OS_REG_READ(ah, AR_KEYTABLE_TYPE(entry));

	ENABLE_REG_WRITE_BUFFER

	/* XXX why not clear key type/valid bit first? */
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
	OS_REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
	OS_REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
	if (keyType == AR_KEYTABLE_TYPE_TKIP && IS_MIC_ENABLED(ah)) {
		u_int16_t micentry = entry+64;	/* MIC goes at slot+64 */

		HALASSERT(micentry < AH_PRIVATE(ah)->ah_caps.halKeyCacheSize);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
		OS_REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
		/* NB: key type and MAC are known to be ok */
	}

    OS_REG_WRITE_FLUSH(ah);

	DISABLE_REG_WRITE_BUFFER

	if (AH_PRIVATE(ah)->ah_curchan == AH_NULL)
            return AH_TRUE;

	if (ar5416GetCapability(ah, HAL_CAP_BB_RIFS_HANG, 0, AH_NULL)
		== HAL_OK) {
		if (keyType == AR_KEYTABLE_TYPE_TKIP    ||
		    keyType == AR_KEYTABLE_TYPE_40      ||
		    keyType == AR_KEYTABLE_TYPE_104     ||
		    keyType == AR_KEYTABLE_TYPE_128) {
		    /* SW WAR for Bug 31602 */
			if (--ahp->ah_rifs_sec_cnt == 0) {
				HDPRINTF(ah, HAL_DBG_KEYCACHE, "%s: Count = %d, enabling RIFS\n", __func__, ahp->ah_rifs_sec_cnt);
				ar5416SetRifsDelay(ah, AH_TRUE);
			}
		}
	}
	return AH_TRUE;
}
开发者ID:KHATEEBNSIT,项目名称:AP,代码行数:59,代码来源:ar5416_keycache.c

示例9: ar5211ResetTxQueue

/*
 * Set the retry, aifs, cwmin/max, readyTime regs for specified queue
 */
HAL_BOOL
ar5211ResetTxQueue(struct ath_hal *ah, u_int q)
{
	struct ath_hal_5211 *ahp = AH5211(ah);
	const struct ieee80211_channel *chan = AH_PRIVATE(ah)->ah_curchan;
	HAL_TX_QUEUE_INFO *qi;
	uint32_t cwMin, chanCwMin, value;

	if (q >= HAL_NUM_TX_QUEUES) {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid queue num %u\n",
		    __func__, q);
		return AH_FALSE;
	}
	qi = &ahp->ah_txq[q];
	if (qi->tqi_type == HAL_TX_QUEUE_INACTIVE) {
		HALDEBUG(ah, HAL_DEBUG_TXQUEUE, "%s: inactive queue %u\n",
		    __func__, q);
		return AH_TRUE;		/* XXX??? */
	}

	if (qi->tqi_cwmin == HAL_TXQ_USEDEFAULT) {
		/*
		 * Select cwmin according to channel type.
		 * NB: chan can be NULL during attach
		 */
		if (chan && IEEE80211_IS_CHAN_B(chan))
			chanCwMin = INIT_CWMIN_11B;
		else
			chanCwMin = INIT_CWMIN;
		/* make sure that the CWmin is of the form (2^n - 1) */
		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1)
			;
	} else
		cwMin = qi->tqi_cwmin;

	/* set cwMin/Max and AIFS values */
	OS_REG_WRITE(ah, AR_DLCL_IFS(q),
		  SM(cwMin, AR_D_LCL_IFS_CWMIN)
		| SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX)
		| SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));

	/* Set retry limit values */
	OS_REG_WRITE(ah, AR_DRETRY_LIMIT(q), 
		   SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH)
		 | SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG)
		 | SM(qi->tqi_lgretry, AR_D_RETRY_LIMIT_FR_LG)
		 | SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH)
	);

