本文整理汇总了C++中MPFR_RET函数的典型用法代码示例。如果您正苦于以下问题:C++ MPFR_RET函数的具体用法?C++ MPFR_RET怎么用?C++ MPFR_RET使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了MPFR_RET函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mpfr_exp2
int
mpfr_exp2 (mpfr_ptr y, mpfr_srcptr x, mp_rnd_t rnd_mode)
{
int inexact;
long xint;
mpfr_t xfrac;
MPFR_SAVE_EXPO_DECL (expo);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (x))
MPFR_SET_INF (y);
else
MPFR_SET_ZERO (y);
MPFR_SET_POS (y);
MPFR_RET (0);
}
else /* 2^0 = 1 */
{
MPFR_ASSERTD (MPFR_IS_ZERO(x));
return mpfr_set_ui (y, 1, rnd_mode);
}
}
/* since the smallest representable non-zero float is 1/2*2^__gmpfr_emin,
if x < __gmpfr_emin - 1, the result is either 1/2*2^__gmpfr_emin or 0 */
MPFR_ASSERTN (MPFR_EMIN_MIN >= LONG_MIN + 2);
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emin - 1) < 0))
{
mp_rnd_t rnd2 = rnd_mode;
/* in round to nearest mode, round to zero when x <= __gmpfr_emin-2 */
if (rnd_mode == GMP_RNDN &&
mpfr_cmp_si_2exp (x, __gmpfr_emin - 2, 0) <= 0)
rnd2 = GMP_RNDZ;
return mpfr_underflow (y, rnd2, 1);
}
MPFR_ASSERTN (MPFR_EMAX_MAX <= LONG_MAX);
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax) >= 0))
return mpfr_overflow (y, rnd_mode, 1);
/* We now know that emin - 1 <= x < emax. */
MPFR_SAVE_EXPO_MARK (expo);
/* 2^x = 1 + x*log(2) + O(x^2) for x near zero, and for |x| <= 1 we have
|2^x - 1| <= x < 2^EXP(x). If x > 0 we must round away from 0 (dir=1);
if x < 0 we must round toward 0 (dir=0). */
MPFR_SMALL_INPUT_AFTER_SAVE_EXPO (y, __gmpfr_one, - MPFR_GET_EXP (x), 0,
MPFR_SIGN(x) > 0, rnd_mode, expo, {});
xint = mpfr_get_si (x, GMP_RNDZ);
mpfr_init2 (xfrac, MPFR_PREC (x));
mpfr_sub_si (xfrac, x, xint, GMP_RNDN); /* exact */
if (MPFR_IS_ZERO (xfrac))
{
mpfr_set_ui (y, 1, GMP_RNDN);
inexact = 0;
}
else
{
/* Declaration of the intermediary variable */
mpfr_t t;
/* Declaration of the size variable */
mp_prec_t Ny = MPFR_PREC(y); /* target precision */
mp_prec_t Nt; /* working precision */
mp_exp_t err; /* error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 5 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
/* First computation */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute exp(x*ln(2))*/
mpfr_const_log2 (t, GMP_RNDU); /* ln(2) */
mpfr_mul (t, xfrac, t, GMP_RNDU); /* xfrac * ln(2) */
err = Nt - (MPFR_GET_EXP (t) + 2); /* Estimate of the error */
mpfr_exp (t, t, GMP_RNDN); /* exp(xfrac * ln(2)) */
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* Actualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
//.........这里部分代码省略.........
示例2: mpfr_mul3
static int
mpfr_mul3 (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mpfr_rnd_t rnd_mode)
{
/* Old implementation */
int sign_product, cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq, cq;
mp_size_t bn, cn, tn, k;
MPFR_TMP_DECL(marker);
/* deal with special cases */
if (MPFR_ARE_SINGULAR(b,c))
{
if (MPFR_IS_NAN(b) || MPFR_IS_NAN(c))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
if (MPFR_IS_INF(b))
{
if (MPFR_IS_INF(c) || MPFR_NOTZERO(c))
{
MPFR_SET_SIGN(a,sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF(c))
{
if (MPFR_NOTZERO(b))
{
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_INF(a);
MPFR_RET(0); /* exact */
}
else
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
}
else
{
MPFR_ASSERTD(MPFR_IS_ZERO(b) || MPFR_IS_ZERO(c));
MPFR_SET_SIGN(a, sign_product);
MPFR_SET_ZERO(a);
MPFR_RET(0); /* 0 * 0 is exact */
}
}
sign_product = MPFR_MULT_SIGN( MPFR_SIGN(b) , MPFR_SIGN(c) );
ax = MPFR_GET_EXP (b) + MPFR_GET_EXP (c);
bq = MPFR_PREC(b);
cq = MPFR_PREC(c);
MPFR_ASSERTD(bq+cq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = (bq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of b */
cn = (cq+GMP_NUMB_BITS-1)/GMP_NUMB_BITS; /* number of limbs of c */
k = bn + cn; /* effective nb of limbs used by b*c (= tn or tn+1) below */
tn = (bq + cq + GMP_NUMB_BITS - 1) / GMP_NUMB_BITS;
/* <= k, thus no int overflow */
MPFR_ASSERTD(tn <= k);
/* Check for no size_t overflow*/
MPFR_ASSERTD((size_t) k <= ((size_t) -1) / BYTES_PER_MP_LIMB);
MPFR_TMP_MARK(marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) k * BYTES_PER_MP_LIMB);
/* multiplies two mantissa in temporary allocated space */
b1 = (MPFR_LIKELY(bn >= cn)) ?
mpn_mul (tmp, MPFR_MANT(b), bn, MPFR_MANT(c), cn)
: mpn_mul (tmp, MPFR_MANT(c), cn, MPFR_MANT(b), bn);
/* now tmp[0]..tmp[k-1] contains the product of both mantissa,
with tmp[k-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += k - tn;
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, bq + cq,
MPFR_IS_NEG_SIGN(sign_product),
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
//.........这里部分代码省略.........
