本文整理汇总了C++中MPFR_LIKELY函数的典型用法代码示例。如果您正苦于以下问题:C++ MPFR_LIKELY函数的具体用法?C++ MPFR_LIKELY怎么用?C++ MPFR_LIKELY使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了MPFR_LIKELY函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: mpfr_urandomb
int
mpfr_urandomb (mpfr_ptr rop, gmp_randstate_t rstate)
{
mp_ptr rp;
mp_prec_t nbits;
mp_size_t nlimbs;
mp_size_t k; /* number of high zero limbs */
mp_exp_t exp;
int cnt;
MPFR_CLEAR_FLAGS (rop);
rp = MPFR_MANT (rop);
nbits = MPFR_PREC (rop);
nlimbs = MPFR_LIMB_SIZE (rop);
MPFR_SET_POS (rop);
/* Uniform non-normalized significand */
_gmp_rand (rp, rstate, nlimbs * BITS_PER_MP_LIMB);
/* If nbits isn't a multiple of BITS_PER_MP_LIMB, mask the low bits */
cnt = nlimbs * BITS_PER_MP_LIMB - nbits;
if (MPFR_LIKELY (cnt != 0))
rp[0] &= ~MPFR_LIMB_MASK (cnt);
/* Count the null significant limbs and remaining limbs */
exp = 0;
k = 0;
while (nlimbs != 0 && rp[nlimbs - 1] == 0)
{
k ++;
nlimbs --;
exp -= BITS_PER_MP_LIMB;
}
if (MPFR_LIKELY (nlimbs != 0)) /* otherwise value is zero */
{
count_leading_zeros (cnt, rp[nlimbs - 1]);
/* Normalization */
if (mpfr_set_exp (rop, exp - cnt))
{
/* If the exponent is not in the current exponent range, we
choose to return a NaN as this is probably a user error.
Indeed this can happen only if the exponent range has been
reduced to a very small interval and/or the precision is
huge (very unlikely). */
MPFR_SET_NAN (rop);
__gmpfr_flags |= MPFR_FLAGS_NAN; /* Can't use MPFR_RET_NAN */
return 1;
}
if (cnt != 0)
mpn_lshift (rp + k, rp, nlimbs, cnt);
if (k != 0)
MPN_ZERO (rp, k);
}
else
MPFR_SET_ZERO (rop);
return 0;
}
示例2: mpfr_urandomb
int
mpfr_urandomb (mpfr_ptr rop, gmp_randstate_t rstate)
{
mpfr_limb_ptr rp;
mpfr_prec_t nbits;
mp_size_t nlimbs;
mp_size_t k; /* number of high zero limbs */
mpfr_exp_t exp;
int cnt;
rp = MPFR_MANT (rop);
nbits = MPFR_PREC (rop);
nlimbs = MPFR_LIMB_SIZE (rop);
MPFR_SET_POS (rop);
cnt = nlimbs * GMP_NUMB_BITS - nbits;
/* Uniform non-normalized significand */
/* generate exactly nbits so that the random generator stays in the same
state, independent of the machine word size GMP_NUMB_BITS */
mpfr_rand_raw (rp, rstate, nbits);
if (MPFR_LIKELY (cnt != 0)) /* this will put the low bits to zero */
mpn_lshift (rp, rp, nlimbs, cnt);
/* Count the null significant limbs and remaining limbs */
exp = 0;
k = 0;
while (nlimbs != 0 && rp[nlimbs - 1] == 0)
{
k ++;
nlimbs --;
exp -= GMP_NUMB_BITS;
}
if (MPFR_LIKELY (nlimbs != 0)) /* otherwise value is zero */
{
count_leading_zeros (cnt, rp[nlimbs - 1]);
/* Normalization */
if (mpfr_set_exp (rop, exp - cnt))
{
/* If the exponent is not in the current exponent range, we
choose to return a NaN as this is probably a user error.