	/* enable early termination on the QCU */
	OS_REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);

	if (AH_PRIVATE(ah)->ah_macVersion < AR_SREV_VERSION_OAHU) {
		/* Configure DCU to use the global sequence count */
		OS_REG_WRITE(ah, AR_DMISC(q), AR5311_D_MISC_SEQ_NUM_CONTROL);
	}
	/* multiqueue support */
	if (qi->tqi_cbrPeriod) {
		OS_REG_WRITE(ah, AR_QCBRCFG(q), 
			  SM(qi->tqi_cbrPeriod,AR_Q_CBRCFG_CBR_INTERVAL)
			| SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_CBR_OVF_THRESH));
		OS_REG_WRITE(ah, AR_QMISC(q),
			OS_REG_READ(ah, AR_QMISC(q)) |
			AR_Q_MISC_FSP_CBR |
			(qi->tqi_cbrOverflowLimit ?
				AR_Q_MISC_CBR_EXP_CNTR_LIMIT : 0));
	}
	if (qi->tqi_readyTime) {
		OS_REG_WRITE(ah, AR_QRDYTIMECFG(q),
			SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_INT) | 
			AR_Q_RDYTIMECFG_EN);
	}
	if (qi->tqi_burstTime) {
		OS_REG_WRITE(ah, AR_DCHNTIME(q),
			SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
			AR_D_CHNTIME_EN);
		if (qi->tqi_qflags & HAL_TXQ_RDYTIME_EXP_POLICY_ENABLE) {
			OS_REG_WRITE(ah, AR_QMISC(q),
			     OS_REG_READ(ah, AR_QMISC(q)) |
			     AR_Q_MISC_RDYTIME_EXP_POLICY);
		}
	}

	if (qi->tqi_qflags & HAL_TXQ_BACKOFF_DISABLE) {
		OS_REG_WRITE(ah, AR_DMISC(q),
			OS_REG_READ(ah, AR_DMISC(q)) |
			AR_D_MISC_POST_FR_BKOFF_DIS);
	}
	if (qi->tqi_qflags & HAL_TXQ_FRAG_BURST_BACKOFF_ENABLE) {
		OS_REG_WRITE(ah, AR_DMISC(q),
			OS_REG_READ(ah, AR_DMISC(q)) |
			AR_D_MISC_FRAG_BKOFF_EN);
	}
	switch (qi->tqi_type) {
	case HAL_TX_QUEUE_BEACON:
		/* Configure QCU for beacons */
		OS_REG_WRITE(ah, AR_QMISC(q),
//.........这里部分代码省略.........
开发者ID:AhmadTux,项目名称:freebsd,代码行数:101,代码来源:ar5211_xmit.c

示例10: ar5111SetChannel

/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 */
static HAL_BOOL
ar5111SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
#define CI_2GHZ_INDEX_CORRECTION 19
	uint16_t freq = ath_hal_gethwchannel(ah, chan);
	uint32_t refClk, reg32, data2111;
	int16_t chan5111, chanIEEE;

	/*
	 * Structure to hold 11b tuning information for 5111/2111
	 * 16 MHz mode, divider ratio = 198 = NP+S. N=16, S=4 or 6, P=12
	 */
	typedef struct {
		uint32_t	refClkSel;	/* reference clock, 1 for 16 MHz */
		uint32_t	channelSelect;	/* P[7:4]S[3:0] bits */
		uint16_t	channel5111;	/* 11a channel for 5111 */
	} CHAN_INFO_2GHZ;