示例3: mpfr_sqr
int
mpfr_sqr (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode)
{
int cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq;
mp_size_t bn, tn;
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", b, b, rnd_mode),
("y[%#R]=%R inexact=%d", a, a, inexact));
/* deal with special cases */
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
{
if (MPFR_IS_NAN(b))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
MPFR_SET_POS (a);
if (MPFR_IS_INF(b))
MPFR_SET_INF(a);
else
( MPFR_ASSERTD(MPFR_IS_ZERO(b)), MPFR_SET_ZERO(a) );
MPFR_RET(0);
}
ax = 2 * MPFR_GET_EXP (b);
bq = MPFR_PREC(b);
MPFR_ASSERTD (2 * bq > bq); /* PREC_MAX is /2 so no integer overflow */
bn = MPFR_LIMB_SIZE(b); /* number of limbs of b */
tn = 1 + (2 * bq - 1) / GMP_NUMB_BITS; /* number of limbs of square,
2*bn or 2*bn-1 */
MPFR_TMP_MARK(marker);
tmp = (mp_limb_t *) MPFR_TMP_ALLOC((size_t) 2 * bn * BYTES_PER_MP_LIMB);
/* Multiplies the mantissa in temporary allocated space */
mpn_sqr_n (tmp, MPFR_MANT(b), bn);
b1 = tmp[2 * bn - 1];
/* now tmp[0]..tmp[2*bn-1] contains the product of both mantissa,
with tmp[2*bn-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += 2 * bn - tn; /* +0 or +1 */
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, 2 * bq, 0,
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
MPFR_TMP_FREE(marker);
{
mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == MPFR_RNDN &&
(ax + (mpfr_exp_t) b1 < __gmpfr_emin || mpfr_powerof2_raw (b)))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_POS (a);
}
MPFR_RET (inexact);
}
示例4: mpfr_sqrt
int
mpfr_sqrt (mpfr_ptr r, mpfr_srcptr u, mpfr_rnd_t rnd_mode)
{
mp_size_t rsize; /* number of limbs of r (plus 1 if exact limb multiple) */
mp_size_t rrsize;
mp_size_t usize; /* number of limbs of u */
mp_size_t tsize; /* number of limbs of the sqrtrem remainder */
mp_size_t k;
mp_size_t l;
mpfr_limb_ptr rp, rp0;
mpfr_limb_ptr up;
mpfr_limb_ptr sp;
mp_limb_t sticky0; /* truncated part of input */
mp_limb_t sticky1; /* truncated part of rp[0] */
mp_limb_t sticky;
int odd_exp;
int sh; /* number of extra bits in rp[0] */
int inexact; /* return ternary flag */
mpfr_exp_t expr;
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (u), mpfr_log_prec, u, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (r), mpfr_log_prec, r, inexact));
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(u)))
{
if (MPFR_IS_NAN(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
else if (MPFR_IS_ZERO(u))
{
/* 0+ or 0- */
MPFR_SET_SAME_SIGN(r, u);
MPFR_SET_ZERO(r);
MPFR_RET(0); /* zero is exact */
}
else
{
MPFR_ASSERTD(MPFR_IS_INF(u));
/* sqrt(-Inf) = NAN */
if (MPFR_IS_NEG(u))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
MPFR_SET_POS(r);
MPFR_SET_INF(r);
MPFR_RET(0);
}
}
if (MPFR_UNLIKELY(MPFR_IS_NEG(u)))
{
MPFR_SET_NAN(r);
MPFR_RET_NAN;
}
MPFR_SET_POS(r);
MPFR_TMP_MARK (marker);
MPFR_UNSIGNED_MINUS_MODULO(sh,MPFR_PREC(r));
if (sh == 0 && rnd_mode == MPFR_RNDN)
sh = GMP_NUMB_BITS; /* ugly case */
rsize = MPFR_LIMB_SIZE(r) + (sh == GMP_NUMB_BITS);
/* rsize is the number of limbs of r + 1 if exact limb multiple and rounding
to nearest, this is the number of wanted limbs for the square root */
rrsize = rsize + rsize;
usize = MPFR_LIMB_SIZE(u); /* number of limbs of u */
rp0 = MPFR_MANT(r);
rp = (sh < GMP_NUMB_BITS) ? rp0 : MPFR_TMP_LIMBS_ALLOC (rsize);
up = MPFR_MANT(u);
sticky0 = MPFR_LIMB_ZERO; /* truncated part of input */
sticky1 = MPFR_LIMB_ZERO; /* truncated part of rp[0] */
odd_exp = (unsigned int) MPFR_GET_EXP (u) & 1;
inexact = -1; /* return ternary flag */
sp = MPFR_TMP_LIMBS_ALLOC (rrsize);
/* copy the most significant limbs of u to {sp, rrsize} */
if (MPFR_LIKELY(usize <= rrsize)) /* in case r and u have the same precision,
we have indeed rrsize = 2 * usize */
{
k = rrsize - usize;
if (MPFR_LIKELY(k))
MPN_ZERO (sp, k);
if (odd_exp)
{
if (MPFR_LIKELY(k))
sp[k - 1] = mpn_rshift (sp + k, up, usize, 1);
else
sticky0 = mpn_rshift (sp, up, usize, 1);
}
else
MPN_COPY (sp + rrsize - usize, up, usize);
}
else /* usize > rrsize: truncate the input */
{
k = usize - rrsize;
//.........这里部分代码省略.........
