本文整理汇总了C++中MulMod函数的典型用法代码示例。如果您正苦于以下问题:C++ MulMod函数的具体用法?C++ MulMod怎么用?C++ MulMod使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了MulMod函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ZZ_pX_InvMod_newton_unram
static void ZZ_pX_InvMod_newton_unram(struct ZZ_pX &x, const struct ZZ_pX &a, const struct ZZ_pXModulus &F, const struct ZZ_pContext &cpn, const struct ZZ_pContext &cp)
{
//int j;
cp.restore();
ZZ_pX *amodp = new ZZ_pX();
ZZ_pX *xmodp = new ZZ_pX();
ZZ_pX *fmodp = new ZZ_pX();
ZZ_pX_conv_modulus(*amodp, a, cp);
ZZ_pX_conv_modulus(*fmodp, F.val(), cp);
InvMod(*xmodp, *amodp, *fmodp);
//cout << "xmodp: " << *xmodp << "\namodp: " << *amodp << "\nfmodp: " << *fmodp << "\n";
cpn.restore();
ZZ_pX *minusa = new ZZ_pX();
ZZ_pX *xn = new ZZ_pX();
ZZ_pX_conv_modulus(*xn, *xmodp, cpn);
NTL::negate(*minusa, a);
while (1 > 0)
{
// x_n = 2*x_{n-1} - a*x_{n-1}^2 = (2 - a*x_{n-1})*x_{n-1}
MulMod(x, *minusa, *xn, F);
SetCoeff(x, 0, ConstTerm(x) + 2);
MulMod(x, x, *xn, F);
if (x == *xn)
break;
*xn = x;
//cout << "x: " << x << "\nxn: " << *xn << "\n";
//cin >> j;
}
delete amodp;
delete xmodp;
delete fmodp;
delete minusa;
delete xn;
}
示例2: compOrder
// The function compOrder(orders, classes,flag,m) computes the order of elements
// of the quotient group, relative to current equivalent classes. If flag==1
// then also check if the order is the same as in (Z/mZ)^* and store the order
// with negative sign if not.
static void
compOrder(vector<long>& orders, vector<long>& classes, bool flag, long m)
{
orders[0] = 0;
orders[1] = 1;
for (long i=2; i<m; i++) {
if (classes[i] <= 1) { // ignore i not in Z_m^* and order-0 elements
orders[i] = (classes[i]==1)? 1 : 0;
continue;
}
// If not comparing order with (Z/mZ)^*, only compute the order of pivots
if (!flag && classes[i]<i){ // not a pivot
orders[i] = orders[classes[i]];
continue;
}
// For an element i>1, the order is at least 2
long j = MulMod(i, i, m);
long ord = 2;
while (classes[j] != 1) {
j = MulMod(j, i, m); // next element in <i>
ord++; // count how many steps until we reach 1
}
// When we get here we have classes[j]==1, so if j!=1 it means that the
// order of i in the quotient group is smaller than its order in the
// entire group Z_m^*. If the flag is set then we store orders[i] = -ord.
if (flag && j != 1) ord = -ord; // order in Z_m^* is larger than ord
orders[i] = ord;
}
}
示例3: conjClasses
static
void conjClasses(vector<unsigned long>& classes, unsigned long g, unsigned long m)
{
for (unsigned long i=0; i<m; i++) {
if (classes[i]==0) continue; // i \notin (Z/mZ)^*
if (classes[i]<i) { // i is not a pivot, updated its pivot
classes[i] = classes[classes[i]];
continue;
}
// If i is a pivot, update other pivots to point to it
unsigned long ii = i;
unsigned long gg = g;
unsigned long jj = MulMod(ii, gg, m);
while (classes[jj] != i) {
classes[classes[jj]]= i; // Merge the equivalence classes of j and i
// Note: if classes[j]!=j then classes[j] will be updated later,
// when we get to i=j and use the code for "i not pivot".