	static const CHAN_INFO_2GHZ chan2GHzData[] = {
		{ 1, 0x46, 96  },	/* 2312 -19 */
		{ 1, 0x46, 97  },	/* 2317 -18 */
		{ 1, 0x46, 98  },	/* 2322 -17 */
		{ 1, 0x46, 99  },	/* 2327 -16 */
		{ 1, 0x46, 100 },	/* 2332 -15 */
		{ 1, 0x46, 101 },	/* 2337 -14 */
		{ 1, 0x46, 102 },	/* 2342 -13 */
		{ 1, 0x46, 103 },	/* 2347 -12 */
		{ 1, 0x46, 104 },	/* 2352 -11 */
		{ 1, 0x46, 105 },	/* 2357 -10 */
		{ 1, 0x46, 106 },	/* 2362  -9 */
		{ 1, 0x46, 107 },	/* 2367  -8 */
		{ 1, 0x46, 108 },	/* 2372  -7 */
		/* index -6 to 0 are pad to make this a nolookup table */
		{ 1, 0x46, 116 },	/*       -6 */
		{ 1, 0x46, 116 },	/*       -5 */
		{ 1, 0x46, 116 },	/*       -4 */
		{ 1, 0x46, 116 },	/*       -3 */
		{ 1, 0x46, 116 },	/*       -2 */
		{ 1, 0x46, 116 },	/*       -1 */
		{ 1, 0x46, 116 },	/*        0 */
		{ 1, 0x46, 116 },	/* 2412   1 */
		{ 1, 0x46, 117 },	/* 2417   2 */
		{ 1, 0x46, 118 },	/* 2422   3 */
		{ 1, 0x46, 119 },	/* 2427   4 */
		{ 1, 0x46, 120 },	/* 2432   5 */
		{ 1, 0x46, 121 },	/* 2437   6 */
		{ 1, 0x46, 122 },	/* 2442   7 */
		{ 1, 0x46, 123 },	/* 2447   8 */
		{ 1, 0x46, 124 },	/* 2452   9 */
		{ 1, 0x46, 125 },	/* 2457  10 */
		{ 1, 0x46, 126 },	/* 2462  11 */
		{ 1, 0x46, 127 },	/* 2467  12 */
		{ 1, 0x46, 128 },	/* 2472  13 */
		{ 1, 0x44, 124 },	/* 2484  14 */
		{ 1, 0x46, 136 },	/* 2512  15 */
		{ 1, 0x46, 140 },	/* 2532  16 */
		{ 1, 0x46, 144 },	/* 2552  17 */
		{ 1, 0x46, 148 },	/* 2572  18 */
		{ 1, 0x46, 152 },	/* 2592  19 */
		{ 1, 0x46, 156 },	/* 2612  20 */
		{ 1, 0x46, 160 },	/* 2632  21 */
		{ 1, 0x46, 164 },	/* 2652  22 */
		{ 1, 0x46, 168 },	/* 2672  23 */
		{ 1, 0x46, 172 },	/* 2692  24 */
		{ 1, 0x46, 176 },	/* 2712  25 */
		{ 1, 0x46, 180 } 	/* 2732  26 */
	};

	OS_MARK(ah, AH_MARK_SETCHANNEL, freq);

	chanIEEE = chan->ic_ieee;
	if (IEEE80211_IS_CHAN_2GHZ(chan)) {
		const CHAN_INFO_2GHZ* ci =
			&chan2GHzData[chanIEEE + CI_2GHZ_INDEX_CORRECTION];
		uint32_t txctl;

		data2111 = ((ath_hal_reverseBits(ci->channelSelect, 8) & 0xff)
				<< 5)
			 | (ci->refClkSel << 4);
		chan5111 = ci->channel5111;
		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}
	} else {
		chan5111 = chanIEEE;	/* no conversion needed */
		data2111 = 0;
	}

	/* Rest of the code is common for 5 GHz and 2.4 GHz. */
//.........这里部分代码省略.........
开发者ID:AhmadTux,项目名称:DragonFlyBSD,代码行数:101,代码来源:ar5111.c