示例5: mpfr_asin
int
mpfr_asin (mpfr_ptr asin, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t xp;
int compared, inexact;
mpfr_prec_t prec;
mpfr_exp_t xp_exp;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_LOG_FUNC (
("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (x), mpfr_log_prec, x, rnd_mode),
("asin[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (asin), mpfr_log_prec, asin,
inexact));
/* Special cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x) || MPFR_IS_INF (x))
{
MPFR_SET_NAN (asin);
MPFR_RET_NAN;
}
else /* x = 0 */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_ZERO (asin);
MPFR_SET_SAME_SIGN (asin, x);
MPFR_RET (0); /* exact result */
}
}
/* asin(x) = x + x^3/6 + ... so the error is < 2^(3*EXP(x)-2) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (asin, x, -2 * MPFR_GET_EXP (x), 2, 1,
rnd_mode, {});
/* Set x_p=|x| (x is a normal number) */
mpfr_init2 (xp, MPFR_PREC (x));
inexact = mpfr_abs (xp, x, MPFR_RNDN);
MPFR_ASSERTD (inexact == 0);
compared = mpfr_cmp_ui (xp, 1);
MPFR_SAVE_EXPO_MARK (expo);
if (MPFR_UNLIKELY (compared >= 0))
{
mpfr_clear (xp);
if (compared > 0) /* asin(x) = NaN for |x| > 1 */
{
MPFR_SAVE_EXPO_FREE (expo);
MPFR_SET_NAN (asin);
MPFR_RET_NAN;
}
else /* x = 1 or x = -1 */
{
if (MPFR_IS_POS (x)) /* asin(+1) = Pi/2 */
inexact = mpfr_const_pi (asin, rnd_mode);
else /* asin(-1) = -Pi/2 */
{
inexact = -mpfr_const_pi (asin, MPFR_INVERT_RND(rnd_mode));
MPFR_CHANGE_SIGN (asin);
}
mpfr_div_2ui (asin, asin, 1, rnd_mode);
}
}
else
{
/* Compute exponent of 1 - ABS(x) */
mpfr_ui_sub (xp, 1, xp, MPFR_RNDD);
MPFR_ASSERTD (MPFR_GET_EXP (xp) <= 0);
MPFR_ASSERTD (MPFR_GET_EXP (x) <= 0);
xp_exp = 2 - MPFR_GET_EXP (xp);
/* Set up initial prec */
prec = MPFR_PREC (asin) + 10 + xp_exp;
/* use asin(x) = atan(x/sqrt(1-x^2)) */
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
mpfr_set_prec (xp, prec);
mpfr_sqr (xp, x, MPFR_RNDN);
mpfr_ui_sub (xp, 1, xp, MPFR_RNDN);
mpfr_sqrt (xp, xp, MPFR_RNDN);
mpfr_div (xp, x, xp, MPFR_RNDN);
mpfr_atan (xp, xp, MPFR_RNDN);
if (MPFR_LIKELY (MPFR_CAN_ROUND (xp, prec - xp_exp,
MPFR_PREC (asin), rnd_mode)))
break;
MPFR_ZIV_NEXT (loop, prec);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (asin, xp, rnd_mode);
mpfr_clear (xp);
}
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (asin, inexact, rnd_mode);
//.........这里部分代码省略.........
示例6: mpfr_pow_si
int
mpfr_pow_si (mpfr_ptr y, mpfr_srcptr x, long int n, mpfr_rnd_t rnd)
{
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg n=%ld rnd=%d",
mpfr_get_prec (x), mpfr_log_prec, x, n, rnd),
("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
if (n >= 0)
return mpfr_pow_ui (y, x, n, rnd);
else
{
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (x)))
{
if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else
{
int positive = MPFR_IS_POS (x) || ((unsigned long) n & 1) == 0;
if (MPFR_IS_INF (x))
MPFR_SET_ZERO (y);
else /* x is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (x));
MPFR_SET_INF (y);
mpfr_set_divby0 ();
}
if (positive)
MPFR_SET_POS (y);
else
MPFR_SET_NEG (y);
MPFR_RET (0);
}
}
/* detect exact powers: x^(-n) is exact iff x is a power of 2 */
if (mpfr_cmp_si_2exp (x, MPFR_SIGN(x), MPFR_EXP(x) - 1) == 0)
{
mpfr_exp_t expx = MPFR_EXP (x) - 1, expy;
MPFR_ASSERTD (n < 0);
/* Warning: n * expx may overflow!
*
* Some systems (apparently alpha-freebsd) abort with
* LONG_MIN / 1, and LONG_MIN / -1 is undefined.
* http://www.freebsd.org/cgi/query-pr.cgi?pr=72024
*
* Proof of the overflow checking. The expressions below are
* assumed to be on the rational numbers, but the word "overflow"
* still has its own meaning in the C context. / still denotes
* the integer (truncated) division, and // denotes the exact
* division.
* - First, (__gmpfr_emin - 1) / n and (__gmpfr_emax - 1) / n
* cannot overflow due to the constraints on the exponents of
* MPFR numbers.
* - If n = -1, then n * expx = - expx, which is representable
* because of the constraints on the exponents of MPFR numbers.
* - If expx = 0, then n * expx = 0, which is representable.
* - If n < -1 and expx > 0:
* + If expx > (__gmpfr_emin - 1) / n, then
* expx >= (__gmpfr_emin - 1) / n + 1
* > (__gmpfr_emin - 1) // n,
* and
* n * expx < __gmpfr_emin - 1,
* i.e.
* n * expx <= __gmpfr_emin - 2.
* This corresponds to an underflow, with a null result in
* the rounding-to-nearest mode.
* + If expx <= (__gmpfr_emin - 1) / n, then n * expx cannot
* overflow since 0 < expx <= (__gmpfr_emin - 1) / n and
* 0 > n * expx >= n * ((__gmpfr_emin - 1) / n)
* >= __gmpfr_emin - 1.
* - If n < -1 and expx < 0:
* + If expx < (__gmpfr_emax - 1) / n, then
* expx <= (__gmpfr_emax - 1) / n - 1
* < (__gmpfr_emax - 1) // n,
* and
* n * expx > __gmpfr_emax - 1,
* i.e.
* n * expx >= __gmpfr_emax.
