本文整理汇总了C++中MPFR_SIGN函数的典型用法代码示例。如果您正苦于以下问题:C++ MPFR_SIGN函数的具体用法?C++ MPFR_SIGN怎么用?C++ MPFR_SIGN使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了MPFR_SIGN函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mpfr_rem1
static int
mpfr_rem1 (mpfr_ptr rem, long *quo, mpfr_rnd_t rnd_q,
mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd)
{
mpfr_exp_t ex, ey;
int compare, inex, q_is_odd, sign, signx = MPFR_SIGN (x);
mpz_t mx, my, r;
int tiny = 0;
MPFR_ASSERTD (rnd_q == MPFR_RNDN || rnd_q == MPFR_RNDZ);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x) || MPFR_IS_SINGULAR (y)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_NAN (y) || MPFR_IS_INF (x)
|| MPFR_IS_ZERO (y))
{
/* for remquo, quo is undefined */
MPFR_SET_NAN (rem);
MPFR_RET_NAN;
}
else /* either y is Inf and x is 0 or non-special,
or x is 0 and y is non-special,
in both cases the quotient is zero. */
{
if (quo)
*quo = 0;
return mpfr_set (rem, x, rnd);
}
}
/* now neither x nor y is NaN, Inf or zero */
mpz_init (mx);
mpz_init (my);
mpz_init (r);
ex = mpfr_get_z_2exp (mx, x); /* x = mx*2^ex */
ey = mpfr_get_z_2exp (my, y); /* y = my*2^ey */
/* to get rid of sign problems, we compute it separately:
quo(-x,-y) = quo(x,y), rem(-x,-y) = -rem(x,y)
quo(-x,y) = -quo(x,y), rem(-x,y) = -rem(x,y)
thus quo = sign(x/y)*quo(|x|,|y|), rem = sign(x)*rem(|x|,|y|) */
sign = (signx == MPFR_SIGN (y)) ? 1 : -1;
mpz_abs (mx, mx);
mpz_abs (my, my);
q_is_odd = 0;
/* divide my by 2^k if possible to make operations mod my easier */
{
unsigned long k = mpz_scan1 (my, 0);
ey += k;
mpz_fdiv_q_2exp (my, my, k);
}
if (ex <= ey)
{
/* q = x/y = mx/(my*2^(ey-ex)) */
/* First detect cases where q=0, to avoid creating a huge number
my*2^(ey-ex): if sx = mpz_sizeinbase (mx, 2) and sy =
mpz_sizeinbase (my, 2), we have x < 2^(ex + sx) and
y >= 2^(ey + sy - 1), thus if ex + sx <= ey + sy - 1
the quotient is 0 */
if (ex + (mpfr_exp_t) mpz_sizeinbase (mx, 2) <
ey + (mpfr_exp_t) mpz_sizeinbase (my, 2))
{
tiny = 1;
mpz_set (r, mx);
mpz_set_ui (mx, 0);
}
else
{
mpz_mul_2exp (my, my, ey - ex); /* divide mx by my*2^(ey-ex) */
/* since mx > 0 and my > 0, we can use mpz_tdiv_qr in all cases */
mpz_tdiv_qr (mx, r, mx, my);
/* 0 <= |r| <= |my|, r has the same sign as mx */
}
if (rnd_q == MPFR_RNDN)
q_is_odd = mpz_tstbit (mx, 0);
if (quo) /* mx is the quotient */
{
mpz_tdiv_r_2exp (mx, mx, WANTED_BITS);
*quo = mpz_get_si (mx);
}
}
else /* ex > ey */
{
if (quo) /* remquo case */
/* for remquo, to get the low WANTED_BITS more bits of the quotient,
we first compute R = X mod Y*2^WANTED_BITS, where X and Y are
defined below. Then the low WANTED_BITS of the quotient are
floor(R/Y). */
mpz_mul_2exp (my, my, WANTED_BITS); /* 2^WANTED_BITS*Y */
else if (rnd_q == MPFR_RNDN) /* remainder case */
/* Let X = mx*2^(ex-ey) and Y = my. Then both X and Y are integers.
Assume X = R mod Y, then x = X*2^ey = R*2^ey mod (Y*2^ey=y).
//.........这里部分代码省略.........
示例2: log
//.........这里部分代码省略.........
