本文整理汇总了C++中Multiply函数的典型用法代码示例。如果您正苦于以下问题:C++ Multiply函数的具体用法?C++ Multiply怎么用?C++ Multiply使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Multiply函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: verify
bool verify(CryptoPP::ECPPoint Q, byte *message, unsigned message_length, CryptoPP::Integer r, CryptoPP::Integer s){
auto ec = common::ec_parameters().GetCurve();
auto G = common::ec_parameters().GetSubgroupGenerator();
auto n = common::ec_parameters().GetGroupOrder();
Integer z = hash_m_to_int(message, message_length, n.ByteCount());
// verify
if (Q == ec.Identity()){
cerr << "Q == O" << endl;
return false;
}
if (!(ec.Multiply(n, Q) == ec.Identity())){
cerr << "n x Q != O" << endl;
return false;
}
if (r <= 0 || r >= n){
cerr << "incorrect r" << endl;
return false;
}
if (s <= 0 || s >= n){
cerr << "incorrect s" << endl;
return false;
}
Integer w = s.InverseMod(n);
Integer u1 = a_times_b_mod_c(z, w, n);
Integer u2 = a_times_b_mod_c(r, w, n);
ECPPoint P2 = ec.Add(ec.Multiply(u1, G), ec.Multiply(u2, Q));
if (P2.x != r){
cerr << "P2.x != r" << endl;
return false;
}
return true;
}
示例2: assert
//--------------------------------------------------------------------------------
/// @brief 三角形を連続でリスト描画する(ワイヤー)
/// @param[in] verticies 頂点配列
/// @param[in] indicies インデックス配列
/// @param[in] triangleNum 三角形の数
/// @return なし
//--------------------------------------------------------------------------------
void Renderer::DrawWiredTriangleList( const VECTOR4 verticies[], const unsigned int indicies[], unsigned int triangleNum )
{
assert( NULL != m_pGraphics );
MATRIX4x4 mWVP = m_mWorld;
Multiply( mWVP, m_mView );
Multiply( mWVP, m_mProjection );
const unsigned int polygonVerticies = 3;
for( unsigned int triangleCnt = 0; triangleCnt < triangleNum; ++triangleCnt )
{
VECTOR4 vertex0 = verticies[indicies[triangleCnt * polygonVerticies]];
VECTOR4 vertex1 = verticies[indicies[triangleCnt * polygonVerticies + 1]];
VECTOR4 vertex2 = verticies[indicies[triangleCnt * polygonVerticies + 2]];
Transform( vertex0, mWVP );
Transform( vertex1, mWVP );
Transform( vertex2, mWVP );
m_pGraphics->DrawLine( VECTOR2( vertex0.x / vertex0.w, vertex0.y / vertex0.w ), VECTOR2( vertex1.x / vertex1.w, vertex1.y / vertex1.w ), m_color );
m_pGraphics->DrawLine( VECTOR2( vertex1.x / vertex1.w, vertex1.y / vertex1.w ), VECTOR2( vertex2.x / vertex2.w, vertex2.y / vertex2.w ), m_color );
m_pGraphics->DrawLine( VECTOR2( vertex2.x / vertex2.w, vertex2.y / vertex2.w ), VECTOR2( vertex0.x / vertex0.w, vertex0.y / vertex0.w ), m_color );
}
}
示例3: Multiply
void Multiply(const JntArrayVel& src,const doubleVel& factor,JntArrayVel& dest)
{
Multiply(src.q,factor.grad,dest.q);
Multiply(src.qdot,factor.t,dest.qdot);
Add(dest.qdot,dest.q,dest.qdot);
Multiply(src.q,factor.t,dest.q);
}
示例4: cos
// Pout = Rx*Ry*Rz*Pin
