本文整理汇总了C++中MIN函数的典型用法代码示例。如果您正苦于以下问题:C++ MIN函数的具体用法?C++ MIN怎么用?C++ MIN使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了MIN函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: TCOD_map_compute_fov_restrictive_shadowcasting_quadrant
void TCOD_map_compute_fov_restrictive_shadowcasting_quadrant (map_t *m, int player_x, int player_y, int max_radius, bool light_walls, int maxObstacles, int dx, int dy) {
static double *startAngle=NULL, *endAngle=NULL;
static int angleArraySize=0;
if ( angleArraySize > 0 && angleArraySize < maxObstacles ) {
free(startAngle);
startAngle=NULL;
}
if ( startAngle == NULL ) {
angleArraySize = maxObstacles;
startAngle = (double *)malloc(sizeof(double) * 2 * maxObstacles);
endAngle = &startAngle[maxObstacles];
}
//octant: vertical edge
{
int iteration = 1; //iteration of the algo for this octant
bool done = false;
int totalObstacles = 0;
int obstaclesInLastLine = 0;
double minAngle = 0.0f;
int x,y;
//do while there are unblocked slopes left and the algo is within the map's boundaries
//scan progressive lines/columns from the PC outwards
y = player_y+dy; //the outer slope's coordinates (first processed line)
if (y < 0 || y >= m->height) done = true;
while(!done) {
//process cells in the line
double slopesPerCell = 1.0f/(double)(iteration+1);
double halfSlopes = slopesPerCell*0.5f;
int processedCell = (int)(minAngle / slopesPerCell);
int minx = MAX(0,player_x-iteration), maxx = MIN(m->width-1,player_x+iteration);
done = true;
for (x = player_x + (processedCell * dx); x >= minx && x <= maxx; x+=dx) {
int c = x + (y * m->width);
//calculate slopes per cell
bool visible = true;
double startSlope = (double)processedCell*slopesPerCell;
double centreSlope = startSlope+halfSlopes;
double endSlope = startSlope+slopesPerCell;
if (obstaclesInLastLine > 0 && m->cells[c].fov == 0) {
int idx = 0;
while(visible && idx < obstaclesInLastLine) {
if (m->cells[c].transparent == true) {
if (centreSlope > startAngle[idx] && centreSlope < endAngle[idx])
visible = false;
}
else {
if (startSlope >= startAngle[idx] && endSlope <= endAngle[idx])
visible = false;
}
if (visible && (m->cells[c-(m->width*dy)].fov == 0 || !m->cells[c-(m->width*dy)].transparent) && (x-dx >= 0 && x-dx < m->width && (m->cells[c-(m->width*dy)-dx].fov == 0 || !m->cells[c-(m->width*dy)-dx].transparent))) visible = false;
idx++;
}
}
if (visible) {
m->cells[c].fov = 1;
done = false;
//if the cell is opaque, block the adjacent slopes
if (!m->cells[c].transparent) {
if (minAngle >= startSlope) minAngle = endSlope;
else {
startAngle[totalObstacles] = startSlope;
endAngle[totalObstacles++] = endSlope;
}
if (!light_walls) m->cells[c].fov = 0;
}
}
processedCell++;
}
if (iteration == max_radius) done = true;
iteration++;
obstaclesInLastLine = totalObstacles;
y += dy;
if (y < 0 || y >= m->height) done = true;
if ( minAngle == 1.0f ) done=true;
}
}
//octant: horizontal edge
{
int iteration = 1; //iteration of the algo for this octant
bool done = false;
int totalObstacles = 0;
int obstaclesInLastLine = 0;
double minAngle = 0.0f;
int x,y;
//do while there are unblocked slopes left and the algo is within the map's boundaries
//scan progressive lines/columns from the PC outwards
x = player_x+dx; //the outer slope's coordinates (first processed line)
if (x < 0 || x >= m->width) done = true;
while(!done) {
//process cells in the line
double slopesPerCell = 1.0f/(double)(iteration+1);
double halfSlopes = slopesPerCell*0.5f;
int processedCell = (int)(minAngle / slopesPerCell);
int miny = MAX(0,player_y-iteration), maxy = MIN(m->height-1,player_y+iteration);
done = true;
for (y = player_y + (processedCell * dy); y >= miny && y <= maxy; y+=dy) {
int c = x + (y * m->width);
//.........这里部分代码省略.........