* This corresponds to an overflow (2^(n * expx) has an
* exponent > __gmpfr_emax).
* + If expx >= (__gmpfr_emax - 1) / n, then n * expx cannot
* overflow since 0 > expx >= (__gmpfr_emax - 1) / n and
* 0 < n * expx <= n * ((__gmpfr_emax - 1) / n)
* <= __gmpfr_emax - 1.
* Note: one could use expx bounds based on MPFR_EXP_MIN and
* MPFR_EXP_MAX instead of __gmpfr_emin and __gmpfr_emax. The
* current bounds do not lead to noticeably slower code and
* allow us to avoid a bug in Sun's compiler for Solaris/x86
* (when optimizations are enabled); known affected versions:
* cc: Sun C 5.8 2005/10/13
* cc: Sun C 5.8 Patch 121016-02 2006/03/31
* cc: Sun C 5.8 Patch 121016-04 2006/10/18
*/
expy =
n != -1 && expx > 0 && expx > (__gmpfr_emin - 1) / n ?
MPFR_EMIN_MIN - 2 /* Underflow */ :
//.........这里部分代码省略.........
示例7: mpfr_log2
int
mpfr_log2 (mpfr_ptr r, mpfr_srcptr a, mp_rnd_t rnd_mode)
{
int inexact;
MPFR_SAVE_EXPO_DECL (expo);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
{
/* If a is NaN, the result is NaN */
if (MPFR_IS_NAN (a))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* check for infinity before zero */
else if (MPFR_IS_INF (a))
{
if (MPFR_IS_NEG (a))
/* log(-Inf) = NaN */
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
else /* log(+Inf) = +Inf */
{
MPFR_SET_INF (r);
MPFR_SET_POS (r);
MPFR_RET (0);
}
}
else /* a is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (a));
MPFR_SET_INF (r);
MPFR_SET_NEG (r);
MPFR_RET (0); /* log2(0) is an exact -infinity */
}
}
/* If a is negative, the result is NaN */
if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* If a is 1, the result is 0 */
if (MPFR_UNLIKELY (mpfr_cmp_ui (a, 1) == 0))
{
MPFR_SET_ZERO (r);
MPFR_SET_POS (r);
MPFR_RET (0); /* only "normal" case where the result is exact */
}
/* If a is 2^N, log2(a) is exact*/
if (MPFR_UNLIKELY (mpfr_cmp_ui_2exp (a, 1, MPFR_GET_EXP (a) - 1) == 0))
return mpfr_set_si(r, MPFR_GET_EXP (a) - 1, rnd_mode);
MPFR_SAVE_EXPO_MARK (expo);
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t, tt;
/* Declaration of the size variable */
mp_prec_t Ny = MPFR_PREC(r); /* target precision */
mp_prec_t Nt; /* working precision */
mp_exp_t err; /* error */
MPFR_ZIV_DECL (loop);
/* compute the precision of intermediary variable */
/* the optimal number of bits : see algorithms.tex */
Nt = Ny + 3 + MPFR_INT_CEIL_LOG2 (Ny);
/* initialise of intermediary variable */
mpfr_init2 (t, Nt);
mpfr_init2 (tt, Nt);
/* First computation of log2 */
MPFR_ZIV_INIT (loop, Nt);
for (;;)
{
/* compute log2 */
mpfr_const_log2(t,GMP_RNDD); /* log(2) */
mpfr_log(tt,a,GMP_RNDN); /* log(a) */
mpfr_div(t,tt,t,GMP_RNDN); /* log(a)/log(2) */
/* estimation of the error */
err = Nt-3;
if (MPFR_LIKELY (MPFR_CAN_ROUND (t, err, Ny, rnd_mode)))
break;
/* actualisation of the precision */
MPFR_ZIV_NEXT (loop, Nt);
mpfr_set_prec (t, Nt);
mpfr_set_prec (tt, Nt);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (r, t, rnd_mode);
//.........这里部分代码省略.........
示例8: mpfr_sub
int
mpfr_sub (mpfr_ptr a, mpfr_srcptr b, mpfr_srcptr c, mp_rnd_t rnd_mode)
{
MPFR_LOG_FUNC (("b[%#R]=%R c[%#R]=%R rnd=%d", b, b, c, c, rnd_mode),
("a[%#R]=%R", a, a));
if (MPFR_ARE_SINGULAR (b,c))
{
if (MPFR_IS_NAN (b) || MPFR_IS_NAN (c))
{
MPFR_SET_NAN (a);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (b))
{
if (!MPFR_IS_INF (c) || MPFR_SIGN (b) != MPFR_SIGN(c))
{
MPFR_SET_INF (a);
MPFR_SET_SAME_SIGN (a, b);
MPFR_RET (0); /* exact */
}
else
{
MPFR_SET_NAN (a); /* Inf - Inf */
MPFR_RET_NAN;
}
}
else if (MPFR_IS_INF (c))
{
MPFR_SET_INF (a);
MPFR_SET_OPPOSITE_SIGN (a, c);
MPFR_RET (0); /* exact */
}
else if (MPFR_IS_ZERO (b))
{
if (MPFR_IS_ZERO (c))
{
int sign = rnd_mode != GMP_RNDD
? ((MPFR_IS_NEG(b) && MPFR_IS_POS(c)) ? -1 : 1)
: ((MPFR_IS_POS(b) && MPFR_IS_NEG(c)) ? 1 : -1);
MPFR_SET_SIGN (a, sign);
MPFR_SET_ZERO (a);
MPFR_RET(0); /* 0 - 0 is exact */
}
else
return mpfr_neg (a, c, rnd_mode);
}
else
{
MPFR_ASSERTD (MPFR_IS_ZERO (c));
return mpfr_set (a, b, rnd_mode);
}
}
MPFR_CLEAR_FLAGS (a);