示例11: ar5416LoadNF

static void
ar5416LoadNF(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	static const uint32_t ar5416_cca_regs[] = {
		AR_PHY_CCA,
		AR_PHY_CH1_CCA,
		AR_PHY_CH2_CCA,
		AR_PHY_EXT_CCA,
		AR_PHY_CH1_EXT_CCA,
		AR_PHY_CH2_EXT_CCA
	};
	struct ar5212NfCalHist *h;
	int i;
	int32_t val;
	uint8_t chainmask;
	int16_t default_nf = ar5416GetDefaultNF(ah, chan);

	/*
	 * Force NF calibration for all chains.
	 */
	if (AR_SREV_KITE(ah)) {
		/* Kite has only one chain */
		chainmask = 0x9;
	} else if (AR_SREV_MERLIN(ah) || AR_SREV_KIWI(ah)) {
		/* Merlin/Kiwi has only two chains */
		chainmask = 0x1B;
	} else {
		chainmask = 0x3F;
	}

	/*
	 * Write filtered NF values into maxCCApwr register parameter
	 * so we can load below.
	 */
	h = AH5416(ah)->ah_cal.nfCalHist;
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "CCA: ");
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++) {

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) { 
			int16_t nf_val;

			if (h)
				nf_val = h[i].privNF;
			else
				nf_val = default_nf;

			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t) nf_val << 1) & 0x1ff);
			HALDEBUG(ah, HAL_DEBUG_NFCAL, "[%d: %d]", i, nf_val);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
	}
	HALDEBUG(ah, HAL_DEBUG_NFCAL, "\n");

	/* Load software filtered NF value into baseband internal minCCApwr variable. */
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_ENABLE_NF);
	OS_REG_CLR_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NO_UPDATE_NF);
	OS_REG_SET_BIT(ah, AR_PHY_AGC_CONTROL, AR_PHY_AGC_CONTROL_NF);

	/* Wait for load to complete, should be fast, a few 10s of us. */
	if (! ar5212WaitNFCalComplete(ah, 1000)) {
		/*
		 * We timed out waiting for the noisefloor to load, probably due to an
		 * in-progress rx. Simply return here and allow the load plenty of time
		 * to complete before the next calibration interval.  We need to avoid
		 * trying to load -50 (which happens below) while the previous load is
		 * still in progress as this can cause rx deafness. Instead by returning
		 * here, the baseband nf cal will just be capped by our present
		 * noisefloor until the next calibration timer.
		 */
		HALDEBUG(ah, HAL_DEBUG_UNMASKABLE, "Timeout while waiting for "
		    "nf to load: AR_PHY_AGC_CONTROL=0x%x\n",
		    OS_REG_READ(ah, AR_PHY_AGC_CONTROL));
		return;
	}

	/*
	 * Restore maxCCAPower register parameter again so that we're not capped
	 * by the median we just loaded.  This will be initial (and max) value
	 * of next noise floor calibration the baseband does.  
	 */
	for (i = 0; i < AR5416_NUM_NF_READINGS; i ++)

		/* Don't write to EXT radio CCA registers unless in HT/40 mode */
		/* XXX this check should really be cleaner! */
		if (i > 2 && !IEEE80211_IS_CHAN_HT40(chan))
			continue;

		if (chainmask & (1 << i)) {	
			val = OS_REG_READ(ah, ar5416_cca_regs[i]);
			val &= 0xFFFFFE00;
			val |= (((uint32_t)(-50) << 1) & 0x1ff);
			OS_REG_WRITE(ah, ar5416_cca_regs[i], val);
		}
//.........这里部分代码省略.........
开发者ID:edgar-pek,项目名称:PerspicuOS,代码行数:101,代码来源:ar5416_cal.c

示例12: ar9300_shutdown_rx

static void
ar9300_shutdown_rx(struct ath_hal *ah)
{
    int wait;

#define AH_RX_STOP_TIMEOUT 100000   /* usec */
#define AH_TIME_QUANTUM       100   /* usec */

    /*ath_hal_printf(ah, "%s: called\n", __func__);*/

    /* (1) Set (RX_ABORT | RX_DIS) bits to reg MAC_DIAG_SW. */
    OS_REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);