Indeed this can happen only if the exponent range has been
reduced to a very small interval and/or the precision is
huge (very unlikely). */
MPFR_SET_NAN (rop);
__gmpfr_flags |= MPFR_FLAGS_NAN; /* Can't use MPFR_RET_NAN */
return 1;
}
if (cnt != 0)
mpn_lshift (rp + k, rp, nlimbs, cnt);
if (k != 0)
MPN_ZERO (rp, k);
}
else
MPFR_SET_ZERO (rop);
return 0;
}
示例3: mpfr_add_ui
int
mpfr_add_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mpfr_rnd_t rnd_mode)
{
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg u=%lu rnd=%d",
mpfr_get_prec(x), mpfr_log_prec, x, u, rnd_mode),
("y[%Pu]=%.*Rg", mpfr_get_prec (y), mpfr_log_prec, y));
if (MPFR_LIKELY(u != 0) ) /* if u=0, do nothing */
{
mpfr_t uu;
mp_limb_t up[1];
unsigned long cnt;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_TMP_INIT1 (up, uu, GMP_NUMB_BITS);
MPFR_ASSERTD (u == (mp_limb_t) u);
count_leading_zeros(cnt, (mp_limb_t) u);
up[0] = (mp_limb_t) u << cnt;
/* Optimization note: Exponent save/restore operations may be
removed if mpfr_add works even when uu is out-of-range. */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_SET_EXP (uu, GMP_NUMB_BITS - cnt);
inex = mpfr_add(y, x, uu, rnd_mode);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range(y, inex, rnd_mode);
}
else
/* (unsigned long) 0 is assumed to be a real 0 (unsigned) */
return mpfr_set (y, x, rnd_mode);
}
示例4: mpfr_mpz_init2
MPFR_HOT_FUNCTION_ATTR void
mpfr_mpz_init2 (mpz_t z, mp_bitcnt_t n)
{
/* The condition on n is used below as the argument n will be ignored if
the mpz_t is obtained from the MPFR stack of previously used mpz_t.
Said otherwise, it z is expected to have a large size at the end, then
it is better to allocate this size directly than to get a mpz_t of
small size, with possibly several realloc's on it. But if n satisfies
the condition and is larger than the stacked mpz_t, this may still
yield useless realloc's. This is not ideal. We might consider to use
mpz_init2 with the maximum size in mpfr_mpz_init to solve this issue. */
if (MPFR_LIKELY (n_alloc > 0 && n <= MPFR_POOL_MAX_SIZE * GMP_NUMB_BITS))
{
/* Get a mpz_t from the MPFR stack of previously used mpz_t.
It reduces memory pressure, and it allows to reuse
a mpz_t that should be sufficiently big. */
MPFR_ASSERTD (n_alloc <= numberof (mpz_tab));
memcpy (z, &mpz_tab[--n_alloc], sizeof (mpz_t));
SIZ(z) = 0;
}
else
{
/* Call the real GMP function */
mpz_init2 (z, n);
}
}
示例5: mpfr_round_p
/*
* Assuming {bp, bn} is an approximation of a non-singular number
* with error at most equal to 2^(EXP(b)-err0) (`err0' bits of b are known)
* of direction unknown, check if we can round b toward zero with
* precision prec.