jj = MulMod(jj, g, m);
}
}
}
示例4: getRandomInNStar
void PaillierParty::secretShare() {
ZZ beta = getRandomInNStar(m_n);
std::vector<ZZ> coefficients;
coefficients.push_back(MulMod(beta,m_m,m_n*m_m));
for (uint32_t i=1; i < m_numOfParties; i++) {
coefficients.push_back(getRandomInNStar(m_n*m_m));
}
ZZ_p::init(m_n*m_m);
ZZ_pX polynomial;
for (uint32_t i=0; i < m_numOfParties; i++) {
SetCoeff(polynomial, i, conv<ZZ_p>(coefficients[i]));
}
for (auto &party : m_parties) {
ZZ result = rep(eval(polynomial,ZZ_p(party.first)));
sendZZTo(result,party.second);
}
ZZ_p s_i = eval(polynomial,ZZ_p(m_partyId));
for (auto &party : m_parties) {
ZZ value;
receiveZZFrom(value,party.second);
ZZ_p coefficient = conv<ZZ_p>(value);
s_i = s_i + coefficient;
}
m_share = rep(s_i);
m_pubKey = MulMod(MulMod(m_a,beta,m_n),m_m,m_n);
}
示例5: MulMod
// Sets the prime defining the field for the curve and stores certain values
void Icart::setPrime(ZZ* p)
{
//ZZ_p::init(*p);
// Icart hash function uses 1/3 root, which is equivalent to (2p-1)/3
exp = MulMod( SubMod( MulMod(ZZ(2), *p, *p), ZZ(1), *p), InvMod(ZZ(3),*p), *p);
// Store inverse values to be used later
ts = inv(ZZ_p(27));
th = inv(ZZ_p(3));
}
示例6: PowMod
/*
* Must guarantee c+c DO NOT OVERFLOW!!!(both a, b, c are INTEGERS)
* $a or $b may be negative, however $c must be positive
*/
template<class T> T PowMod( T a, T b, T c) {
T r=Mod((T)1,c);
a=Mod(a,c);
while(b != 0) {
if(b & 1) r=MulMod(r, a, c);
a = MulMod( a, a, c);
b >>= 1;
}
return r;
}
示例7: MulMod
void Shares::addShares(map<string, ZZ> newShares){
for(auto i : newShares){
ZZ tmp = MulMod(i.second, shares[i.first], groupModulus);
shares[i.first] = tmp;
}
nbrShares++;
}
示例8: InnerProduct
void InnerProduct(zz_p& x, const vec_zz_p& a, const vec_zz_p& b,
long offset)
{
if (offset < 0) LogicError("InnerProduct: negative offset");
if (NTL_OVERFLOW(offset, 1, 0)) ResourceError("InnerProduct: offset too big");
long n = min(a.length(), b.length()+offset);
long i;
long accum, t;
long p = zz_p::modulus();
mulmod_t pinv = zz_p::ModulusInverse();
const zz_p *ap = a.elts();
const zz_p *bp = b.elts();
accum = 0;
for (i = offset; i < n; i++) {
t = MulMod(rep(ap[i]), rep(bp[i-offset]), p, pinv);
accum = AddMod(accum, t, p);
}
x.LoopHole() = accum;
}
示例9: mcMod
// Apply F(X)->F(X^k) followed by re-liearization. The automorphism is possibly
// evaluated via a sequence of steps, to ensure that we can re-linearize the
// result of every step.
void Ctxt::smartAutomorph(long k)
{
FHE_TIMER_START;
// Special case: if *this is empty then do nothing
if (this->isEmpty()) return;
long m = context.zMStar.getM();
k = mcMod(k, m);
// Sanity check: verify that k \in Zm*
assert (context.zMStar.inZmStar(k));
long keyID=getKeyID();
if (!inCanonicalForm(keyID)) { // Re-linearize the input, if needed
reLinearize(keyID);
assert (inCanonicalForm(keyID)); // ensure that re-linearization succeeded
}
assert (pubKey.isReachable(k,keyID)); // reachable from 1
while (k != 1) {
const KeySwitch& matrix = pubKey.getNextKSWmatrix(k,keyID);
long amt = matrix.fromKey.getPowerOfX();
automorph(amt);
reLinearize(keyID);
k = MulMod(k, InvMod(amt,m), m);
}
FHE_TIMER_STOP;
}
示例10: build
void build(zz_pXArgument& A, const zz_pX& h, const zz_pXModulus& F, long m)
{
if (m <= 0 || deg(h) >= F.n) Error("build: bad args");
if (m > F.n) m = F.n;
long i;
if (zz_pXArgBound > 0) {
double sz = 1;
sz = sz*F.n;
sz = sz+6;
sz = sz*(sizeof (long));
sz = sz/1024;
m = min(m, long(zz_pXArgBound/sz));
m = max(m, 1);
}
zz_pXMultiplier M;
build(M, h, F);
A.H.SetLength(m+1);
set(A.H[0]);
A.H[1] = h;
for (i = 2; i <= m; i++)
MulMod(A.H[i], A.H[i-1], M, F);
}
示例11: ifs
YASHE YASHE::readFromFile(std::string filename) {