#ifdef MPFR_JN
mpfr_mul (c, c, Q, MPFR_RNDN); /* Q * (sin - cos) */
mpfr_mul (s, s, P, MPFR_RNDN); /* P * (sin + cos) */
#else
mpfr_mul (c, c, P, MPFR_RNDN); /* P * (sin - cos) */
mpfr_mul (s, s, Q, MPFR_RNDN); /* Q * (sin + cos) */
#endif
err = MPFR_EXP(c);
if (MPFR_EXP(s) > err)
err = MPFR_EXP(s);
#ifdef MPFR_JN
mpfr_sub (s, s, c, MPFR_RNDN);
#else
mpfr_add (s, s, c, MPFR_RNDN);
#endif
}
else /* n odd: P * (sin - cos) + Q (cos + sin) for jn,
Q * (sin - cos) - P (cos + sin) for yn */
{
#ifdef MPFR_JN
mpfr_mul (c, c, P, MPFR_RNDN); /* P * (sin - cos) */
mpfr_mul (s, s, Q, MPFR_RNDN); /* Q * (sin + cos) */
#else
mpfr_mul (c, c, Q, MPFR_RNDN); /* Q * (sin - cos) */
mpfr_mul (s, s, P, MPFR_RNDN); /* P * (sin + cos) */
#endif
err = MPFR_EXP(c);
if (MPFR_EXP(s) > err)
err = MPFR_EXP(s);
#ifdef MPFR_JN
mpfr_add (s, s, c, MPFR_RNDN);
#else
mpfr_sub (s, c, s, MPFR_RNDN);
#endif
}
if ((n & 2) != 0)
mpfr_neg (s, s, MPFR_RNDN);
if (MPFR_EXP(s) > err)
err = MPFR_EXP(s);
/* the absolute error on s is bounded by P*err(s/c) + Q*err(s/c)
+ err(P)*(s/c) + err(Q)*(s/c) + 3 * 2^(err - w - 1)
<= (|P|+|Q|) * 2^(1-w) + err_s * 2^(1-w) + 2^err * 2^(1-w),
since |c|, |old_s| <= 2. */
err2 = (MPFR_EXP(P) >= MPFR_EXP(Q)) ? MPFR_EXP(P) + 2 : MPFR_EXP(Q) + 2;
/* (|P| + |Q|) * 2^(1 - w) <= 2^(err2 - w) */
err = MPFR_EXP(err_s) >= err ? MPFR_EXP(err_s) + 2 : err + 2;
/* err_s * 2^(1-w) + 2^old_err * 2^(1-w) <= 2^err * 2^(-w) */
err2 = (err >= err2) ? err + 1 : err2 + 1;
/* now the absolute error on s is bounded by 2^(err2 - w) */
/* multiply by sqrt(1/(Pi*z)) */
mpfr_const_pi (c, MPFR_RNDN); /* Pi, err <= 1 */
mpfr_mul (c, c, z, MPFR_RNDN); /* err <= 2 */
mpfr_si_div (c, MPFR_IS_POS(z) ? 1 : -1, c, MPFR_RNDN); /* err <= 3 */
mpfr_sqrt (c, c, MPFR_RNDN); /* err<=5/2, thus the absolute error is
bounded by 3*u*|c| for |u| <= 0.25 */
mpfr_mul (err_t, c, s, MPFR_SIGN(c)==MPFR_SIGN(s) ? MPFR_RNDU : MPFR_RNDD);
mpfr_abs (err_t, err_t, MPFR_RNDU);
mpfr_mul_ui (err_t, err_t, 3, MPFR_RNDU);
/* 3*2^(-w)*|old_c|*|s| [see below] is bounded by err_t * 2^(-w) */
err2 += MPFR_EXP(c);
/* |old_c| * 2^(err2 - w) [see below] is bounded by 2^(err2-w) */
mpfr_mul (c, c, s, MPFR_RNDN); /* the absolute error on c is bounded by
1/2 ulp(c) + 3*2^(-w)*|old_c|*|s|
+ |old_c| * 2^(err2 - w) */
/* compute err_t * 2^(-w) + 1/2 ulp(c) = (err_t + 2^EXP(c)) * 2^(-w) */
err = (MPFR_EXP(err_t) > MPFR_EXP(c)) ? MPFR_EXP(err_t) + 1 : MPFR_EXP(c) + 1;
/* err_t * 2^(-w) + 1/2 ulp(c) <= 2^(err - w) */
/* now err_t * 2^(-w) bounds 1/2 ulp(c) + 3*2^(-w)*|old_c|*|s| */
err = (err >= err2) ? err + 1 : err2 + 1;
/* the absolute error on c is bounded by 2^(err - w) */
mpfr_clear (s);
mpfr_clear (P);
mpfr_clear (Q);
mpfr_clear (t);
mpfr_clear (iz);
mpfr_clear (err_t);
mpfr_clear (err_s);
mpfr_clear (err_u);
err -= MPFR_EXP(c);
if (MPFR_LIKELY (MPFR_CAN_ROUND (c, w - err, MPFR_PREC(res), r)))
break;
if (diverge != 0)
{
mpfr_set (c, z, r); /* will force inex=0 below, which means the
asymptotic expansion failed */
break;
}
MPFR_ZIV_NEXT (loop, w);
}
MPFR_ZIV_FREE (loop);
inex = (MPFR_IS_POS(z) || ((n & 1) == 0)) ? mpfr_set (res, c, r)
: mpfr_neg (res, c, r);
mpfr_clear (c);
return inex;
}
示例3: mpfr_digamma
int
mpfr_digamma (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d", mpfr_get_prec(y), mpfr_log_prec, y, inex));
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x))
{
if (MPFR_IS_POS(x)) /* Digamma(+Inf) = +Inf */
{
MPFR_SET_SAME_SIGN(y, x);
MPFR_SET_INF(y);
MPFR_RET(0);
}
else /* Digamma(-Inf) = NaN */
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
}
else /* Zero case */
{
/* the following works also in case of overlap */
MPFR_SET_INF(y);
MPFR_SET_OPPOSITE_SIGN(y, x);
mpfr_set_divby0 ();
MPFR_RET(0);
}
}
/* Digamma is undefined for negative integers */
if (MPFR_IS_NEG(x) && mpfr_integer_p (x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
/* now x is a normal number */
MPFR_SAVE_EXPO_MARK (expo);
/* for x very small, we have Digamma(x) = -1/x - gamma + O(x), more precisely
-1 < Digamma(x) + 1/x < 0 for -0.2 < x < 0.2, thus:
(i) either x is a power of two, then 1/x is exactly representable, and
as long as 1/2*ulp(1/x) > 1, we can conclude;
(ii) otherwise assume x has <= n bits, and y has <= n+1 bits, then
|y + 1/x| >= 2^(-2n) ufp(y), where ufp means unit in first place.