void Frames::Rotate(float yaw, float pitch, float roll, float* pointIn, float* pointOut)
{
// Rz()
Ry[0][0] = cos(yaw);
Ry[0][1] = -sin(yaw);
Ry[1][0] = sin(yaw);
Ry[1][1] = cos(yaw);
Ry[2][2] = 1.0f;
// Rx()
Rr[0][0] = 1.0f;
Rr[1][1] = cos(roll);
Rr[1][2] = -sin(roll);
Rr[2][1] = sin(roll);
Rr[2][2] = cos(roll);
// Ry()
Rp[0][0] = cos(pitch);
Rp[0][2] = sin(pitch);
Rp[1][1] = 1.0f;
Rp[2][0] = -sin(pitch);
Rp[2][2] = cos(pitch);
float t[3];
Multiply(&Ry, pointIn, pointOut);
Multiply(&Rp, pointOut, t);
Multiply(&Rr, t, pointOut);
}
示例5: tmp
bool ON_Matrix::Multiply( const ON_Matrix& a, const ON_Matrix& b )
{
int i, j, k, mult_count;
double x;
if (a.ColCount() != b.RowCount() )
return false;
if ( a.RowCount() < 1 || a.ColCount() < 1 || b.ColCount() < 1 )
return false;
if ( this == &a ) {
ON_Matrix tmp(a);
return Multiply(tmp,b);
}
if ( this == &b ) {
ON_Matrix tmp(b);
return Multiply(a,tmp);
}
Create( a.RowCount(), b.ColCount() );
mult_count = a.ColCount();
double const*const* am = a.ThisM();
double const*const* bm = b.ThisM();
double** this_m = ThisM();
for ( i = 0; i < m_row_count; i++ ) for ( j = 0; j < m_col_count; j++ ) {
x = 0.0;
for (k = 0; k < mult_count; k++ ) {
x += am[i][k] * bm[k][j];
}
this_m[i][j] = x;
}
return true;
}
示例6: GetLength
void Render::DrawBonds(D3DMATRIX* view, D3DMATRIX* projection)
{
// Apply the technique contained in the effect
BYTE previousRenderedMaterial = 255;
if (bondRenderOptions.UseSingleMaterial)
{
bondRenderOptions.Material.Apply();
}
for(int iBond = 0; iBond < bondCount; iBond++)
{
Bond* currentBond = &bonds[iBond];
Material* material = bondRenderOptions.UseSingleMaterial ?
&bondRenderOptions.Material :
elementMaterials + currentBond->Material;
// Transform along to direction
D3DVECTOR direction;
direction.x = currentBond->End.x - currentBond->Begin.x;
direction.y = currentBond->End.y - currentBond->Begin.y;
direction.z = currentBond->End.z - currentBond->Begin.z;
float height = GetLength(direction);
//Normalize(direction);
D3DMATRIX alongTo = TransformAlongTo(direction);
// Scale
D3DXMATRIX scale = D3DMATRIXCREATE(
bondRenderOptions.BondSize,0,0,0,
0,1,0,0,
0,0,bondRenderOptions.BondSize,0,
0,0,0,1.0f);
// Translate the cylinder
D3DXMATRIX translate = D3DMATRIXCREATE(
1.0f,0,0,0,
0,1.0f,0,0,
0,0,1.0f,0,
currentBond->Begin.x,currentBond->Begin.y,currentBond->Begin.z,1.0f);
D3DXMATRIX world = Multiply(Multiply(scale, alongTo), translate);
material->SetMatrices(&world, view, projection);
// Setup material's parameters
if (!bondRenderOptions.UseSingleMaterial && previousRenderedMaterial != currentBond->Material)
{
// Skip if the params has been already presented
previousRenderedMaterial = currentBond->Material;
material->Apply();
}
// Render the mesh with the applied technique
highPolyCylinder->Draw();
}
}
示例7: Inverse_Poly
POLY Inverse_Poly ( int n, POLY M[n][n] )
{