MPFR_ASSERTD (MPFR_IS_PURE_FP (b) && MPFR_IS_PURE_FP (c));
if (MPFR_LIKELY (MPFR_SIGN (b) == MPFR_SIGN (c)))
{ /* signs are equal, it's a real subtraction */
if (MPFR_LIKELY (MPFR_PREC (a) == MPFR_PREC (b)
&& MPFR_PREC (b) == MPFR_PREC (c)))
return mpfr_sub1sp (a, b, c, rnd_mode);
else
return mpfr_sub1 (a, b, c, rnd_mode);
}
else
{ /* signs differ, it's an addition */
if (MPFR_GET_EXP (b) < MPFR_GET_EXP (c))
{ /* exchange rounding modes toward +/- infinity */
int inexact;
rnd_mode = MPFR_INVERT_RND (rnd_mode);
if (MPFR_LIKELY (MPFR_PREC (a) == MPFR_PREC (b)
&& MPFR_PREC (b) == MPFR_PREC (c)))
inexact = mpfr_add1sp (a, c, b, rnd_mode);
else
inexact = mpfr_add1 (a, c, b, rnd_mode);
MPFR_CHANGE_SIGN (a);
return -inexact;
}
else
{
if (MPFR_LIKELY (MPFR_PREC (a) == MPFR_PREC (b)
&& MPFR_PREC (b) == MPFR_PREC (c)))
return mpfr_add1sp (a, b, c, rnd_mode);
else
return mpfr_add1 (a, b, c, rnd_mode);
}
}
}
示例9: mpfr_tanh
int
mpfr_tanh (mpfr_ptr y, mpfr_srcptr xt , mpfr_rnd_t rnd_mode)
{
/****** Declaration ******/
mpfr_t x;
int inexact;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("x[%#R]=%R rnd=%d", xt, xt, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
/* Special value checking */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (xt)))
{
if (MPFR_IS_NAN (xt))
{
MPFR_SET_NAN (y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (xt))
{
/* tanh(inf) = 1 && tanh(-inf) = -1 */
return mpfr_set_si (y, MPFR_INT_SIGN (xt), rnd_mode);
}
else /* tanh (0) = 0 and xt is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO(xt));
MPFR_SET_ZERO (y);
MPFR_SET_SAME_SIGN (y, xt);
MPFR_RET (0);
}
}
/* tanh(x) = x - x^3/3 + ... so the error is < 2^(3*EXP(x)-1) */
MPFR_FAST_COMPUTE_IF_SMALL_INPUT (y, xt, -2 * MPFR_GET_EXP (xt), 1, 0,
rnd_mode, {});
MPFR_TMP_INIT_ABS (x, xt);
MPFR_SAVE_EXPO_MARK (expo);
/* General case */
{
/* Declaration of the intermediary variable */
mpfr_t t, te;
mpfr_exp_t d;
/* Declaration of the size variable */
mpfr_prec_t Ny = MPFR_PREC(y); /* target precision */
mpfr_prec_t Nt; /* working precision */
long int err; /* error */
int sign = MPFR_SIGN (xt);
MPFR_ZIV_DECL (loop);
MPFR_GROUP_DECL (group);
/* First check for BIG overflow of exp(2*x):
For x > 0, exp(2*x) > 2^(2*x)
If 2 ^(2*x) > 2^emax or x>emax/2, there is an overflow */
if (MPFR_UNLIKELY (mpfr_cmp_si (x, __gmpfr_emax/2) >= 0)) {
/* initialise of intermediary variables
since 'set_one' label assumes the variables have been
initialize */
MPFR_GROUP_INIT_2 (group, MPFR_PREC_MIN, t, te);
goto set_one;
}
/* Compute the precision of intermediary variable */
/* The optimal number of bits: see algorithms.tex */
Nt = Ny + MPFR_INT_CEIL_LOG2 (Ny) + 4;
/* if x is small, there will be a cancellation in exp(2x)-1 */
if (MPFR_GET_EXP (x) < 0)
Nt += -MPFR_GET_EXP (x);
/* initialise of intermediary variable */
MPFR_GROUP_INIT_2 (group, Nt, t, te);
MPFR_ZIV_INIT (loop, Nt);
for (;;) {
/* tanh = (exp(2x)-1)/(exp(2x)+1) */
mpfr_mul_2ui (te, x, 1, MPFR_RNDN); /* 2x */
/* since x > 0, we can only have an overflow */
mpfr_exp (te, te, MPFR_RNDN); /* exp(2x) */
if (MPFR_UNLIKELY (MPFR_IS_INF (te))) {
set_one:
inexact = MPFR_FROM_SIGN_TO_INT (sign);
mpfr_set4 (y, __gmpfr_one, MPFR_RNDN, sign);
if (MPFR_IS_LIKE_RNDZ (rnd_mode, MPFR_IS_NEG_SIGN (sign)))
{
inexact = -inexact;
mpfr_nexttozero (y);
}
break;
}
d = MPFR_GET_EXP (te); /* For Error calculation */
mpfr_add_ui (t, te, 1, MPFR_RNDD); /* exp(2x) + 1*/
mpfr_sub_ui (te, te, 1, MPFR_RNDU); /* exp(2x) - 1*/
d = d - MPFR_GET_EXP (te);
mpfr_div (t, te, t, MPFR_RNDN); /* (exp(2x)-1)/(exp(2x)+1)*/
/* Calculation of the error */
//.........这里部分代码省略.........
示例10: exp
/* The computation of z = pow(x,y) is done by
z = exp(y * log(x)) = x^y
For the special cases, see Section F.9.4.4 of the C standard:
_ pow(±0, y) = ±inf for y an odd integer < 0.
_ pow(±0, y) = +inf for y < 0 and not an odd integer.
_ pow(±0, y) = ±0 for y an odd integer > 0.
_ pow(±0, y) = +0 for y > 0 and not an odd integer.
_ pow(-1, ±inf) = 1.
_ pow(+1, y) = 1 for any y, even a NaN.