示例2: computeArea
int computeArea(int A, int B, int C, int D, int E, int F, int G, int H) {
int i=MAX(A,E),j=MAX(B,F),m=MIN(C,G),n=MIN(D,H),area=(D-B)*(C-A)+(H-F)*(G-E);
if(i<m && j<n)
area-=(n-j)*(m-i);
return area;
}
示例3: set_food
/*
* Set "p_ptr->food", notice observable changes
*
* The "p_ptr->food" variable can get as large as 20000, allowing the
* addition of the most "filling" item, Elvish Waybread, which adds
* 7500 food units, without overflowing the 32767 maximum limit.
*
* Perhaps we should disturb the player with various messages,
* especially messages about hunger status changes. XXX XXX XXX
*
* Digestion of food is handled in "dungeon.c", in which, normally,
* the player digests about 20 food units per 100 game turns, more
* when "fast", more when "regenerating", less with "slow digestion",
* but when the player is "gorged", he digests 100 food units per 10
* game turns, or a full 1000 food units per 100 game turns.
*
* Note that the player's speed is reduced by 10 units while gorged,
* so if the player eats a single food ration (5000 food units) when
* full (15000 food units), he will be gorged for (5000/100)*10 = 500
* game turns, or 500/(100/5) = 25 player turns (if nothing else is
* affecting the player speed).
*/
bool set_food(int v)
{
int old_aux, new_aux;
bool notice = FALSE;
/* Hack -- Force good values */
v = MIN(v, PY_FOOD_UPPER);
v = MAX(v, 0);
/* Fainting / Starving */
if (p_ptr->food < PY_FOOD_FAINT)
{
old_aux = 0;
}
/* Weak */
else if (p_ptr->food < PY_FOOD_WEAK)
{
old_aux = 1;
}
/* Hungry */
else if (p_ptr->food < PY_FOOD_ALERT)
{
old_aux = 2;
}
/* Normal */
else if (p_ptr->food < PY_FOOD_FULL)
{
old_aux = 3;
}
/* Full */
else if (p_ptr->food < PY_FOOD_MAX)
{
old_aux = 4;
}
/* Gorged */
else
{
old_aux = 5;
}
/* Fainting / Starving */
if (v < PY_FOOD_FAINT)
{
new_aux = 0;
}
/* Weak */
else if (v < PY_FOOD_WEAK)
{
new_aux = 1;
}
/* Hungry */
else if (v < PY_FOOD_ALERT)
{
new_aux = 2;
}
/* Normal */
else if (v < PY_FOOD_FULL)
{
new_aux = 3;
}
/* Full */
else if (v < PY_FOOD_MAX)
{
new_aux = 4;
}
/* Gorged */
else
//.........这里部分代码省略.........
示例4: g2d_blend
/**
* g2d_blend - blend image data in source and destination buffers.
*
* @ctx: a pointer to g2d_context structure.
* @src: a pointer to g2d_image structure including image and buffer
* information to source.
* @dst: a pointer to g2d_image structure including image and buffer
* information to destination.
* @src_x: x start position to source buffer.
* @src_y: y start position to source buffer.
* @dst_x: x start position to destination buffer.
* @dst_y: y start position to destination buffer.
* @w: width value to source and destination buffer.
* @h: height value to source and destination buffer.
* @op: blend operation type.