POLY P[n][n], Q[n][n], t_M1[n][n], t_M2[n][n];
POLY ds;
int i, j, dk, dl, dgcd, dc_gcd, dad, dbd;
dcmplx **gcd_coeff, tmp;
copy(n, n, M, t_M1);
Smith(n, n, t_M1, P, Q);
/* printf("the smith form is:\n"); print1(n, n, t_M1); */
ds=assign_poly(t_M1[n-1][n-1]);
for( i=0; i<n-1; i++ )
{
gcd_coeff = ExtPolyGcd(ds.d+1, ds.p, t_M1[i][i].d+1, t_M1[i][i].p, &dgcd, &dk, &dl, &dbd, &dad);
free(t_M1[i][i].p);
t_M1[i][i].d = dad;
t_M1[i][i].p = assign(dad,gcd_coeff[4]);
for( j=0; j<5; j++)
free(gcd_coeff[j]);
free(gcd_coeff);
}
free(t_M1[n-1][n-1].p);
t_M1[n-1][n-1].p = (dcmplx*) calloc(1, sizeof(dcmplx));
t_M1[n-1][n-1].d = 0;
t_M1[n-1][n-1].p[0] = one;
/* calculate ds*Q*(t_M1's inverse) * P = ds*M */
Multiply( n, n, n, Q, t_M1, t_M2 );
free_matrix ( n, n, M );
Multiply( n, n, n, t_M2, P, M );
if(ds.p[ds.d].re<0)
{
negative(ds.d, ds.p);
neg_polymatrix( n, n, M );
}
/* make the leading coefficient of ds one */
tmp = ds.p[ds.d];
divide_by_number(ds.d, ds.p, tmp);
for(i=0; i<n; i++)
for(j=0; j<n; j++)
{
divide_by_number(M[i][j].d, M[i][j].p, tmp);
}
/* printf("ds="); Print_Poly(ds.d , ds.p); */
free_matrix ( n, n, t_M1 );
free_matrix ( n, n, t_M2 );
free_matrix ( n, n, P );
free_matrix ( n, n, Q );
return ds;
}
示例8: Power
static uint64_t Power(uint64_t a, int64_t b) {
uint64_t r = 1;
for (; b > 0; b >>= 1) {
if (b & 1)
r = Multiply(r, a);
a = Multiply(a, a);
}
return r;
}
示例9: Multiply
static Float4x4 VFunction Multiply(const Float4x4& matrixA, const Float4x4& matrixB)
{
Float4x4 result;
result.x = Multiply(matrixA.x, matrixB);
result.y = Multiply(matrixA.y, matrixB);
result.z = Multiply(matrixA.z, matrixB);
result.w = Multiply(matrixA.w, matrixB);
return result;
}
示例10: Interpolate
void Xenon::Math::Vec2 :: Interpolate ( Vec2 & Target, const Vec2 & Source, const Vec2 & B, const float Fraction )
{
Vec2 Temp;
Multiply ( Target, Source, Fraction );
Multiply ( Temp, B, 1 - Fraction );
Add ( Target, Temp );
}
示例11: Interpolate
void Vector3 :: Interpolate ( Vector3 & A, Vector3 & B, double Fraction, Vector3 & Result )
{
Vector3 Tem;
Multiply ( Result, Fraction );
Multiply ( B, 1 - Fraction, Tem );
Add ( Result, Tem );
};
示例12: assertion
bool LinearSystem<Real>::SolveSymmetricCG (const GMatrix<Real>& A,
const Real* B, Real* X)
{
// Based on the algorithm in "Matrix Computations" by Golum and Van Loan.
assertion(A.GetNumRows() == A.GetNumColumns(), "Matrix must be square\n");
int size = A.GetNumRows();
Real* R = new1<Real>(size);
Real* P = new1<Real>(size);
Real* W = new1<Real>(size);
// The first iteration.
size_t numBytes = size*sizeof(Real);
memset(X, 0, numBytes);
memcpy(R, B, numBytes);
Real rho0 = Dot(size, R, R);
memcpy(P, R, numBytes);
Multiply(A, P, W);
Real alpha = rho0/Dot(size, P, W);
UpdateX(size, X, alpha, P);
UpdateR(size, R, alpha, W);
Real rho1 = Dot(size, R, R);
// The remaining iterations.