    /*
     * (2) Poll (reg MAC_OBS_BUS_1[24:20] == 0) for 100ms
     * and if it doesn't become 0x0, print reg MAC_OBS_BUS_1.
     * Wait for Rx PCU state machine to become idle.
     */
    for (wait = AH_RX_STOP_TIMEOUT / AH_TIME_QUANTUM; wait != 0; wait--) {
        u_int32_t obs1 = OS_REG_READ(ah, AR_OBS_BUS_1);
        /* (MAC_PCU_OBS_BUS_1[24:20] == 0x0) - Check pcu_rxsm == IDLE */
        if ((obs1 & 0x01F00000) == 0) {
            break;
        }
        OS_DELAY(AH_TIME_QUANTUM);
    }

    /*
     * If bit 24:20 doesn't go to 0 within 100ms, print the value of
     * MAC_OBS_BUS_1 register on debug log.
     */
    if (wait == 0) {
        ath_hal_printf(ah,
            "%s: rx failed to go idle in %d us\n AR_OBS_BUS_1=0x%08x\n",
            __func__,
            AH_RX_STOP_TIMEOUT,
            OS_REG_READ(ah, AR_OBS_BUS_1));
    }

    /* (3) Set MACMISC reg = 0x8100 to configure debug bus */
    OS_REG_WRITE(ah, AR_MACMISC, 0x8100);

    /*
     * (4) Poll (AR_DMADBG_7 reg bits [11:8] == 0x0) for 100ms
     * wait for Rx DMA state machine to become idle
     */
    for (wait = AH_RX_STOP_TIMEOUT / AH_TIME_QUANTUM; wait != 0; wait--) {
        if ((OS_REG_READ(ah, AR_DMADBG_7) & AR_DMADBG_RX_STATE) == 0) {
            break;
        }
        OS_DELAY(AH_TIME_QUANTUM);
    }

    if (wait == 0) {
        ath_hal_printf(ah,
            "AR_DMADBG_7 reg [11:8] is not 0, instead AR_DMADBG_7 reg=0x%08x\n",
            OS_REG_READ(ah, AR_DMADBG_7));
        /* MAC_RXDP_SIZE register (0x70) */
        ath_hal_printf(ah, "AR_RXDP_SIZE=0x%08x\n",
            OS_REG_READ(ah, AR_RXDP_SIZE));
    }

    /* (5) Set RXD bit to reg MAC_CR */
    OS_REG_WRITE(ah, AR_CR, AR_CR_RXD);

    /* (6) Poll MAC_CR.RXE = 0x0 for 100ms or until RXE goes low */
    for (wait = AH_RX_STOP_TIMEOUT / AH_TIME_QUANTUM; wait != 0; wait--) {
        if ((OS_REG_READ(ah, AR_CR) & AR_CR_RXE) == 0) {
            break;
        }
        OS_DELAY(AH_TIME_QUANTUM);
    }

    /* (7) If (RXE_LP|RXE_HP) doesn't go low within 100ms */
    if (wait == 0) {
        ath_hal_printf(ah,
            "%s: RXE_LP of MAC_CR reg failed to go low in %d us\n",
            __func__, AH_RX_STOP_TIMEOUT);
    }

    /* (8) Clear reg MAC_PCU_RX_FILTER */
    ar9300_set_rx_filter(ah, 0);

#undef AH_RX_STOP_TIMEOUT
#undef AH_TIME_QUANTUM
}
开发者ID:KHATEEBNSIT,项目名称:AP,代码行数:86,代码来源:ar9300_raw_adc_capture.c

示例13: ar2133SetChannel

/*
 * Take the MHz channel value and set the Channel value
 *
 * ASSUMES: Writes enabled to analog bus
 */
static HAL_BOOL
ar2133SetChannel(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	uint32_t channelSel  = 0;
	uint32_t bModeSynth  = 0;
	uint32_t aModeRefSel = 0;
	uint32_t reg32       = 0;
	uint16_t freq;
	CHAN_CENTERS centers;
    