*/
int
mpfr_round_p (mp_limb_t *bp, mp_size_t bn, mpfr_exp_t err0, mpfr_prec_t prec)
{
mpfr_prec_t err;
mp_size_t k, n;
mp_limb_t tmp, mask;
int s;
err = (mpfr_prec_t) bn * GMP_NUMB_BITS;
if (MPFR_UNLIKELY (err0 <= 0 || (mpfr_uexp_t) err0 <= prec || prec >= err))
return 0; /* can't round */
err = MIN (err, (mpfr_uexp_t) err0);
k = prec / GMP_NUMB_BITS;
s = GMP_NUMB_BITS - prec%GMP_NUMB_BITS;
n = err / GMP_NUMB_BITS - k;
MPFR_ASSERTD (n >= 0);
MPFR_ASSERTD (bn > k);
/* Check first limb */
bp += bn-1-k;
tmp = *bp--;
mask = s == GMP_NUMB_BITS ? MP_LIMB_T_MAX : MPFR_LIMB_MASK (s);
tmp &= mask;
if (MPFR_LIKELY (n == 0))
{
/* prec and error are in the same limb */
s = GMP_NUMB_BITS - err % GMP_NUMB_BITS;
MPFR_ASSERTD (s < GMP_NUMB_BITS);
tmp >>= s;
mask >>= s;
return tmp != 0 && tmp != mask;
}
示例6: mpfr_div_2si
int
mpfr_div_2si (mpfr_ptr y, mpfr_srcptr x, long int n, mp_rnd_t rnd_mode)
{
int inexact;
MPFR_LOG_FUNC (("x[%#R]=%R n=%ld rnd=%d", x, x, n, rnd_mode),
("y[%#R]=%R inexact=%d", y, y, inexact));
inexact = MPFR_UNLIKELY(y != x) ? mpfr_set (y, x, rnd_mode) : 0;
if (MPFR_LIKELY( MPFR_IS_PURE_FP(y) ))
{
mp_exp_t exp = MPFR_GET_EXP (y);
if (MPFR_UNLIKELY( n > 0 && (__gmpfr_emin > MPFR_EMAX_MAX - n ||
exp < __gmpfr_emin + n)) )
{
if (rnd_mode == GMP_RNDN &&
(__gmpfr_emin > MPFR_EMAX_MAX - (n - 1) ||
exp < __gmpfr_emin + (n - 1) ||
(inexact >= 0 && mpfr_powerof2_raw (y))))
rnd_mode = GMP_RNDZ;
return mpfr_underflow (y, rnd_mode, MPFR_SIGN(y));
}
if (MPFR_UNLIKELY(n < 0 && (__gmpfr_emax < MPFR_EMIN_MIN - n ||
exp > __gmpfr_emax + n)) )
return mpfr_overflow (y, rnd_mode, MPFR_SIGN(y));
MPFR_SET_EXP (y, exp - n);
}
return inexact;
}
示例7: set_z
/*
* Set f to z, choosing the smallest precision for f
* so that z = f*(2^BPML)*zs*2^(RetVal)
*/
static int
set_z (mpfr_ptr f, mpz_srcptr z, mp_size_t *zs)
{
mp_limb_t *p;
mp_size_t s;
int c;
mp_prec_t pf;
MPFR_ASSERTD (mpz_sgn (z) != 0);
/* Remove useless ending 0 */
for (p = PTR (z), s = *zs = ABS (SIZ (z)) ; *p == 0; p++, s--)
MPFR_ASSERTD (s >= 0);
/* Get working precision */
count_leading_zeros (c, p[s-1]);
pf = s * BITS_PER_MP_LIMB - c;
if (pf < MPFR_PREC_MIN)
pf = MPFR_PREC_MIN;
mpfr_init2 (f, pf);
/* Copy Mantissa */
if (MPFR_LIKELY (c))
mpn_lshift (MPFR_MANT (f), p, s, c);
else
MPN_COPY (MPFR_MANT (f), p, s);
MPFR_SET_SIGN (f, mpz_sgn (z));
MPFR_SET_EXP (f, 0);
return -c;
}
示例8: mpfr_mulhigh_n
/* Put in rp[n..2n-1] an approximation of the n high limbs
of {np, n} * {mp, n}. The error is less than n ulps of rp[n] (and the
approximation is always less or equal to the truncated full product).
Implements Algorithm ShortMul from [1].
*/
void
mpfr_mulhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp,
mp_size_t n)
{
mp_size_t k;
MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */
k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4);
/* Algorithm ShortMul from [1] requires k >= (n+3)/2, which translates
into k >= (n+4)/2 in the C language. */
MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n));
if (k < 0)
mpn_mul_basecase (rp, np, n, mp, n); /* result is exact, no error */
else if (k == 0)
mpfr_mulhigh_n_basecase (rp, np, mp, n); /* basecase error < n ulps */
else if (n > MUL_FFT_THRESHOLD)
mpn_mul_n (rp, np, mp, n); /* result is exact, no error */
else
{
mp_size_t l = n - k;
mp_limb_t cy;
mpn_mul_n (rp + 2 * l, np + l, mp + l, k); /* fills rp[2l..2n-1] */
mpfr_mulhigh_n (rp, np + k, mp, l); /* fills rp[l-1..2l-1] */
cy = mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
mpfr_mulhigh_n (rp, np, mp + k, l); /* fills rp[l-1..2l-1] */
cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */
}
}
示例9: mpfr_mullow_n
/* Put in rp[0..n] the n+1 low limbs of {np, n} * {mp, n}.