Since |Digamma(x) + 1/x| <= 1, if 2^(-2n) ufp(y) >= 2, then
|y - Digamma(x)| >= 2^(-2n-1)ufp(y), and rounding -1/x gives the correct result.
If x < 2^E, then y > 2^(-E), thus ufp(y) > 2^(-E-1).
A sufficient condition is thus EXP(x) <= -2 MAX(PREC(x),PREC(Y)). */
if (MPFR_EXP(x) < -2)
{
if (MPFR_EXP(x) <= -2 * (mpfr_exp_t) MAX(MPFR_PREC(x), MPFR_PREC(y)))
{
int signx = MPFR_SIGN(x);
inex = mpfr_si_div (y, -1, x, rnd_mode);
if (inex == 0) /* x is a power of two */
{ /* result always -1/x, except when rounding down */
if (rnd_mode == MPFR_RNDA)
rnd_mode = (signx > 0) ? MPFR_RNDD : MPFR_RNDU;
if (rnd_mode == MPFR_RNDZ)
rnd_mode = (signx > 0) ? MPFR_RNDU : MPFR_RNDD;
if (rnd_mode == MPFR_RNDU)
inex = 1;
else if (rnd_mode == MPFR_RNDD)
{
mpfr_nextbelow (y);
inex = -1;
}
else /* nearest */
inex = 1;
}
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
goto end;
}
}
if (MPFR_IS_NEG(x))
inex = mpfr_digamma_reflection (y, x, rnd_mode);
/* if x < 1/2 we use the reflection formula */
else if (MPFR_EXP(x) < 0)
inex = mpfr_digamma_reflection (y, x, rnd_mode);
else
inex = mpfr_digamma_positive (y, x, rnd_mode);
end:
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd_mode);
//.........这里部分代码省略.........
示例4: mpfr_acos
int
mpfr_acos (mpfr_ptr acos, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t xp, arcc, tmp;
mpfr_exp_t supplement;
mpfr_prec_t prec;
int sign, compared, inexact;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("acos[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec(acos), mpfr_log_prec, acos, inexact));
/* Singular cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (acos);
MPFR_RET_NAN;
}
else /* necessarily x=0 */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
/* acos(0)=Pi/2 */
MPFR_SAVE_EXPO_MARK (expo);
inexact = mpfr_const_pi (acos, rnd_mode);
mpfr_div_2ui (acos, acos, 1, rnd_mode); /* exact */
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (acos, inexact, rnd_mode);
}
}
/* Set x_p=|x| */
sign = MPFR_SIGN (x);
mpfr_init2 (xp, MPFR_PREC (x));
mpfr_abs (xp, x, MPFR_RNDN); /* Exact */
compared = mpfr_cmp_ui (xp, 1);
if (MPFR_UNLIKELY (compared >= 0))
{
mpfr_clear (xp);
if (compared > 0) /* acos(x) = NaN for x > 1 */
{
MPFR_SET_NAN(acos);
MPFR_RET_NAN;
}
else
{
if (MPFR_IS_POS_SIGN (sign)) /* acos(+1) = +0 */
return mpfr_set_ui (acos, 0, rnd_mode);
else /* acos(-1) = Pi */
return mpfr_const_pi (acos, rnd_mode);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* Compute the supplement */
mpfr_ui_sub (xp, 1, xp, MPFR_RNDD);
if (MPFR_IS_POS_SIGN (sign))
supplement = 2 - 2 * MPFR_GET_EXP (xp);
else
supplement = 2 - MPFR_GET_EXP (xp);
mpfr_clear (xp);
prec = MPFR_PREC (acos);
prec += MPFR_INT_CEIL_LOG2(prec) + 10 + supplement;
/* VL: The following change concerning prec comes from r3145
"Optimize mpfr_acos by choosing a better initial precision."
but it doesn't seem to be correct and leads to problems (assertion
failure or very important inefficiency) with tiny arguments.