*/
int
g2d_blend(struct g2d_context *ctx, struct g2d_image *src,
struct g2d_image *dst, unsigned int src_x,
unsigned int src_y, unsigned int dst_x, unsigned int dst_y,
unsigned int w, unsigned int h, enum e_g2d_op op)
{
union g2d_point_val pt;
union g2d_bitblt_cmd_val bitblt;
union g2d_blend_func_val blend;
unsigned int src_w = 0, src_h = 0, dst_w = 0, dst_h = 0;
bitblt.val = 0;
blend.val = 0;
if (op == G2D_OP_SRC || op == G2D_OP_CLEAR)
g2d_add_cmd(ctx, DST_SELECT_REG, G2D_SELECT_MODE_BGCOLOR);
else
g2d_add_cmd(ctx, DST_SELECT_REG, G2D_SELECT_MODE_NORMAL);
g2d_add_cmd(ctx, DST_COLOR_MODE_REG, dst->color_mode);
g2d_add_base_addr(ctx, dst, g2d_dst);
g2d_add_cmd(ctx, DST_STRIDE_REG, dst->stride);
g2d_add_cmd(ctx, SRC_SELECT_REG, src->select_mode);
g2d_add_cmd(ctx, SRC_COLOR_MODE_REG, src->color_mode);
switch (src->select_mode) {
case G2D_SELECT_MODE_NORMAL:
g2d_add_base_addr(ctx, src, g2d_src);
g2d_add_cmd(ctx, SRC_STRIDE_REG, src->stride);
break;
case G2D_SELECT_MODE_FGCOLOR:
g2d_add_cmd(ctx, FG_COLOR_REG, src->color);
break;
case G2D_SELECT_MODE_BGCOLOR:
g2d_add_cmd(ctx, BG_COLOR_REG, src->color);
break;
default:
fprintf(stderr , "failed to set src.\n");
return -EINVAL;
}
src_w = w;
src_h = h;
if (src_x + w > src->width)
src_w = src->width - src_x;
if (src_y + h > src->height)
src_h = src->height - src_y;
dst_w = w;
dst_h = h;
if (dst_x + w > dst->width)
dst_w = dst->width - dst_x;
if (dst_y + h > dst->height)
dst_h = dst->height - dst_y;
w = MIN(src_w, dst_w);
h = MIN(src_h, dst_h);
if (w <= 0 || h <= 0) {
fprintf(stderr, "invalid width or height.\n");
g2d_reset(ctx);
return -EINVAL;
}
bitblt.data.alpha_blend_mode = G2D_ALPHA_BLEND_MODE_ENABLE;
blend.val = g2d_get_blend_op(op);
g2d_add_cmd(ctx, BITBLT_COMMAND_REG, bitblt.val);
g2d_add_cmd(ctx, BLEND_FUNCTION_REG, blend.val);
pt.val = 0;
pt.data.x = src_x;
pt.data.y = src_y;
g2d_add_cmd(ctx, SRC_LEFT_TOP_REG, pt.val);
pt.val = 0;
pt.data.x = src_x + w;
pt.data.y = src_y + h;
g2d_add_cmd(ctx, SRC_RIGHT_BOTTOM_REG, pt.val);
pt.val = 0;
pt.data.x = dst_x;
pt.data.y = dst_y;
g2d_add_cmd(ctx, DST_LEFT_TOP_REG, pt.val);
pt.val = 0;
//.........这里部分代码省略.........
示例5: GDALDitherRGB2PCT
//.........这里部分代码省略.........
/* ==================================================================== */
int iScanline;
for( iScanline = 0; iScanline < nYSize; iScanline++ )
{
int nLastRedError, nLastGreenError, nLastBlueError, i;
/* -------------------------------------------------------------------- */
/* Report progress */
/* -------------------------------------------------------------------- */
if( !pfnProgress( iScanline / (double) nYSize, NULL, pProgressArg ) )
{
CPLError( CE_Failure, CPLE_UserInterrupt, "User Terminated" );
err = CE_Failure;
goto end_and_cleanup;
}
/* -------------------------------------------------------------------- */
/* Read source data. */
/* -------------------------------------------------------------------- */
GDALRasterIO( hRed, GF_Read, 0, iScanline, nXSize, 1,
pabyRed, nXSize, 1, GDT_Byte, 0, 0 );
GDALRasterIO( hGreen, GF_Read, 0, iScanline, nXSize, 1,
pabyGreen, nXSize, 1, GDT_Byte, 0, 0 );
GDALRasterIO( hBlue, GF_Read, 0, iScanline, nXSize, 1,