	OS_MARK(ah, AH_MARK_SETCHANNEL, chan->ic_freq);
    
	ar5416GetChannelCenters(ah, chan, &centers);
	freq = centers.synth_center;

	if (freq < 4800) {
		uint32_t txctl;

		if (((freq - 2192) % 5) == 0) {
			channelSel = ((freq - 672) * 2 - 3040)/10;
			bModeSynth = 0;
		} else if (((freq - 2224) % 5) == 0) {
			channelSel = ((freq - 704) * 2 - 3040) / 10;
			bModeSynth = 1;
		} else {
			HALDEBUG(ah, HAL_DEBUG_ANY,
			    "%s: invalid channel %u MHz\n", __func__, freq);
			return AH_FALSE;
		}

		channelSel = (channelSel << 2) & 0xff;
		channelSel = ath_hal_reverseBits(channelSel, 8);

		txctl = OS_REG_READ(ah, AR_PHY_CCK_TX_CTRL);
		if (freq == 2484) {
			/* Enable channel spreading for channel 14 */
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
				txctl | AR_PHY_CCK_TX_CTRL_JAPAN);
		} else {
			OS_REG_WRITE(ah, AR_PHY_CCK_TX_CTRL,
 			txctl &~ AR_PHY_CCK_TX_CTRL_JAPAN);
		}
	} else if ((freq % 20) == 0 && freq >= 5120) {
		channelSel = ath_hal_reverseBits(((freq - 4800) / 20 << 2), 8);
		if (AR_SREV_SOWL_10_OR_LATER(ah))
			aModeRefSel = ath_hal_reverseBits(3, 2);
		else
			aModeRefSel = ath_hal_reverseBits(1, 2);
	} else if ((freq % 10) == 0) {
		channelSel = ath_hal_reverseBits(((freq - 4800) / 10 << 1), 8);
		if (AR_SREV_SOWL_10_OR_LATER(ah))
			aModeRefSel = ath_hal_reverseBits(2, 2);
		else
			aModeRefSel = ath_hal_reverseBits(1, 2);
	} else if ((freq % 5) == 0) {
		channelSel = ath_hal_reverseBits((freq - 4800) / 5, 8);
		aModeRefSel = ath_hal_reverseBits(1, 2);
	} else {
		HALDEBUG(ah, HAL_DEBUG_ANY, "%s: invalid channel %u MHz\n",
		    __func__, freq);
		return AH_FALSE;
	}

	reg32 = (channelSel << 8) | (aModeRefSel << 2) | (bModeSynth << 1) |
		(1 << 5) | 0x1;

	OS_REG_WRITE(ah, AR_PHY(0x37), reg32);

	AH_PRIVATE(ah)->ah_curchan = chan;
	return AH_TRUE;

}
开发者ID:AhmadTux,项目名称:DragonFlyBSD,代码行数:77,代码来源:ar2133.c

示例14: ar5212SetStaBeaconTimers

/*
 * Set all the beacon related bits on the h/w for stations
 * i.e. initializes the corresponding h/w timers;
 * also tells the h/w whether to anticipate PCF beacons
 */
void
ar5212SetStaBeaconTimers(struct ath_hal *ah, const HAL_BEACON_STATE *bs)
{
	struct ath_hal_5212 *ahp = AH5212(ah);
	uint32_t nextTbtt, nextdtim,beaconintval, dtimperiod;

	HALASSERT(bs->bs_intval != 0);
	/* if the AP will do PCF */
	if (bs->bs_cfpmaxduration != 0) {
		/* tell the h/w that the associated AP is PCF capable */
		OS_REG_WRITE(ah, AR_STA_ID1,
			OS_REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PCF);

		/* set CFP_PERIOD(1.024ms) register */
		OS_REG_WRITE(ah, AR_CFP_PERIOD, bs->bs_cfpperiod);