_ pow(x, ±0) = 1 for any x, even a NaN.
_ pow(x, y) = NaN for finite x < 0 and finite non-integer y.
_ pow(x, -inf) = +inf for |x| < 1.
_ pow(x, -inf) = +0 for |x| > 1.
_ pow(x, +inf) = +0 for |x| < 1.
_ pow(x, +inf) = +inf for |x| > 1.
_ pow(-inf, y) = -0 for y an odd integer < 0.
_ pow(-inf, y) = +0 for y < 0 and not an odd integer.
_ pow(-inf, y) = -inf for y an odd integer > 0.
_ pow(-inf, y) = +inf for y > 0 and not an odd integer.
_ pow(+inf, y) = +0 for y < 0.
_ pow(+inf, y) = +inf for y > 0. */
int
mpfr_pow (mpfr_ptr z, mpfr_srcptr x, mpfr_srcptr y, mpfr_rnd_t rnd_mode)
{
int inexact;
int cmp_x_1;
int y_is_integer;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg y[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (x), mpfr_log_prec, x,
mpfr_get_prec (y), mpfr_log_prec, y, rnd_mode),
("z[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (z), mpfr_log_prec, z, inexact));
if (MPFR_ARE_SINGULAR (x, y))
{
/* pow(x, 0) returns 1 for any x, even a NaN. */
if (MPFR_UNLIKELY (MPFR_IS_ZERO (y)))
return mpfr_set_ui (z, 1, rnd_mode);
else if (MPFR_IS_NAN (x))
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_NAN (y))
{
/* pow(+1, NaN) returns 1. */
if (mpfr_cmp_ui (x, 1) == 0)
return mpfr_set_ui (z, 1, rnd_mode);
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (y))
{
if (MPFR_IS_INF (x))
{
if (MPFR_IS_POS (y))
MPFR_SET_INF (z);
else
MPFR_SET_ZERO (z);
MPFR_SET_POS (z);
MPFR_RET (0);
}
else
{
int cmp;
cmp = mpfr_cmpabs (x, __gmpfr_one) * MPFR_INT_SIGN (y);
MPFR_SET_POS (z);
if (cmp > 0)
{
/* Return +inf. */
MPFR_SET_INF (z);
MPFR_RET (0);
}
else if (cmp < 0)
{
/* Return +0. */
MPFR_SET_ZERO (z);
MPFR_RET (0);
}
else
{
/* Return 1. */
return mpfr_set_ui (z, 1, rnd_mode);
}
}
}
else if (MPFR_IS_INF (x))
{
int negative;
/* Determine the sign now, in case y and z are the same object */
negative = MPFR_IS_NEG (x) && is_odd (y);
if (MPFR_IS_POS (y))
MPFR_SET_INF (z);
else
MPFR_SET_ZERO (z);
if (negative)
MPFR_SET_NEG (z);
//.........这里部分代码省略.........
示例11: mpfr_zeta
int
mpfr_zeta (mpfr_t z, mpfr_srcptr s, mp_rnd_t rnd_mode)
{
mpfr_t z_pre, s1, y, p;
double sd, eps, m1, c;
long add;
mp_prec_t precz, prec1, precs, precs1;
int inex;
MPFR_GROUP_DECL (group);
MPFR_ZIV_DECL (loop);
MPFR_SAVE_EXPO_DECL (expo);
MPFR_LOG_FUNC (("s[%#R]=%R rnd=%d", s, s, rnd_mode),
("z[%#R]=%R inexact=%d", z, z, inex));
/* Zero, Nan or Inf ? */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (s)))
{
if (MPFR_IS_NAN (s))
{
MPFR_SET_NAN (z);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF (s))
{
if (MPFR_IS_POS (s))
return mpfr_set_ui (z, 1, GMP_RNDN); /* Zeta(+Inf) = 1 */
MPFR_SET_NAN (z); /* Zeta(-Inf) = NaN */
MPFR_RET_NAN;
}
else /* s iz zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (s));
mpfr_set_ui (z, 1, rnd_mode);
mpfr_div_2ui (z, z, 1, rnd_mode);
MPFR_CHANGE_SIGN (z);
MPFR_RET (0);
}
}
/* s is neither Nan, nor Inf, nor Zero */
/* check tiny s: we have zeta(s) = -1/2 - 1/2 log(2 Pi) s + ... around s=0,
and for |s| <= 0.074, we have |zeta(s) + 1/2| <= |s|.
Thus if |s| <= 1/4*ulp(1/2), we can deduce the correct rounding
(the 1/4 covers the case where |zeta(s)| < 1/2 and rounding to nearest).
A sufficient condition is that EXP(s) + 1 < -PREC(z). */
if (MPFR_EXP(s) + 1 < - (mp_exp_t) MPFR_PREC(z))
{
int signs = MPFR_SIGN(s);
mpfr_set_si_2exp (z, -1, -1, rnd_mode); /* -1/2 */
if ((rnd_mode == GMP_RNDU || rnd_mode == GMP_RNDZ) && signs < 0)
{
mpfr_nextabove (z); /* z = -1/2 + epsilon */
inex = 1;
}
else if (rnd_mode == GMP_RNDD && signs > 0)
{
mpfr_nextbelow (z); /* z = -1/2 - epsilon */
inex = -1;
}
else
{
if (rnd_mode == GMP_RNDU) /* s > 0: z = -1/2 */
inex = 1;
else if (rnd_mode == GMP_RNDD)
inex = -1; /* s < 0: z = -1/2 */
else /* (GMP_RNDZ and s > 0) or GMP_RNDN: z = -1/2 */
inex = (signs > 0) ? 1 : -1;
}
return mpfr_check_range (z, inex, rnd_mode);
}
/* Check for case s= -2n */
if (MPFR_IS_NEG (s))
{
mpfr_t tmp;
tmp[0] = *s;
MPFR_EXP (tmp) = MPFR_EXP (s) - 1;
if (mpfr_integer_p (tmp))
{
MPFR_SET_ZERO (z);
MPFR_SET_POS (z);
MPFR_RET (0);
}
}
MPFR_SAVE_EXPO_MARK (expo);
/* Compute Zeta */
if (MPFR_IS_POS (s) && MPFR_GET_EXP (s) >= 0) /* Case s >= 1/2 */
inex = mpfr_zeta_pos (z, s, rnd_mode);
else /* use reflection formula
zeta(s) = 2^s*Pi^(s-1)*sin(Pi*s/2)*gamma(1-s)*zeta(1-s) */
{
precz = MPFR_PREC (z);
precs = MPFR_PREC (s);
/* Precision precs1 needed to represent 1 - s, and s + 2,
without any truncation */
//.........这里部分代码省略.........