pabyBlue, nXSize, 1, GDT_Byte, 0, 0 );
/* -------------------------------------------------------------------- */
/* Apply the error from the previous line to this one. */
/* -------------------------------------------------------------------- */
for( i = 0; i < nXSize; i++ )
{
pabyRed[i] = (GByte)
MAX(0,MIN(255,(pabyRed[i] + panError[i*3+0+3])));
pabyGreen[i] = (GByte)
MAX(0,MIN(255,(pabyGreen[i] + panError[i*3+1+3])));
pabyBlue[i] = (GByte)
MAX(0,MIN(255,(pabyBlue[i] + panError[i*3+2+3])));
}
memset( panError, 0, sizeof(int) * (nXSize+2) * 3 );
/* -------------------------------------------------------------------- */
/* Figure out the nearest color to the RGB value. */
/* -------------------------------------------------------------------- */
nLastRedError = 0;
nLastGreenError = 0;
nLastBlueError = 0;
for( i = 0; i < nXSize; i++ )
{
int iIndex, nError, nSixth, iRed, iGreen, iBlue;
int nRedValue, nGreenValue, nBlueValue;
nRedValue = MAX(0,MIN(255, pabyRed[i] + nLastRedError));
nGreenValue = MAX(0,MIN(255, pabyGreen[i] + nLastGreenError));
nBlueValue = MAX(0,MIN(255, pabyBlue[i] + nLastBlueError));
iRed = nRedValue * C_LEVELS / 256;
iGreen = nGreenValue * C_LEVELS / 256;
iBlue = nBlueValue * C_LEVELS / 256;
iIndex = pabyColorMap[iRed + iGreen * C_LEVELS
+ iBlue * C_LEVELS * C_LEVELS];
pabyIndex[i] = (GByte) iIndex;
示例6: MIN
/// calc_desired_velocity - updates desired velocity (i.e. feed forward) with pilot requested acceleration and fake wind resistance
/// updated velocity sent directly to position controller
void AC_Loiter::calc_desired_velocity(float nav_dt)
{
float ekfGndSpdLimit, ekfNavVelGainScaler;
AP::ahrs_navekf().getEkfControlLimits(ekfGndSpdLimit, ekfNavVelGainScaler);
// calculate a loiter speed limit which is the minimum of the value set by the LOITER_SPEED
// parameter and the value set by the EKF to observe optical flow limits
float gnd_speed_limit_cms = MIN(_speed_cms, ekfGndSpdLimit*100.0f);
gnd_speed_limit_cms = MAX(gnd_speed_limit_cms, LOITER_SPEED_MIN);
float pilot_acceleration_max = GRAVITY_MSS*100.0f * tanf(radians(get_angle_max_cd()*0.01f));
// range check nav_dt
if (nav_dt < 0) {
return;
}
_pos_control.set_max_speed_xy(gnd_speed_limit_cms);
_pos_control.set_max_accel_xy(_accel_cmss);
_pos_control.set_leash_length_xy(LOITER_POS_CORRECTION_MAX);
// get loiters desired velocity from the position controller where it is being stored.
const Vector3f &desired_vel_3d = _pos_control.get_desired_velocity();
Vector2f desired_vel(desired_vel_3d.x,desired_vel_3d.y);
// update the desired velocity using our predicted acceleration
desired_vel.x += _predicted_accel.x * nav_dt;
desired_vel.y += _predicted_accel.y * nav_dt;
Vector2f loiter_accel_brake;
float desired_speed = desired_vel.length();
if (!is_zero(desired_speed)) {
Vector2f desired_vel_norm = desired_vel/desired_speed;
// TODO: consider using a velocity squared relationship like
// pilot_acceleration_max*(desired_speed/gnd_speed_limit_cms)^2;
// the drag characteristic of a multirotor should be examined to generate a curve
// we could add a expo function here to fine tune it
// calculate a drag acceleration based on the desired speed.