Assume 2n limbs are allocated at rp. */
void
mpfr_mullow_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mpfr_limb_srcptr mp,
mp_size_t n)
{
mp_size_t k;
MPFR_ASSERTN (MPFR_MULHIGH_TAB_SIZE >= 8); /* so that 3*(n/4) > n/2 */
k = MPFR_LIKELY (n < MPFR_MULHIGH_TAB_SIZE) ? mulhigh_ktab[n] : 3*(n/4);
MPFR_ASSERTD (k == -1 || k == 0 || (2 * k >= n && k < n));
if (k < 0)
mpn_mul_basecase (rp, np, n, mp, n);
else if (k == 0)
mpfr_mullow_n_basecase (rp, np, mp, n);
else if (n > MUL_FFT_THRESHOLD)
mpn_mul_n (rp, np, mp, n);
else
{
mp_size_t l = n - k;
mpn_mul_n (rp, np, mp, k); /* fills rp[0..2k] */
mpfr_mullow_n (rp + n, np + k, mp, l); /* fills rp[n..n+2l] */
mpn_add_n (rp + k, rp + k, rp + n, l + 1);
mpfr_mullow_n (rp + n, np, mp + k, l); /* fills rp[n..n+2l] */
mpn_add_n (rp + k, rp + k, rp + n, l + 1);
}
}
示例10: mpfr_custom_init_set
void
mpfr_custom_init_set (mpfr_ptr x, int kind, mp_exp_t exp,
mp_prec_t prec, void *mantissa)
{
mpfr_kind_t t;
int s;
mp_exp_t e;
if (kind >= 0)
{
t = (mpfr_kind_t) kind;
s = MPFR_SIGN_POS;
}
else
{
t = (mpfr_kind_t) -kind;
s = MPFR_SIGN_NEG;
}
MPFR_ASSERTD (t <= MPFR_REGULAR_KIND);
e = MPFR_LIKELY (t == MPFR_REGULAR_KIND) ? exp :
MPFR_UNLIKELY (t == MPFR_NAN_KIND) ? MPFR_EXP_NAN :
MPFR_UNLIKELY (t == MPFR_INF_KIND) ? MPFR_EXP_INF : MPFR_EXP_ZERO;
MPFR_PREC (x) = prec;
MPFR_SET_SIGN (x, s);
MPFR_EXP (x) = e;
MPFR_MANT (x) = (mp_limb_t*) mantissa;
return;
}
示例11: mpfr_sqrhigh_n
/* Put in rp[n..2n-1] an approximation of the n high limbs
of {np, n}^2. The error is less than n ulps of rp[n]. */
void
mpfr_sqrhigh_n (mpfr_limb_ptr rp, mpfr_limb_srcptr np, mp_size_t n)
{
mp_size_t k;
MPFR_ASSERTN (MPFR_SQRHIGH_TAB_SIZE > 2); /* ensures k < n */
k = MPFR_LIKELY (n < MPFR_SQRHIGH_TAB_SIZE) ? sqrhigh_ktab[n]
: (n+4)/2; /* ensures that k >= (n+3)/2 */
MPFR_ASSERTD (k == -1 || k == 0 || (k >= (n+4)/2 && k < n));
if (k < 0)
/* we can't use mpn_sqr_basecase here, since it requires
n <= SQR_KARATSUBA_THRESHOLD, where SQR_KARATSUBA_THRESHOLD
is not exported by GMP */
mpn_sqr_n (rp, np, n);
else if (k == 0)
mpfr_mulhigh_n_basecase (rp, np, np, n);
else
{
mp_size_t l = n - k;
mp_limb_t cy;
mpn_sqr_n (rp + 2 * l, np + l, k); /* fills rp[2l..2n-1] */
mpfr_mulhigh_n (rp, np, np + k, l); /* fills rp[l-1..2l-1] */
/* {rp+n-1,l+1} += 2 * {rp+l-1,l+1} */
cy = mpn_lshift (rp + l - 1, rp + l - 1, l + 1, 1);
cy += mpn_add_n (rp + n - 1, rp + n - 1, rp + l - 1, l + 1);
mpn_add_1 (rp + n + l, rp + n + l, k, cy); /* propagate carry */