Therefore, I've disabled it. */
/* If x ~ 2^-N, acos(x) ~ PI/2 - x - x^3/6
If Prec < 2*N, we can't round since x^3/6 won't be counted. */
#if 0
if (MPFR_PREC (acos) >= MPFR_PREC (x) && MPFR_GET_EXP (x) < 0)
{
mpfr_uexp_t pmin = (mpfr_uexp_t) (-2 * MPFR_GET_EXP (x)) + 5;
MPFR_ASSERTN (pmin <= MPFR_PREC_MAX);
if (prec < pmin)
prec = pmin;
}
#endif
mpfr_init2 (tmp, prec);
mpfr_init2 (arcc, prec);
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
/* acos(x) = Pi/2 - asin(x) = Pi/2 - atan(x/sqrt(1-x^2)) */
mpfr_sqr (tmp, x, MPFR_RNDN);
mpfr_ui_sub (tmp, 1, tmp, MPFR_RNDN);
mpfr_sqrt (tmp, tmp, MPFR_RNDN);
mpfr_div (tmp, x, tmp, MPFR_RNDN);
//.........这里部分代码省略.........
示例5: overfl_exp10_0
static void
overfl_exp10_0 (void)
{
mpfr_t x, y;
int emax, i, inex, rnd, err = 0;
mpfr_exp_t old_emax;
old_emax = mpfr_get_emax ();
mpfr_init2 (x, 8);
mpfr_init2 (y, 8);
for (emax = -1; emax <= 0; emax++)
{
mpfr_set_ui_2exp (y, 1, emax, MPFR_RNDN);
mpfr_nextbelow (y);
set_emax (emax); /* 1 is not representable. */
/* and if emax < 0, 1 - eps is not representable either. */
for (i = -1; i <= 1; i++)
RND_LOOP (rnd)
{
mpfr_set_si_2exp (x, i, -512 * ABS (i), MPFR_RNDN);
mpfr_clear_flags ();
inex = mpfr_exp10 (x, x, (mpfr_rnd_t) rnd);
if ((i >= 0 || emax < 0 || rnd == MPFR_RNDN || rnd == MPFR_RNDU) &&
! mpfr_overflow_p ())
{
printf ("Error in overfl_exp10_0 (i = %d, rnd = %s):\n"
" The overflow flag is not set.\n",
i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
err = 1;
}
if (rnd == MPFR_RNDZ || rnd == MPFR_RNDD)
{
if (inex >= 0)
{
printf ("Error in overfl_exp10_0 (i = %d, rnd = %s):\n"
" The inexact value must be negative.\n",
i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
err = 1;
}
if (! mpfr_equal_p (x, y))
{
printf ("Error in overfl_exp10_0 (i = %d, rnd = %s):\n"
" Got ", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
mpfr_print_binary (x);
printf (" instead of 0.11111111E%d.\n", emax);
err = 1;
}
}
else
{
if (inex <= 0)
{
printf ("Error in overfl_exp10_0 (i = %d, rnd = %s):\n"
" The inexact value must be positive.\n",
i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
err = 1;
}
if (! (mpfr_inf_p (x) && MPFR_SIGN (x) > 0))
{
printf ("Error in overfl_exp10_0 (i = %d, rnd = %s):\n"
" Got ", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
mpfr_print_binary (x);
printf (" instead of +Inf.\n");
err = 1;
}
}
}
set_emax (old_emax);
}
if (err)
exit (1);
mpfr_clear (x);
mpfr_clear (y);
}
示例6: mpfr_mul3
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a,sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC(b);
cq = MPFR_PREC(c);
MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
MPFR_TMP_MARK(marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
//.........这里部分代码省略.........
示例7: test_overflow2
static void
test_overflow2 (void)
{
mpfr_t x, y, z, r;
int i, inex, rnd, err = 0;
mpfr_inits2 (8, x, y, z, r, (mpfr_ptr) 0);
MPFR_SET_POS (x);
mpfr_setmin (x, mpfr_get_emax ()); /* x = [email protected] */
mpfr_set_si (y, -2, MPFR_RNDN); /* y = -2 */
/* The intermediate multiplication x * y will overflow. */
for (i = -9; i <= 9; i++)
RND_LOOP (rnd)
{
int inf, overflow;
inf = rnd == MPFR_RNDN || rnd == MPFR_RNDD || rnd == MPFR_RNDA;
overflow = inf || i <= 0;
inex = mpfr_set_si_2exp (z, i, mpfr_get_emin (), MPFR_RNDN);
MPFR_ASSERTN (inex == 0);
mpfr_clear_flags ();
/* One has: x * y = [email protected] exactly (but not representable). */
inex = mpfr_fma (r, x, y, z, (mpfr_rnd_t) rnd);
if (overflow ^ (mpfr_overflow_p () != 0))
{
printf ("Error in test_overflow2 (i = %d, %s): wrong overflow"
" flag (should be %d)\n", i,
mpfr_print_rnd_mode ((mpfr_rnd_t) rnd), overflow);
err = 1;
}
if (mpfr_nanflag_p ())
{
printf ("Error in test_overflow2 (i = %d, %s): NaN flag should"
" not be set\n", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
err = 1;
}
if (mpfr_nan_p (r))
{
printf ("Error in test_overflow2 (i = %d, %s): got NaN\n",
i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