float drag_decel = pilot_acceleration_max*desired_speed/gnd_speed_limit_cms;
// calculate a braking acceleration if sticks are at zero
float loiter_brake_accel = 0.0f;
if (_desired_accel.is_zero()) {
if ((AP_HAL::millis()-_brake_timer) > _brake_delay * 1000.0f) {
float brake_gain = _pos_control.get_vel_xy_pid().kP() * 0.5f;
loiter_brake_accel = constrain_float(AC_AttitudeControl::sqrt_controller(desired_speed, brake_gain, _brake_jerk_max_cmsss, nav_dt), 0.0f, _brake_accel_cmss);
}
} else {
loiter_brake_accel = 0.0f;
_brake_timer = AP_HAL::millis();
}
_brake_accel += constrain_float(loiter_brake_accel-_brake_accel, -_brake_jerk_max_cmsss*nav_dt, _brake_jerk_max_cmsss*nav_dt);
loiter_accel_brake = desired_vel_norm*_brake_accel;
// update the desired velocity using the drag and braking accelerations
desired_speed = MAX(desired_speed-(drag_decel+_brake_accel)*nav_dt,0.0f);
desired_vel = desired_vel_norm*desired_speed;
}
// add braking to the desired acceleration
_desired_accel -= loiter_accel_brake;
// Apply EKF limit to desired velocity - this limit is calculated by the EKF and adjusted as required to ensure certain sensor limits are respected (eg optical flow sensing)
float horizSpdDem = desired_vel.length();
if (horizSpdDem > gnd_speed_limit_cms) {
desired_vel.x = desired_vel.x * gnd_speed_limit_cms / horizSpdDem;
desired_vel.y = desired_vel.y * gnd_speed_limit_cms / horizSpdDem;
}
// Limit the velocity to prevent fence violations
// TODO: We need to also limit the _desired_accel
if (_avoid != nullptr) {
_avoid->adjust_velocity(_pos_control.get_pos_xy_p().kP(), _accel_cmss, desired_vel, nav_dt);
}
// send adjusted feed forward acceleration and velocity back to the Position Controller
_pos_control.set_desired_accel_xy(_desired_accel.x, _desired_accel.y);
_pos_control.set_desired_velocity_xy(desired_vel.x, desired_vel.y);
}
示例7: solver
//.........这里部分代码省略.........
for (j=0; j<n; j++) { D[j] = z[j]/x[j]; }
for (i=0; i<m; i++) { E[i] = w[i]/y[i]; }
ldltfac(n, m, kAt, iAt, At, E, D, kA, iA, A, v);
for (j=0; j<n; j++) { fx[j] = -sigma[j]; }
for (i=0; i<m; i++) { fy[i] = rho[i]; }
forwardbackward(E, D, fy, fx);
for (j=0; j<n; j++) { gx[j] = -c[j]; }
for (i=0; i<m; i++) { gy[i] = -b[i]; }
forwardbackward(E, D, gy, gx);
dphi = (dotprod(c,fx,n)-dotprod(b,fy,m)+gamma)/
(dotprod(c,gx,n)-dotprod(b,gy,m)-psi/phi);
for (j=0; j<n; j++) { dx[j] = fx[j] - gx[j]*dphi; }
for (i=0; i<m; i++) { dy[i] = fy[i] - gy[i]*dphi; }
for (j=0; j<n; j++) { dz[j] = delta*mu/x[j] - z[j] - D[j]*dx[j]; }
for (i=0; i<m; i++) { dw[i] = delta*mu/y[i] - w[i] - E[i]*dy[i]; }
dpsi = delta*mu/phi - psi - (psi/phi)*dphi;
/*************************************************************
* STEP 5: Compute step length.
*************************************************************/
theta = 1.0;
for (j=0; j<n; j++) {
theta
=
MIN(theta, linesearch(x[j],z[j],dx[j],dz[j],beta,delta,mu));
}
for (i=0; i<m; i++) {
theta
=
MIN(theta,linesearch(y[i],w[i],dy[i],dw[i],beta,delta,mu));
}
theta = MIN(theta,linesearch(phi,psi,dphi,dpsi,beta,delta,mu));
/*
if (theta < 4*beta/(n+m+1)) {
printf("ratio = %10.3e \n", theta*(n+m+1)/(4*beta));
status = 7;
break;
}
*/
if (theta < 1.0) theta *= 0.9999;
/*************************************************************
* STEP 6: Step to new point
*************************************************************/
for (j=0; j<n; j++) {
x[j] = x[j] + theta*dx[j];
z[j] = z[j] + theta*dz[j];
}
for (i=0; i<m; i++) {
y[i] = y[i] + theta*dy[i];
w[i] = w[i] + theta*dw[i];
}
phi = phi + theta*dphi;
psi = psi + theta*dpsi;
}
示例8: main
//.........这里部分代码省略.........