}
}
示例12: mpfr_sub_ui
int
mpfr_sub_ui (mpfr_ptr y, mpfr_srcptr x, unsigned long int u, mp_rnd_t rnd_mode)
{
if (MPFR_LIKELY (u != 0)) /* if u=0, do nothing */
{
mpfr_t uu;
mp_limb_t up[1];
unsigned long cnt;
int inex;
MPFR_SAVE_EXPO_DECL (expo);
MPFR_TMP_INIT1 (up, uu, BITS_PER_MP_LIMB);
MPFR_ASSERTN (u == (mp_limb_t) u);
count_leading_zeros (cnt, (mp_limb_t) u);
*up = (mp_limb_t) u << cnt;
/* Optimization note: Exponent save/restore operations may be
removed if mpfr_sub works even when uu is out-of-range. */
MPFR_SAVE_EXPO_MARK (expo);
MPFR_SET_EXP (uu, BITS_PER_MP_LIMB - cnt);
inex = mpfr_sub (y, x, uu, rnd_mode);
MPFR_SAVE_EXPO_FREE (expo);
return mpfr_check_range (y, inex, rnd_mode);
}
else
return mpfr_set (y, x, rnd_mode);
}
示例13: mpfr_ui_div
int
mpfr_ui_div (mpfr_ptr y, unsigned long int u, mpfr_srcptr x, mpfr_rnd_t rnd_mode)
{
mpfr_t uu;
mp_limb_t up[1];
unsigned long cnt;
MPFR_LOG_FUNC
(("u=%lu x[%Pu]=%.*Rg rnd=%d",
u, mpfr_get_prec(x), mpfr_log_prec, x, rnd_mode),
("y[%Pu]=%.*Rg", mpfr_get_prec(y), mpfr_log_prec, y));
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(x)))
{
if (MPFR_IS_NAN(x))
{
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
else if (MPFR_IS_INF(x)) /* u/Inf = 0 */
{
MPFR_SET_ZERO(y);
MPFR_SET_SAME_SIGN(y,x);
MPFR_RET(0);
}
else /* u / 0 */
{
MPFR_ASSERTD(MPFR_IS_ZERO(x));
if (u)
{
/* u > 0, so y = sign(x) * Inf */
MPFR_SET_SAME_SIGN(y, x);
MPFR_SET_INF(y);
mpfr_set_divby0 ();
MPFR_RET(0);
}
else
{
/* 0 / 0 */
MPFR_SET_NAN(y);
MPFR_RET_NAN;
}
}
}
else if (MPFR_LIKELY(u != 0))
{
MPFR_TMP_INIT1(up, uu, GMP_NUMB_BITS);
MPFR_ASSERTN(u == (mp_limb_t) u);
count_leading_zeros(cnt, (mp_limb_t) u);
up[0] = (mp_limb_t) u << cnt;
MPFR_SET_EXP (uu, GMP_NUMB_BITS - cnt);
return mpfr_div (y, uu, x, rnd_mode);
}
else /* u = 0, and x != 0 */
{
MPFR_SET_ZERO(y); /* if u=0, then set y to 0 */
MPFR_SET_SAME_SIGN(y, x); /* u considered as +0: sign(+0/x) = sign(x) */
MPFR_RET(0);
}
}
示例14: mpfr_check_range
int
mpfr_check_range (mpfr_ptr x, int t, mp_rnd_t rnd_mode)
{
if (MPFR_LIKELY( MPFR_IS_PURE_FP(x)) )
{ /* x is a non-zero FP */
mp_exp_t exp = MPFR_EXP (x); /* Do not use MPFR_GET_EXP */
if (MPFR_UNLIKELY( exp < __gmpfr_emin) )
{
/* The following test is necessary because in the rounding to the
* nearest mode, mpfr_underflow always rounds away from 0. In
* this rounding mode, we need to round to 0 if:
* _ |x| < 2^(emin-2), or
* _ |x| = 2^(emin-2) and the absolute value of the exact
* result is <= 2^(emin-2).