err = 1;
}
else if (MPFR_SIGN (r) >= 0)
{
printf ("Error in test_overflow2 (i = %d, %s): wrong sign "
"(+ instead of -)\n", i,
mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
err = 1;
}
else if (inf && ! mpfr_inf_p (r))
{
printf ("Error in test_overflow2 (i = %d, %s): expected -Inf,"
" got\n", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
mpfr_dump (r);
err = 1;
}
else if (!inf && (mpfr_inf_p (r) ||
(mpfr_nextbelow (r), ! mpfr_inf_p (r))))
{
printf ("Error in test_overflow2 (i = %d, %s): expected -MAX,"
" got\n", i, mpfr_print_rnd_mode ((mpfr_rnd_t) rnd));
mpfr_dump (r);
err = 1;
}
if (inf ? inex >= 0 : inex <= 0)
{
printf ("Error in test_overflow2 (i = %d, %s): wrong inexact"
" flag (got %d)\n", i,
mpfr_print_rnd_mode ((mpfr_rnd_t) rnd), inex);
err = 1;
}
}
if (err)
exit (1);
mpfr_clears (x, y, z, r, (mpfr_ptr) 0);
}
示例8: main
int
main (void)
{
mpfr_t x, y;
float f, g, infp;
int i;
infp = (float) DBL_POS_INF;
if (infp * 0.5 != infp)
{
fprintf (stderr, "Error, FLT_MAX + FLT_MAX does not yield INFP\n");
fprintf (stderr, "(this is probably a compiler bug, please report)\n");
exit (1);
}
tests_start_mpfr ();
mpfr_init2 (x, 24);
mpfr_init2 (y, 24);
#if !defined(MPFR_ERRDIVZERO)
mpfr_set_nan (x);
f = mpfr_get_flt (x, MPFR_RNDN);
if (f == f)
{
printf ("Error for mpfr_get_flt(NaN)\n");
exit (1);
}
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_nan_p (x) == 0)
{
printf ("Error for mpfr_set_flt(NaN)\n");
exit (1);
}
mpfr_set_inf (x, 1);
f = mpfr_get_flt (x, MPFR_RNDN);
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_inf_p (x) == 0 || mpfr_sgn (x) < 0)
{
printf ("Error for mpfr_set_flt(mpfr_get_flt(+Inf)):\n");
printf ("f=%f, expected -Inf\n", f);
printf ("got "); mpfr_dump (x);
exit (1);
}
mpfr_set_inf (x, -1);
f = mpfr_get_flt (x, MPFR_RNDN);
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_inf_p (x) == 0 || mpfr_sgn (x) > 0)
{
printf ("Error for mpfr_set_flt(mpfr_get_flt(-Inf)):\n");
printf ("f=%f, expected -Inf\n", f);
printf ("got "); mpfr_dump (x);
exit (1);
}
#endif
mpfr_set_ui (x, 0, MPFR_RNDN);
f = mpfr_get_flt (x, MPFR_RNDN);
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_zero_p (x) == 0 || MPFR_SIGN (x) < 0)
{
printf ("Error for mpfr_set_flt(mpfr_get_flt(+0))\n");
exit (1);
}
mpfr_set_ui (x, 0, MPFR_RNDN);
mpfr_neg (x, x, MPFR_RNDN);
f = mpfr_get_flt (x, MPFR_RNDN);
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_zero_p (x) == 0 || MPFR_SIGN (x) > 0)
{
printf ("Error for mpfr_set_flt(mpfr_get_flt(-0))\n");
exit (1);
}
mpfr_set_ui (x, 17, MPFR_RNDN);
f = mpfr_get_flt (x, MPFR_RNDN);
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_cmp_ui (x, 17) != 0)
{
printf ("Error for mpfr_set_flt(mpfr_get_flt(17))\n");
printf ("expected 17\n");
printf ("got ");
mpfr_dump (x);
exit (1);
}
mpfr_set_si (x, -42, MPFR_RNDN);
f = mpfr_get_flt (x, MPFR_RNDN);
mpfr_set_flt (x, f, MPFR_RNDN);
if (mpfr_cmp_si (x, -42) != 0)
{
printf ("Error for mpfr_set_flt(mpfr_get_flt(-42))\n");
printf ("expected -42\n");
printf ("got ");
mpfr_dump (x);
exit (1);
}
//.........这里部分代码省略.........
示例9: mpfr_pow_si
int
mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
{
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg n=%ld rnd=%d",
mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
if (n >= 0)
return mpfr_pow_ui (y, x, n, rnd);
else
{
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
if (MPFR_IS_INF (x))
MPFR_SET_ZERO (y);
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_INF (y);
mpfr_set_divby0 ();
}
if (positive)
MPFR_SET_POS (y);
else
MPFR_SET_NEG (y);
MPFR_RET (0);
}
}
/* detect exact powers: x^(-n) is exact iff x is a power of 2 */
if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
{
mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
MPFR_ASSERTD (n < 0);
/* Warning: n * expx may overflow!
*
* Some systems (apparently alpha-freebsd) abort with
* LONG_MIN / 1, and LONG_MIN / -1 is undefined.