		/* set CFP_DUR(1.024ms) register to max cfp duration */
		OS_REG_WRITE(ah, AR_CFP_DUR, bs->bs_cfpmaxduration);

		/* set TIMER2(128us) to anticipated time of next CFP */
		OS_REG_WRITE(ah, AR_TIMER2, bs->bs_cfpnext << 3);
	} else {
		/* tell the h/w that the associated AP is not PCF capable */
		OS_REG_WRITE(ah, AR_STA_ID1,
			OS_REG_READ(ah, AR_STA_ID1) &~ AR_STA_ID1_PCF);
	}

	/*
	 * Set TIMER0(1.024ms) to the anticipated time of the next beacon.
	 */
	OS_REG_WRITE(ah, AR_TIMER0, bs->bs_nexttbtt);

	/*
	 * Start the beacon timers by setting the BEACON register
	 * to the beacon interval; also write the tim offset which
	 * we should know by now.  The code, in ar5211WriteAssocid,
	 * also sets the tim offset once the AID is known which can
	 * be left as such for now.
	 */
	OS_REG_WRITE(ah, AR_BEACON, 
		(OS_REG_READ(ah, AR_BEACON) &~ (AR_BEACON_PERIOD|AR_BEACON_TIM))
		| SM(bs->bs_intval, AR_BEACON_PERIOD)
		| SM(bs->bs_timoffset ? bs->bs_timoffset + 4 : 0, AR_BEACON_TIM)
	);

	/*
	 * Configure the BMISS interrupt.  Note that we
	 * assume the caller blocks interrupts while enabling
	 * the threshold.
	 */
	HALASSERT(bs->bs_bmissthreshold <= MS(0xffffffff, AR_RSSI_THR_BM_THR));
	ahp->ah_rssiThr = (ahp->ah_rssiThr &~ AR_RSSI_THR_BM_THR)
			| SM(bs->bs_bmissthreshold, AR_RSSI_THR_BM_THR);
	OS_REG_WRITE(ah, AR_RSSI_THR, ahp->ah_rssiThr);

	/*
	 * Program the sleep registers to correlate with the beacon setup.
	 */

	/*
	 * Oahu beacons timers on the station were used for power
	 * save operation (waking up in anticipation of a beacon)
	 * and any CFP function; Venice does sleep/power-save timers
	 * differently - so this is the right place to set them up;
	 * don't think the beacon timers are used by venice sta hw
	 * for any useful purpose anymore
	 * Setup venice's sleep related timers
	 * Current implementation assumes sw processing of beacons -
	 *   assuming an interrupt is generated every beacon which
	 *   causes the hardware to become awake until the sw tells
	 *   it to go to sleep again; beacon timeout is to allow for
	 *   beacon jitter; cab timeout is max time to wait for cab
	 *   after seeing the last DTIM or MORE CAB bit
	 */
#define CAB_TIMEOUT_VAL     10 /* in TU */
#define BEACON_TIMEOUT_VAL  10 /* in TU */
#define SLEEP_SLOP          3  /* in TU */

	/*
	 * For max powersave mode we may want to sleep for longer than a
	 * beacon period and not want to receive all beacons; modify the
	 * timers accordingly; make sure to align the next TIM to the
	 * next DTIM if we decide to wake for DTIMs only
	 */
	beaconintval = bs->bs_intval & HAL_BEACON_PERIOD;
	HALASSERT(beaconintval != 0);
	if (bs->bs_sleepduration > beaconintval) {
		HALASSERT(roundup(bs->bs_sleepduration, beaconintval) ==
				bs->bs_sleepduration);
		beaconintval = bs->bs_sleepduration;
	}
	dtimperiod = bs->bs_dtimperiod;
	if (bs->bs_sleepduration > dtimperiod) {
		HALASSERT(dtimperiod == 0 ||
			roundup(bs->bs_sleepduration, dtimperiod) ==
//.........这里部分代码省略.........
开发者ID:looncraz,项目名称:haiku,代码行数:101,代码来源:ar5212_beacon.c