*/
if (rnd_mode == GMP_RNDN &&
(exp + 1 < __gmpfr_emin ||
(mpfr_powerof2_raw(x) &&
(MPFR_IS_NEG(x) ? t <= 0 : t >= 0))))
rnd_mode = GMP_RNDZ;
return mpfr_underflow(x, rnd_mode, MPFR_SIGN(x));
}
if (MPFR_UNLIKELY( exp > __gmpfr_emax) )
return mpfr_overflow(x, rnd_mode, MPFR_SIGN(x));
}
MPFR_RET (t); /* propagate inexact ternary value, unlike most functions */
}
示例15: mpfr_const_euler_internal
int
mpfr_const_euler_internal (mpfr_t x, mpfr_rnd_t rnd)
{
mpfr_prec_t prec = MPFR_PREC(x), m, log2m;
mpfr_t y, z;
unsigned long n;
int inexact;
MPFR_ZIV_DECL (loop);
log2m = MPFR_INT_CEIL_LOG2 (prec);
m = prec + 2 * log2m + 23;
mpfr_init2 (y, m);
mpfr_init2 (z, m);
MPFR_ZIV_INIT (loop, m);
for (;;)
{
mpfr_exp_t exp_S, err;
/* since prec >= 1, we have m >= 24 here, which ensures n >= 9 below */
n = 1 + (unsigned long) ((double) m * LOG2 / 2.0);
MPFR_ASSERTD (n >= 9);
mpfr_const_euler_S2 (y, n); /* error <= 3 ulps */
exp_S = MPFR_EXP(y);
mpfr_set_ui (z, n, MPFR_RNDN);
mpfr_log (z, z, MPFR_RNDD); /* error <= 1 ulp */
mpfr_sub (y, y, z, MPFR_RNDN); /* S'(n) - log(n) */
/* the error is less than 1/2 + 3*2^(exp_S-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(exp_S+2-EXP(y)) + 2^(EXP(z)-EXP(y))
<= 1/2 + 2^(1+MAX(exp_S+2,EXP(z))-EXP(y)) */
err = 1 + MAX(exp_S + 2, MPFR_EXP(z)) - MPFR_EXP(y);
err = (err >= -1) ? err + 1 : 0; /* error <= 2^err ulp(y) */
exp_S = MPFR_EXP(y);
mpfr_const_euler_R (z, n); /* err <= ulp(1/2) = 2^(-m) */
mpfr_sub (y, y, z, MPFR_RNDN);
/* err <= 1/2 ulp(y) + 2^(-m) + 2^(err + exp_S - EXP(y)) ulp(y).
Since the result is between 0.5 and 1, ulp(y) = 2^(-m).
So we get 3/2*ulp(y) + 2^(err + exp_S - EXP(y)) ulp(y).
3/2 + 2^e <= 2^(e+1) for e>=1, and <= 2^2 otherwise */
err = err + exp_S - MPFR_EXP(y);
err = (err >= 1) ? err + 1 : 2;
if (MPFR_LIKELY (MPFR_CAN_ROUND (y, m - err, prec, rnd)))
break;
MPFR_ZIV_NEXT (loop, m);
mpfr_set_prec (y, m);
mpfr_set_prec (z, m);
}
MPFR_ZIV_FREE (loop);
inexact = mpfr_set (x, y, rnd);
mpfr_clear (y);
mpfr_clear (z);
return inexact; /* always inexact */
}