* http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
*
* Proof of the overflow checking. The expressions below are
* assumed to be on the rational numbers, but the word "overflow"
* still has its own meaning in the C context. / still denotes
* the integer (truncated) division, and // denotes the exact
* division.
* - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
* cannot overflow due to the constraints on the exponents of
* MPFR numbers.
* - If n = -1, then n * expx = - expx, which is representable
* because of the constraints on the exponents of MPFR numbers.
* - If expx = 0, then n * expx = 0, which is representable.
* - If n < -1 and expx > 0:
* + If expx > (__gmpfr_emin - 1) / n, then
* expx >= (__gmpfr_emin - 1) / n + 1
* > (__gmpfr_emin - 1) // n,
* and
* n * expx < __gmpfr_emin - 1,
* i.e.
* n * expx <= __gmpfr_emin - 2.
* This corresponds to an underflow, with a null result in
* the rounding-to-nearest mode.
* + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
* overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
* 0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
* >= __gmpfr_emin - 1.
* - If n < -1 and expx < 0:
* + If expx < (__gmpfr_emax - 1) / n, then
* expx <= (__gmpfr_emax - 1) / n - 1
* < (__gmpfr_emax - 1) // n,
* and
* n * expx > __gmpfr_emax - 1,
* i.e.
* n * expx >= __gmpfr_emax.
* This corresponds to an overflow (2^(n * expx) has an
* exponent > __gmpfr_emax).
* + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
* overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
* 0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
* <= __gmpfr_emax - 1.
* Note: one could use expx bounds based on MPFR_EXP_MIN and
* MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
* current bounds do not lead to noticeably slower code and
* allow us to avoid a bug in Sun's compiler for Solaris/x86
* (when optimizations are enabled); known affected versions:
* cc: Sun C 5.8 2005/10/13
* cc: Sun C 5.8 Patch 121016-02 2006/03/31
* cc: Sun C 5.8 Patch 121016-04 2006/10/18
*/
expy =
n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
MPFR_EMIN_MIN - 2 /* Underflow */ :
//.........这里部分代码省略.........
示例10: mpfr_sin
int
mpfr_sin (mpfr_ptr y, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t c, xr;
mpfr_srcptr xx;
mpfr_exp_t expx, err;
mpfr_prec_t precy, m;
int inexact, sign, reduce;
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", x, x, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (y);
MPFR_SET_SAME_SIGN (y, x);
MPFR_RET (0);
}
}
/* sin(x) = x - x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, x, -2 * MPFR_GET_EXP (x), 2, 0,
rnd_mode, {});
MPFR_SAVE_EXPO_MARK (expo);
/* Compute initial precision */
precy = MPFR_PREC (y);
if (precy >= MPFR_SINCOS_THRESHOLD)
return mpfr_sin_fast (y, x, rnd_mode);
m = precy + MPFR_INT_CEIL_LOG2 (precy) + 13;
expx = MPFR_GET_EXP (x);
mpfr_init (c);
mpfr_init (xr);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
/* first perform argument reduction modulo 2*Pi (if needed),
also helps to determine the sign of sin(x) */
if (expx >= 2) /* If Pi < x < 4, we need to reduce too, to determine
the sign of sin(x). For 2 <= |x| < Pi, we could avoid
the reduction. */
{
reduce = 1;
/* As expx + m - 1 will silently be converted into mpfr_prec_t
in the mpfr_set_prec call, the assert below may be useful to
avoid undefined behavior. */
MPFR_ASSERTN (expx + m - 1 <= MPFR_PREC_MAX);
mpfr_set_prec (c, expx + m - 1);
mpfr_set_prec (xr, m);
mpfr_const_pi (c, MPFR_RNDN);
mpfr_mul_2ui (c, c, 1, MPFR_RNDN);
mpfr_remainder (xr, x, c, MPFR_RNDN);
/* The analysis is similar to that of cos.c:
|xr - x - 2kPi| <= 2^(2-m). Thus we can decide the sign
of sin(x) if xr is at distance at least 2^(2-m) of both
0 and +/-Pi. */
mpfr_div_2ui (c, c, 1, MPFR_RNDN);
/* Since c approximates Pi with an error <= 2^(2-expx-m) <= 2^(-m),
it suffices to check that c - |xr| >= 2^(2-m). */
if (MPFR_SIGN (xr) > 0)
mpfr_sub (c, c, xr, MPFR_RNDZ);
else
mpfr_add (c, c, xr, MPFR_RNDZ);
if (MPFR_IS_ZERO(xr)
|| MPFR_EXP(xr) < (mpfr_exp_t) 3 - (mpfr_exp_t) m
|| MPFR_EXP(c) < (mpfr_exp_t) 3 - (mpfr_exp_t) m)
goto ziv_next;
/* |xr - x - 2kPi| <= 2^(2-m), thus |sin(xr) - sin(x)| <= 2^(2-m) */
xx = xr;
}
else /* the input argument is already reduced */
{
reduce = 0;
xx = x;
}
sign = MPFR_SIGN(xx);
/* now that the argument is reduced, precision m is enough */
mpfr_set_prec (c, m);
mpfr_cos (c, xx, MPFR_RNDZ); /* can't be exact */
mpfr_nexttoinf (c); /* now c = cos(x) rounded away */
mpfr_mul (c, c, c, MPFR_RNDU); /* away */
mpfr_ui_sub (c, 1, c, MPFR_RNDZ);
//.........这里部分代码省略.........