示例15: ar9280AniSetup

static void
ar9280AniSetup(struct ath_hal *ah)
{
	/*
	 * These are the parameters from the AR5416 ANI code;
	 * they likely need quite a bit of adjustment for the
	 * AR9280.
	 */
        static const struct ar5212AniParams aniparams = {
                .maxNoiseImmunityLevel  = 4,    /* levels 0..4 */
                .totalSizeDesired       = { -55, -55, -55, -55, -62 },
                .coarseHigh             = { -14, -14, -14, -14, -12 },
                .coarseLow              = { -64, -64, -64, -64, -70 },
                .firpwr                 = { -78, -78, -78, -78, -80 },
                .maxSpurImmunityLevel   = 7,
                .cycPwrThr1             = { 2, 4, 6, 8, 10, 12, 14, 16 },
                .maxFirstepLevel        = 2,    /* levels 0..2 */
                .firstep                = { 0, 4, 8 },
                .ofdmTrigHigh           = 500,
                .ofdmTrigLow            = 200,
                .cckTrigHigh            = 200,
                .cckTrigLow             = 100,
                .rssiThrHigh            = 40,
                .rssiThrLow             = 7,
                .period                 = 100,
        };
	/* NB: disable ANI noise immmunity for reliable RIFS rx */
	AH5416(ah)->ah_ani_function &= ~(1 << HAL_ANI_NOISE_IMMUNITY_LEVEL);

        /* NB: ANI is not enabled yet */
        ar5416AniAttach(ah, &aniparams, &aniparams, AH_TRUE);
}

void
ar9280InitPLL(struct ath_hal *ah, const struct ieee80211_channel *chan)
{
	uint32_t pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);

	if (AR_SREV_MERLIN_20(ah) &&
	    chan != AH_NULL && IEEE80211_IS_CHAN_5GHZ(chan)) {
		/*
		 * PLL WAR for Merlin 2.0/2.1
		 * When doing fast clock, set PLL to 0x142c
		 * Else, set PLL to 0x2850 to prevent reset-to-reset variation 
		 */
		pll = IS_5GHZ_FAST_CLOCK_EN(ah, chan) ? 0x142c : 0x2850;
		if (IEEE80211_IS_CHAN_HALF(chan))
			pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
		else if (IEEE80211_IS_CHAN_QUARTER(chan))
			pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
	} else if (AR_SREV_MERLIN_10_OR_LATER(ah)) {
		pll = SM(0x5, AR_RTC_SOWL_PLL_REFDIV);
		if (chan != AH_NULL) {
			if (IEEE80211_IS_CHAN_HALF(chan))
				pll |= SM(0x1, AR_RTC_SOWL_PLL_CLKSEL);
			else if (IEEE80211_IS_CHAN_QUARTER(chan))
				pll |= SM(0x2, AR_RTC_SOWL_PLL_CLKSEL);
			if (IEEE80211_IS_CHAN_5GHZ(chan))
				pll |= SM(0x28, AR_RTC_SOWL_PLL_DIV);
			else
				pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
		} else
			pll |= SM(0x2c, AR_RTC_SOWL_PLL_DIV);
	}

	OS_REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
	OS_DELAY(RTC_PLL_SETTLE_DELAY);
	OS_REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_SLEEP_DERIVED_CLK);
}
开发者ID:vkhromov,项目名称:freebsd,代码行数:69,代码来源:ar9280_attach.c


注:本文中的OS_REG_WRITE函数示例由纯净天空整理自Github/MSDocs等开源代码及文档管理平台,相关代码片段筛选自各路编程大神贡献的开源项目,源码版权归原作者所有,传播和使用请参考对应项目的License;未经允许,请勿转载。