if (thumbstr_utf8 != NULL)
default_thumbstr = FALSE;
error = FT_Init_FreeType (&library);
if (error) {
g_printerr("Could not initialise freetype: %s\n", get_ft_error (error));
goto out;
}
totem_resources_monitor_start (arguments[0], 30 * G_USEC_PER_SEC);
file = g_file_new_for_commandline_arg (arguments[0]);
uri = g_file_get_uri (file);
g_object_unref (file);
face = sushi_new_ft_face_from_uri (library, uri, &contents, &gerror);
if (gerror) {
g_printerr ("Could not load face '%s': %s\n", uri,
gerror->message);
g_free (uri);
g_error_free (gerror);
goto out;
}
g_free (uri);
if (default_thumbstr) {
if (check_font_contain_text (face, "Aa"))
str = g_strdup ("Aa");
else
str = build_fallback_thumbstr (face);
} else {
str = thumbstr_utf8;
}
surface = cairo_image_surface_create (CAIRO_FORMAT_ARGB32,
thumb_size, thumb_size);
cr = cairo_create (surface);
gdk_cairo_set_source_rgba (cr, &white);
cairo_paint (cr);
font = cairo_ft_font_face_create_for_ft_face (face, 0);
cairo_set_font_face (cr, font);
cairo_font_face_destroy (font);
font_size = thumb_size - 2 * PADDING_VERTICAL;
cairo_set_font_size (cr, font_size);
cairo_text_extents (cr, str, &text_extents);
if ((text_extents.width) > (thumb_size - 2 * PADDING_HORIZONTAL)) {
scale_x = (gdouble) (thumb_size - 2 * PADDING_HORIZONTAL) / (text_extents.width);
} else {
scale_x = 1.0;
}
if ((text_extents.height) > (thumb_size - 2 * PADDING_VERTICAL)) {
scale_y = (gdouble) (thumb_size - 2 * PADDING_VERTICAL) / (text_extents.height);
} else {
scale_y = 1.0;
}
scale = MIN (scale_x, scale_y);
cairo_scale (cr, scale, scale);
cairo_translate (cr,
PADDING_HORIZONTAL - text_extents.x_bearing + (thumb_size - scale * text_extents.width) / 2.0,
PADDING_VERTICAL - text_extents.y_bearing + (thumb_size - scale * text_extents.height) / 2.0);
gdk_cairo_set_source_rgba (cr, &black);
cairo_show_text (cr, str);
cairo_destroy (cr);
cairo_surface_write_to_png (surface, arguments[1]);
cairo_surface_destroy (surface);
totem_resources_monitor_stop ();
error = FT_Done_Face (face);
if (error) {
g_printerr("Could not unload face: %s\n", get_ft_error (error));
goto out;
}
error = FT_Done_FreeType (library);
if (error) {
g_printerr ("Could not finalize freetype library: %s\n",
get_ft_error (error));
goto out;
}
rv = 0; /* success */
out:
g_strfreev (arguments);
g_free (str);
g_free (contents);
return rv;
}
示例9: raw_co_is_allocated
/*
* Returns true iff the specified sector is present in the disk image. Drivers
* not implementing the functionality are assumed to not support backing files,
* hence all their sectors are reported as allocated.
*
* If 'sector_num' is beyond the end of the disk image the return value is 0
* and 'pnum' is set to 0.
*
* 'pnum' is set to the number of sectors (including and immediately following
* the specified sector) that are known to be in the same
* allocated/unallocated state.
*
* 'nb_sectors' is the max value 'pnum' should be set to. If nb_sectors goes
* beyond the end of the disk image it will be clamped.
*/
static int coroutine_fn raw_co_is_allocated(BlockDriverState *bs,
int64_t sector_num,
int nb_sectors, int *pnum)
{
off_t start, data, hole;
int ret;
ret = fd_open(bs);
if (ret < 0) {
return ret;
}
start = sector_num * BDRV_SECTOR_SIZE;
#ifdef CONFIG_FIEMAP
BDRVRawState *s = bs->opaque;
struct {
struct fiemap fm;
struct fiemap_extent fe;
} f;
f.fm.fm_start = start;
f.fm.fm_length = (int64_t)nb_sectors * BDRV_SECTOR_SIZE;
f.fm.fm_flags = 0;
f.fm.fm_extent_count = 1;
f.fm.fm_reserved = 0;
if (ioctl(s->fd, FS_IOC_FIEMAP, &f) == -1) {
/* Assume everything is allocated. */
*pnum = nb_sectors;
return 1;
}
if (f.fm.fm_mapped_extents == 0) {
/* No extents found, data is beyond f.fm.fm_start + f.fm.fm_length.