示例11: main
//.........这里部分代码省略.........
baseprec = 1 + (prec - 2 + logbase) / logbase;
str = mpfr_get_str (NULL, &e, base, baseprec, x, rnd);
mpfr_set_str (y, str, base, rnd);
MPFR_EXP(y) += logbase * (e - strlen (str));
if (mpfr_cmp (x, y))
{
printf ("mpfr_set_str o mpfr_get_str <> id for rnd_mode=%s\n",
mpfr_print_rnd_mode (rnd));
printf ("x=");
mpfr_print_binary (x);
puts ("");
printf ("s=%s, exp=%d, base=%d\n", str, (int) e, base);
printf ("y=");
mpfr_print_binary (y);
puts ("");
mpfr_clear (x);
mpfr_clear (y);
exit (1);
}
(*__gmp_free_func) (str, strlen (str) + 1);
}
for (i = 2; i <= 62; i++)
{
if (mpfr_set_str (x, "@[email protected](garbage)", i, MPFR_RNDN) != 0 ||
!mpfr_nan_p(x))
{
printf ("mpfr_set_str failed on @[email protected](garbage)\n");
exit (1);
}
/*
if (mpfr_set_str (x, "@[email protected]", i, MPFR_RNDN) != 0 ||
!mpfr_inf_p(x) || MPFR_SIGN(x) < 0)
{
printf ("mpfr_set_str failed on @[email protected]\n");
exit (1);
}
if (mpfr_set_str (x, "[email protected]@garbage", i, MPFR_RNDN) != 0 ||
!mpfr_inf_p(x) || MPFR_SIGN(x) > 0)
{
printf ("mpfr_set_str failed on [email protected]@garbage\n");
exit (1);
}
if (mpfr_set_str (x, "[email protected]@garbage", i, MPFR_RNDN) != 0 ||
!mpfr_inf_p(x) || MPFR_SIGN(x) < 0)
{
printf ("mpfr_set_str failed on [email protected]@garbage\n");
exit (1);
}
*/
if (i > 16)
continue;
if (mpfr_set_str (x, "NaN", i, MPFR_RNDN) != 0 ||
!mpfr_nan_p(x))
{
printf ("mpfr_set_str failed on NaN\n");
exit (1);
}
if (mpfr_set_str (x, "Inf", i, MPFR_RNDN) != 0 ||
!mpfr_inf_p(x) || MPFR_SIGN(x) < 0)
示例12: sign
/// Returns sign of the number
inline int sign() const { return MPFR_SIGN(val); }
示例13: main
int
main (void)
{
mpfr_t x, y, z;
int i, j, k;
tests_start_mpfr ();
mpfr_init (x);
mpfr_init (y);
mpfr_init (z);
for (i = 0; i <= 1; i++)
for (j = 0; j <= 1; j++)
for (k = 0; k <= 5; k++)
{
mpfr_set_nan (x);
i ? MPFR_SET_NEG (x) : MPFR_SET_POS (x);
mpfr_set_nan (y);
j ? MPFR_SET_NEG (y) : MPFR_SET_POS (y);
copysign_variant (z, x, y, GMP_RNDN, k);
if (MPFR_SIGN (z) != MPFR_SIGN (y) || !mpfr_nanflag_p ())
{
printf ("Error in mpfr_copysign (%cNaN, %cNaN)\n",
i ? '-' : '+', j ? '-' : '+');
exit (1);
}
mpfr_set_si (x, i ? -1250 : 1250, GMP_RNDN);
mpfr_set_nan (y);
j ? MPFR_SET_NEG (y) : MPFR_SET_POS (y);
copysign_variant (z, x, y, GMP_RNDN, k);
if (i != j)
mpfr_neg (x, x, GMP_RNDN);
if (! mpfr_equal_p (z, x) || mpfr_nanflag_p ())
{
printf ("Error in mpfr_copysign (%c1250, %cNaN)\n",
i ? '-' : '+', j ? '-' : '+');
exit (1);
}
mpfr_set_si (x, i ? -1250 : 1250, GMP_RNDN);
mpfr_set_si (y, j ? -1717 : 1717, GMP_RNDN);
copysign_variant (z, x, y, GMP_RNDN, k);
if (i != j)
mpfr_neg (x, x, GMP_RNDN);
if (! mpfr_equal_p (z, x) || mpfr_nanflag_p ())
{
printf ("Error in mpfr_copysign (%c1250, %c1717)\n",
i ? '-' : '+', j ? '-' : '+');
exit (1);
}
}
mpfr_clear (x);
mpfr_clear (y);
mpfr_clear (z);
tests_end_mpfr ();
return 0;
}
示例14: mpfr_sub1sp
//.........这里部分代码省略.........