const int imax = 1024;
int i;
for (i = 1; i < imax; ++i)
{
Real root0 = Math<Real>::Sqrt(rho1);
Real norm = Dot(size, B, B);
Real root1 = Math<Real>::Sqrt(norm);
if (root0 <= ZeroTolerance*root1)
{
break;
}
Real beta = rho1/rho0;
UpdateP(size, P, beta, R);
Multiply(A, P, W);
alpha = rho1/Dot(size, P, W);
UpdateX(size, X, alpha, P);
UpdateR(size, R, alpha, W);
rho0 = rho1;
rho1 = Dot(size, R, R);
}
delete1(W);
delete1(P);
delete1(R);
return i < imax;
}
示例13: PowerFloat
LispObject* PowerFloat(LispObject* int1, LispObject* int2, LispEnvironment& aEnvironment,int aPrecision)
{
if (int2->Number(aPrecision)->iNumber->iExp != 0)
throw LispErrNotInteger();
// Raising to the power of an integer can be done fastest by squaring
// and bitshifting: x^(a+b) = x^a*x^b . Then, regarding each bit
// in y (seen as a binary number) as added, the algorithm becomes:
//
ANumber x(*int1->Number(aPrecision)->iNumber);
ANumber y(*int2->Number(aPrecision)->iNumber);
bool neg = y.iNegative;
y.iNegative=false;
// result <- 1
ANumber result("1",aPrecision);
// base <- x
ANumber base(aPrecision);
base.CopyFrom(x);
ANumber copy(aPrecision);
// while (y!=0)
while (!y.IsZero())
{
// if (y&1 != 0)
if ( (y[0] & 1) != 0)
{
// result <- result*base
copy.CopyFrom(result);
Multiply(result,copy,base);
}
// base <- base*base
copy.CopyFrom(base);
Multiply(base,copy,copy);
// y <- y>>1
BaseShiftRight(y,1);
}
if (neg)
{
ANumber one("1",aPrecision);
ANumber dummy(10);
copy.CopyFrom(result);
Divide(result,dummy,one,copy);
}
// result
return FloatToString(result, aEnvironment);
}
示例14: Normalize
void QR::ComputeQRMatrices() {
CDMatrix p;
for(int i = 0; i < r_.size() - 1; ++i) {
Normalize(i);
ConstructP(p);
if(q_.size() == 0) {
q_ = p;
} else {
Multiply(q_, p);
}
Multiply(r_, p);
}
TransposeQ();
}
示例15: Multiply
PointTD* ProjectionOrtoDD::Rotate3D(PointTD pPointTD, CameraTD* pCamera) {
double X[N] = {pPointTD.fX, pPointTD.fY, pPointTD.fZ, 1};
double Xm[N] = {0, 0, 0, 1};
Multiply(X, Ares, Xm);
if (pCamera->iMode == CAM_CENTRAL) {
Xm[0] = Xm[0] / (fabs(Xm[3]) + inac);
Xm[1] = Xm[1] / (fabs(Xm[3]) + inac);
}
else {
Xm[0] = Xm[0];
Xm[1] = Xm[1];
}
double Tm[N] = {0, 0, 0, 1};
if (ObjectID == "LabaPoint") {
Tm[0] = Xm[0];
Tm[1] = Xm[1];
}
if (c <= inac && pCamera->iMode == CAM_ORTO)
return new PointTD(0, 0, 0, pPointTD.iAction, pPointTD.iType, pPointTD.sText);
else if (c / 2.0 <= pCamera->TCheck[2] && pCamera->iMode == CAM_CENTRAL)
return new PointTD(0, 0, 0, pPointTD.iAction, pPointTD.iType, pPointTD.sText);
else
return new PointTD(Xm[0], Xm[1], Xm[2], pPointTD.iAction, pPointTD.iType, pPointTD.sText);
}