* f.fm.fm_start + f.fm.fm_length must be clamped to the file size!
*/
off_t length = lseek(s->fd, 0, SEEK_END);
hole = f.fm.fm_start;
data = MIN(f.fm.fm_start + f.fm.fm_length, length);
} else {
data = f.fe.fe_logical;
hole = f.fe.fe_logical + f.fe.fe_length;
}
#elif defined SEEK_HOLE && defined SEEK_DATA
BDRVRawState *s = bs->opaque;
hole = lseek(s->fd, start, SEEK_HOLE);
if (hole == -1) {
/* -ENXIO indicates that sector_num was past the end of the file.
* There is a virtual hole there. */
assert(errno != -ENXIO);
/* Most likely EINVAL. Assume everything is allocated. */
*pnum = nb_sectors;
return 1;
}
if (hole > start) {
data = start;
} else {
/* On a hole. We need another syscall to find its end. */
data = lseek(s->fd, start, SEEK_DATA);
if (data == -1) {
data = lseek(s->fd, 0, SEEK_END);
}
}
#else
*pnum = nb_sectors;
return 1;
#endif
if (data <= start) {
/* On a data extent, compute sectors to the end of the extent. */
*pnum = MIN(nb_sectors, (hole - start) / BDRV_SECTOR_SIZE);
return 1;
} else {
/* On a hole, compute sectors to the beginning of the next extent. */
*pnum = MIN(nb_sectors, (data - start) / BDRV_SECTOR_SIZE);
return 0;
}
}
示例10: ZSTDMT_compressCCtx
size_t ZSTDMT_compressCCtx(ZSTDMT_CCtx* mtctx,
void* dst, size_t dstCapacity,
const void* src, size_t srcSize,
int compressionLevel)
{
ZSTD_parameters params = ZSTD_getParams(compressionLevel, srcSize, 0);
U32 const overlapLog = (compressionLevel >= ZSTD_maxCLevel()) ? 0 : 3;
size_t const overlapSize = (size_t)1 << (params.cParams.windowLog - overlapLog);
size_t const chunkTargetSize = (size_t)1 << (params.cParams.windowLog + 2);
unsigned const nbChunksMax = (unsigned)(srcSize / chunkTargetSize) + 1;
unsigned nbChunks = MIN(nbChunksMax, mtctx->nbThreads);
size_t const proposedChunkSize = (srcSize + (nbChunks-1)) / nbChunks;
size_t const avgChunkSize = ((proposedChunkSize & 0x1FFFF) < 0xFFFF) ? proposedChunkSize + 0xFFFF : proposedChunkSize; /* avoid too small last block */
size_t remainingSrcSize = srcSize;
const char* const srcStart = (const char*)src;
unsigned const compressWithinDst = (dstCapacity >= ZSTD_compressBound(srcSize)) ? nbChunks : (unsigned)(dstCapacity / ZSTD_compressBound(avgChunkSize)); /* presumes avgChunkSize >= 256 KB, which should be the case */
size_t frameStartPos = 0, dstBufferPos = 0;
DEBUGLOG(3, "windowLog : %2u => chunkTargetSize : %u bytes ", params.cParams.windowLog, (U32)chunkTargetSize);
DEBUGLOG(2, "nbChunks : %2u (chunkSize : %u bytes) ", nbChunks, (U32)avgChunkSize);
params.fParams.contentSizeFlag = 1;
if (nbChunks==1) { /* fallback to single-thread mode */
ZSTD_CCtx* const cctx = mtctx->cctxPool->cctx[0];
return ZSTD_compressCCtx(cctx, dst, dstCapacity, src, srcSize, compressionLevel);
}
{ unsigned u;
for (u=0; u<nbChunks; u++) {
size_t const chunkSize = MIN(remainingSrcSize, avgChunkSize);
size_t const dstBufferCapacity = ZSTD_compressBound(chunkSize);
buffer_t const dstAsBuffer = { (char*)dst + dstBufferPos, dstBufferCapacity };