{
MPFR_ASSERTD( k > 0 );
limb = ap[--k];
}
while (limb == 0);
MPFR_ASSERTD(limb != 0);
count_leading_zeros(cnt, limb);
k++;
len = n - k; /* Number of last limb */
MPFR_ASSERTD(k >= 0);
if (MPFR_LIKELY(cnt))
mpn_lshift(ap+len, ap, k, cnt); /* Normalize the High Limb*/
else
{
/* Must use DECR since src and dest may overlap & dest>=src*/
MPN_COPY_DECR(ap+len, ap, k);
}
MPN_ZERO(ap, len); /* Zeroing the last limbs */
bx -= cnt + len*GMP_NUMB_BITS; /* Update Expo */
/* Last limb should be ok */
MPFR_ASSERTD(!(ap[len]&MPFR_LIMB_MASK((unsigned int) (-p)
% GMP_NUMB_BITS)));
}
/* Check expo underflow */
if (MPFR_UNLIKELY(bx < __gmpfr_emin))
{
MPFR_TMP_FREE(marker);
/* inexact=0 */
DEBUG( printf("(D==0 Underflow)\n") );
if (rnd_mode == MPFR_RNDN &&
(bx < __gmpfr_emin - 1 ||
(/*inexact >= 0 &&*/ mpfr_powerof2_raw (a))))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN(a));
}
MPFR_SET_EXP (a, bx);
/* No rounding is necessary since the result is exact */
MPFR_ASSERTD(ap[n-1] > ~ap[n-1]);
MPFR_TMP_FREE(marker);
return 0;
}
else /* if (d == 1) */
{
/* | <-- b -->
| <-- c --> */
mp_limb_t c0, mask;
mp_size_t k;
MPFR_UNSIGNED_MINUS_MODULO(sh, p);
/* If we lose at least one bit, compute 2*b-c (Exact)
* else compute b-c/2 */
bp = MPFR_MANT(b);
cp = MPFR_MANT(c);
k = n-1;
limb = bp[k] - cp[k]/2;
if (limb > MPFR_LIMB_HIGHBIT)
{
/* We can't lose precision: compute b-c/2 */
/* Shift c in the allocated temporary block */
SubD1NoLose:
c0 = cp[0] & (MPFR_LIMB_ONE<<sh);
cp = MPFR_TMP_LIMBS_ALLOC (n);
mpn_rshift(cp, MPFR_MANT(c), n, 1);
if (MPFR_LIKELY(c0 == 0))
{
/* Result is exact: no need of rounding! */
ap = MPFR_MANT(a);
示例15: check_for_zero
static void
check_for_zero (void)
{
/* Check that 0 is unsigned! */
mpq_t q;
mpz_t z;
mpfr_t x;
int r;
mpfr_sign_t i;
mpfr_init (x);
mpz_init (z);
mpq_init (q);
mpz_set_ui (z, 0);
mpq_set_ui (q, 0, 1);
MPFR_SET_ZERO (x);
RND_LOOP (r)
{
for (i = MPFR_SIGN_NEG ; i <= MPFR_SIGN_POS ;
i+=MPFR_SIGN_POS-MPFR_SIGN_NEG)
{
MPFR_SET_SIGN(x, i);
mpfr_add_z (x, x, z, (mpfr_rnd_t) r);
if (!MPFR_IS_ZERO(x) || MPFR_SIGN(x)!=i)
{
printf("GMP Zero errors for add_z & rnd=%s & s=%d\n",
mpfr_print_rnd_mode ((mpfr_rnd_t) r), i);
mpfr_dump (x);
exit (1);
}
mpfr_sub_z (x, x, z, (mpfr_rnd_t) r);
if (!MPFR_IS_ZERO(x) || MPFR_SIGN(x)!=i)
{
printf("GMP Zero errors for sub_z & rnd=%s & s=%d\n",
mpfr_print_rnd_mode ((mpfr_rnd_t) r), i);
mpfr_dump (x);
exit (1);
}
mpfr_mul_z (x, x, z, (mpfr_rnd_t) r);
if (!MPFR_IS_ZERO(x) || MPFR_SIGN(x)!=i)
{
printf("GMP Zero errors for mul_z & rnd=%s & s=%d\n",
mpfr_print_rnd_mode ((mpfr_rnd_t) r), i);
mpfr_dump (x);
exit (1);
}
mpfr_add_q (x, x, q, (mpfr_rnd_t) r);
if (!MPFR_IS_ZERO(x) || MPFR_SIGN(x)!=i)
{
printf("GMP Zero errors for add_q & rnd=%s & s=%d\n",
mpfr_print_rnd_mode ((mpfr_rnd_t) r), i);
mpfr_dump (x);
exit (1);
}
mpfr_sub_q (x, x, q, (mpfr_rnd_t) r);
if (!MPFR_IS_ZERO(x) || MPFR_SIGN(x)!=i)
{
printf("GMP Zero errors for sub_q & rnd=%s & s=%d\n",
mpfr_print_rnd_mode ((mpfr_rnd_t) r), i);
mpfr_dump (x);
exit (1);
}
}
}
mpq_clear (q);
mpz_clear (z);
mpfr_clear (x);
}