示例12: mpfr_set_q
/* set f to the rational q */
int
mpfr_set_q (mpfr_ptr f, mpq_srcptr q, mpfr_rnd_t rnd)
{
mpz_srcptr num, den;
mpfr_t n, d;
int inexact;
int cn, cd;
long shift;
mp_size_t sn, sd;
MPFR_SAVE_EXPO_DECL (expo);
num = mpq_numref (q);
den = mpq_denref (q);
/* NAN and INF for mpq are not really documented, but could be found */
if (MPFR_UNLIKELY (mpz_sgn (num) == 0))
{
if (MPFR_UNLIKELY (mpz_sgn (den) == 0))
{
MPFR_SET_NAN (f);
MPFR_RET_NAN;
}
else
{
MPFR_SET_ZERO (f);
MPFR_SET_POS (f);
MPFR_RET (0);
}
}
if (MPFR_UNLIKELY (mpz_sgn (den) == 0))
{
MPFR_SET_INF (f);
MPFR_SET_SIGN (f, mpz_sgn (num));
MPFR_RET (0);
}
MPFR_SAVE_EXPO_MARK (expo);
cn = set_z (n, num, &sn);
cd = set_z (d, den, &sd);
sn -= sd;
if (MPFR_UNLIKELY (sn > MPFR_EMAX_MAX / GMP_NUMB_BITS))
{
MPFR_SAVE_EXPO_FREE (expo);
inexact = mpfr_overflow (f, rnd, MPFR_SIGN (f));
goto end;
}
if (MPFR_UNLIKELY (sn < MPFR_EMIN_MIN / GMP_NUMB_BITS -1))
{
MPFR_SAVE_EXPO_FREE (expo);
if (rnd == MPFR_RNDN)
rnd = MPFR_RNDZ;
inexact = mpfr_underflow (f, rnd, MPFR_SIGN (f));
goto end;
}
inexact = mpfr_div (f, n, d, rnd);
shift = GMP_NUMB_BITS*sn+cn-cd;
MPFR_ASSERTD (shift == GMP_NUMB_BITS*sn+cn-cd);
cd = mpfr_mul_2si (f, f, shift, rnd);
MPFR_SAVE_EXPO_FREE (expo);
if (MPFR_UNLIKELY (cd != 0))
inexact = cd;
else
inexact = mpfr_check_range (f, inexact, rnd);
end:
mpfr_clear (d);
mpfr_clear (n);
MPFR_RET (inexact);
}
示例13: mpfr_modf
/* Set iop to the integral part of op and fop to its fractional part */
int
mpfr_modf (mpfr_ptr iop, mpfr_ptr fop, mpfr_srcptr op, mpfr_rnd_t rnd_mode)
{
mpfr_exp_t ope;
mpfr_prec_t opq;
int inexi, inexf;
MPFR_LOG_FUNC
(("op[%Pu]=%.*Rg rnd=%d",
mpfr_get_prec (op), mpfr_log_prec, op, rnd_mode),
("iop[%Pu]=%.*Rg fop[%Pu]=%.*Rg",
mpfr_get_prec (iop), mpfr_log_prec, iop,
mpfr_get_prec (fop), mpfr_log_prec, fop));
MPFR_ASSERTN (iop != fop);
if ( MPFR_UNLIKELY (MPFR_IS_SINGULAR (op)) )
{
if (MPFR_IS_NAN (op))
{
MPFR_SET_NAN (iop);
MPFR_SET_NAN (fop);
MPFR_RET_NAN;
}
MPFR_SET_SAME_SIGN (iop, op);
MPFR_SET_SAME_SIGN (fop, op);
if (MPFR_IS_INF (op))
{
MPFR_SET_INF (iop);
MPFR_SET_ZERO (fop);
MPFR_RET (0);
}
else /* op is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (op));
MPFR_SET_ZERO (iop);
MPFR_SET_ZERO (fop);
MPFR_RET (0);
}
}
ope = MPFR_GET_EXP (op);
opq = MPFR_PREC (op);
if (ope <= 0) /* 0 < |op| < 1 */
{
inexf = (fop != op) ? mpfr_set (fop, op, rnd_mode) : 0;
MPFR_SET_SAME_SIGN (iop, op);
MPFR_SET_ZERO (iop);
MPFR_RET (INEX(0, inexf));
}
else if (ope >= opq) /* op has no fractional part */
{
inexi = (iop != op) ? mpfr_set (iop, op, rnd_mode) : 0;
MPFR_SET_SAME_SIGN (fop, op);
MPFR_SET_ZERO (fop);
MPFR_RET (INEX(inexi, 0));
}
else /* op has both integral and fractional parts */
{
if (iop != op)
{
inexi = mpfr_rint_trunc (iop, op, rnd_mode);
inexf = mpfr_frac (fop, op, rnd_mode);
}
else
{
MPFR_ASSERTN (fop != op);
inexf = mpfr_frac (fop, op, rnd_mode);
inexi = mpfr_rint_trunc (iop, op, rnd_mode);
}
MPFR_RET (INEX(inexi, inexf));
}
}
示例14: mpfr_ui_div
int
mpfr_ui_div (mpfr_ptr y, unsigned long int u, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
MPFR_LOG_FUNC
(("u=%lu x[%Pu]=%.*Rg rnd=%d",
u, mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y));
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x)) /* u/Inf = 0 */
{
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN(y,x);
MPFR_RET(0);
}
else /* u / 0 */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
if (u)
{
/* u > 0, so y = sign(x) * Inf */
MPFR_SET_SAME_SIGN(y, x);
MPFR_SET_INF(y);
MPFR_SET_DIVBY0 ();
MPFR_RET(0);
}
else
{
/* 0 / 0 */