YASHE output;
std::ifstream ifs(filename);
boost::archive::text_iarchive ia(ifs);
ia >> output;
NTL::ZZ_p::init(output.cModulus);
output.cycloMod = NTL::ZZ_pXModulus(NTL::conv<NTL::ZZ_pX>(output.cycloModX));
{
NTL::ZZ_pPush push(output.bigModulus); // switch to multiplication modulus
// make another modulus for fast multiplication
output.bigCycloMod = NTL::ZZ_pXModulus(NTL::conv<NTL::ZZ_pX>(output.cycloModX));
}
{
NTL::ZZ_pPush push(output.bigPModulus); // switch to plain text modulus
// Factor the cyclotomic polynomial modulo t
// for batch encryption
NTL::ZZ_pXModulus pModulusX;
NTL::build(pModulusX, NTL::conv<NTL::ZZ_pX>(output.cycloModX));
output.crtElements.resize(output.factors.size());
NTL::ZZ_pX fInv, fInvInv;
for (long i = 0; i < output.factors.size(); i++) {
div(fInv, NTL::conv<NTL::ZZ_pX>(output.cycloModX), output.factors[i]);
rem(fInvInv, fInv, output.factors[i]);
InvMod(fInvInv, fInvInv, output.factors[i]);
output.crtElements[i] = MulMod(fInv, fInvInv, pModulusX);
}
}
return output;
}
示例12: MinPolyMod
void MinPolyMod(zz_pX& hh, const zz_pX& g, const zz_pXModulus& F, long m)
{
zz_pX h, h1;
long n = F.n;
if (m < 1 || m > n) Error("MinPoly: bad args");
/* probabilistically compute min-poly */
ProbMinPolyMod(h, g, F, m);
if (deg(h) == m) { hh = h; return; }
CompMod(h1, h, g, F);
if (IsZero(h1)) { hh = h; return; }
/* not completely successful...must iterate */
long i;
zz_pX h2, h3;
zz_pXMultiplier H1;
vec_zz_p R(INIT_SIZE, n);
for (;;) {
R.SetLength(n);
for (i = 0; i < n; i++) random(R[i]);
build(H1, h1, F);
UpdateMap(R, R, H1, F);
DoMinPolyMod(h2, g, F, m-deg(h), R);
mul(h, h, h2);
if (deg(h) == m) { hh = h; return; }
CompMod(h3, h2, g, F);
MulMod(h1, h3, H1, F);
if (IsZero(h1)) { hh = h; return; }
}
}
示例13: BuildMatrix
static
void BuildMatrix(vec_GF2XVec& M, long n, const GF2EX& g, const GF2EXModulus& F,
long verbose)
{
long i, j, m;
GF2EX h;
M.SetLength(n);
for (i = 0; i < n; i++)
M[i].SetSize(n, 2*GF2E::WordLength());
set(h);
for (j = 0; j < n; j++) {
if (verbose && j % 10 == 0) cerr << "+";
m = deg(h);
for (i = 0; i < n; i++) {
if (i <= m)
M[i][j] = rep(h.rep[i]);
else
clear(M[i][j]);
}
if (j < n-1)
MulMod(h, h, g, F);
}
for (i = 0; i < n; i++)
add(M[i][i], M[i][i], 1);
}
示例14: ComputeOneGenMapping
// Compute the mapping between linear array and a hypercube corresponding
/// to a single generator tree
void ComputeOneGenMapping(Permut& genMap, const OneGeneratorTree& T)
{
Vec<long> dims(INIT_SIZE, T.getNleaves());
Vec<long> coefs(INIT_SIZE,T.getNleaves());
for (long i=T.getNleaves()-1, leaf=T.lastLeaf(); i>=0;
i--, leaf=T.prevLeaf(leaf)) {
dims[i] = T[leaf].getData().size;
coefs[i] = T[leaf].getData().e;
}
// A representation of an integer with digits from dims
Vec<long> rep(INIT_SIZE, T.getNleaves());
for (long i=0; i<rep.length(); i++) rep[i]=0; // initialize to zero
// initialize to all zero
long sz = T[0].getData().size;
genMap.SetLength(sz);
for (long i=0; i<sz; i++) genMap[i]=0;
// compute the permutation
for (long i=1; i<sz; i++) {
addOne(rep, dims); // representation of i in base dims
for (long j=0; j<coefs.length(); j++) {
long tmp = MulMod(rep[j], coefs[j], sz);
genMap[i] = AddMod(genMap[i], tmp, sz);
}
}
}
示例15: build
void build(ZZ_pXArgument& A, const ZZ_pX& h, const ZZ_pXModulus& F, long m)
{
if (m <= 0 || deg(h) >= F.n) LogicError("build: bad args");
if (m > F.n) m = F.n;
long i;
if (ZZ_pXArgBound > 0) {
double sz = ZZ_p::storage();
sz = sz*F.n;
sz = sz + NTL_VECTOR_HEADER_SIZE + sizeof(vec_ZZ_p);
sz = sz/1024;
m = min(m, long(ZZ_pXArgBound/sz));
m = max(m, 1);
}
ZZ_pXMultiplier M;
build(M, h, F);
A.H.SetLength(m+1);
set(A.H[0]);
A.H[1] = h;
for (i = 2; i <= m; i++)
MulMod(A.H[i], A.H[i-1], M, F);
}