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
}
}
else if (MPFR_LIKELY(u != 0))
{
mpfr_t uu;
mp_limb_t up[1];
int cnt;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_TMP_INIT1(up, uu, GMP_NUMB_BITS);
MPFR_ASSERTN(u == (mp_limb_t) u);
count_leading_zeros(cnt, (mp_limb_t) u);
up[0] = (mp_limb_t) u << cnt;
/* Optimization note: Exponent save/restore operations may be
removed if mpfr_div works even when uu is out-of-range. */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_SET_EXP (uu, GMP_NUMB_BITS - cnt);
inex = mpfr_div (y, uu, x, rnd_mode);
MPFR_SAVE_EXPO_UPDATE_FLAGS (expo, __gmpfr_flags);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd_mode);
}
else /* u = 0, and x != 0 */
{
MPFR_SET_ZERO(y); /* if u=0, then set y to 0 */
MPFR_SET_SAME_SIGN(y, x); /* u considered as +0: sign(+0/x) = sign(x) */
MPFR_RET(0);
}
}
示例15: mpfr_log
int
mpfr_log (mpfr_ptr r, mpfr_srcptr a, mpfr_rnd_t rnd_mode)
{
int inexact;
mpfr_prec_t p, q;
mpfr_t tmp1, tmp2;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_ZIV_DECL (loop);
MPFR_GROUP_DECL(group);
MPFR_LOG_FUNC
(("a[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (a), mpfr_log_prec, a, rnd_mode),
("r[%Pu]=%.*Rg inexact=%d", mpfr_get_prec (r), mpfr_log_prec, r,
inexact));
/* Special cases */
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (a)))
{
/* If a is NaN, the result is NaN */
if (MPFR_IS_NAN (a))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* check for infinity before zero */
else if (MPFR_IS_INF (a))
{
if (MPFR_IS_NEG (a))
/* log(-Inf) = NaN */
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
else /* log(+Inf) = +Inf */
{
MPFR_SET_INF (r);
MPFR_SET_POS (r);
MPFR_RET (0);
}
}
else /* a is zero */
{
MPFR_ASSERTD (MPFR_IS_ZERO (a));
MPFR_SET_INF (r);
MPFR_SET_NEG (r);
mpfr_set_divby0 ();
MPFR_RET (0); /* log(0) is an exact -infinity */
}
}
/* If a is negative, the result is NaN */
else if (MPFR_UNLIKELY (MPFR_IS_NEG (a)))
{
MPFR_SET_NAN (r);
MPFR_RET_NAN;
}
/* If a is 1, the result is 0 */
else if (MPFR_UNLIKELY (MPFR_GET_EXP (a) == 1 && mpfr_cmp_ui (a, 1) == 0))
{
MPFR_SET_ZERO (r);
MPFR_SET_POS (r);
MPFR_RET (0); /* only "normal" case where the result is exact */
}
q = MPFR_PREC (r);
/* use initial precision about q+lg(q)+5 */
p = q + 5 + 2 * MPFR_INT_CEIL_LOG2 (q);
/* % ~(mpfr_prec_t)GMP_NUMB_BITS ;
m=q; while (m) { p++; m >>= 1; } */
/* if (MPFR_LIKELY(p % GMP_NUMB_BITS != 0))
p += GMP_NUMB_BITS - (p%GMP_NUMB_BITS); */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_GROUP_INIT_2 (group, p, tmp1, tmp2);
MPFR_ZIV_INIT (loop, p);
for (;;)
{
long m;
mpfr_exp_t cancel;
/* Calculus of m (depends on p) */
m = (p + 1) / 2 - MPFR_GET_EXP (a) + 1;
mpfr_mul_2si (tmp2, a, m, MPFR_RNDN); /* s=a*2^m, err<=1 ulp */
mpfr_div (tmp1, __gmpfr_four, tmp2, MPFR_RNDN);/* 4/s, err<=2 ulps */
mpfr_agm (tmp2, __gmpfr_one, tmp1, MPFR_RNDN); /* AG(1,4/s),err<=3 ulps */
mpfr_mul_2ui (tmp2, tmp2, 1, MPFR_RNDN); /* 2*AG(1,4/s), err<=3 ulps */
mpfr_const_pi (tmp1, MPFR_RNDN); /* compute pi, err<=1ulp */
mpfr_div (tmp2, tmp1, tmp2, MPFR_RNDN); /* pi/2*AG(1,4/s), err<=5ulps */
mpfr_const_log2 (tmp1, MPFR_RNDN); /* compute log(2), err<=1ulp */
mpfr_mul_si (tmp1, tmp1, m, MPFR_RNDN); /* compute m*log(2),err<=2ulps */
mpfr_sub (tmp1, tmp2, tmp1, MPFR_RNDN); /* log(a), err<=7ulps+cancel */
if (MPFR_LIKELY (MPFR_IS_PURE_FP (tmp1) && MPFR_IS_PURE_FP (tmp2)))
{
cancel = MPFR_GET_EXP (tmp2) - MPFR_GET_EXP (tmp1);
MPFR_LOG_MSG (("canceled bits=%ld\n", (long) cancel));
MPFR_LOG_VAR (tmp1);
if (MPFR_UNLIKELY (cancel < 0))
//.........这里部分代码省略.........