buffer_t const dstBuffer = u < compressWithinDst ? dstAsBuffer : ZSTDMT_getBuffer(mtctx->buffPool, dstBufferCapacity);
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(mtctx->cctxPool);
size_t dictSize = u ? overlapSize : 0;
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
mtctx->jobs[u].cSize = ERROR(memory_allocation); /* job result */
mtctx->jobs[u].jobCompleted = 1;
nbChunks = u+1;
break; /* let's wait for previous jobs to complete, but don't start new ones */
}
mtctx->jobs[u].srcStart = srcStart + frameStartPos - dictSize;
mtctx->jobs[u].dictSize = dictSize;
mtctx->jobs[u].srcSize = chunkSize;
mtctx->jobs[u].fullFrameSize = srcSize;
mtctx->jobs[u].params = params;
mtctx->jobs[u].dstBuff = dstBuffer;
mtctx->jobs[u].cctx = cctx;
mtctx->jobs[u].firstChunk = (u==0);
mtctx->jobs[u].lastChunk = (u==nbChunks-1);
mtctx->jobs[u].jobCompleted = 0;
mtctx->jobs[u].jobCompleted_mutex = &mtctx->jobCompleted_mutex;
mtctx->jobs[u].jobCompleted_cond = &mtctx->jobCompleted_cond;
DEBUGLOG(3, "posting job %u (%u bytes)", u, (U32)chunkSize);
DEBUG_PRINTHEX(3, mtctx->jobs[u].srcStart, 12);
POOL_add(mtctx->factory, ZSTDMT_compressChunk, &mtctx->jobs[u]);
frameStartPos += chunkSize;
dstBufferPos += dstBufferCapacity;
remainingSrcSize -= chunkSize;
} }
/* note : since nbChunks <= nbThreads, all jobs should be running immediately in parallel */
{ unsigned chunkID;
size_t error = 0, dstPos = 0;
for (chunkID=0; chunkID<nbChunks; chunkID++) {
DEBUGLOG(3, "waiting for chunk %u ", chunkID);
PTHREAD_MUTEX_LOCK(&mtctx->jobCompleted_mutex);
while (mtctx->jobs[chunkID].jobCompleted==0) {
DEBUGLOG(4, "waiting for jobCompleted signal from chunk %u", chunkID);
pthread_cond_wait(&mtctx->jobCompleted_cond, &mtctx->jobCompleted_mutex);
}
pthread_mutex_unlock(&mtctx->jobCompleted_mutex);
DEBUGLOG(3, "ready to write chunk %u ", chunkID);
ZSTDMT_releaseCCtx(mtctx->cctxPool, mtctx->jobs[chunkID].cctx);
mtctx->jobs[chunkID].cctx = NULL;
mtctx->jobs[chunkID].srcStart = NULL;
{ size_t const cSize = mtctx->jobs[chunkID].cSize;
if (ZSTD_isError(cSize)) error = cSize;
if ((!error) && (dstPos + cSize > dstCapacity)) error = ERROR(dstSize_tooSmall);
if (chunkID) { /* note : chunk 0 is already written directly into dst */
if (!error)
memmove((char*)dst + dstPos, mtctx->jobs[chunkID].dstBuff.start, cSize); /* may overlap if chunk decompressed within dst */
if (chunkID >= compressWithinDst) /* otherwise, it decompresses within dst */
ZSTDMT_releaseBuffer(mtctx->buffPool, mtctx->jobs[chunkID].dstBuff);
mtctx->jobs[chunkID].dstBuff = g_nullBuffer;
}
dstPos += cSize ;
}
}
if (!error) DEBUGLOG(3, "compressed size : %u ", (U32)dstPos);
return error ? error : dstPos;
}
}
示例11: ZSTDMT_createCompressionJob
static size_t ZSTDMT_createCompressionJob(ZSTDMT_CCtx* zcs, size_t srcSize, unsigned endFrame)
{
size_t const dstBufferCapacity = ZSTD_compressBound(srcSize);
buffer_t const dstBuffer = ZSTDMT_getBuffer(zcs->buffPool, dstBufferCapacity);
ZSTD_CCtx* const cctx = ZSTDMT_getCCtx(zcs->cctxPool);
unsigned const jobID = zcs->nextJobID & zcs->jobIDMask;
if ((cctx==NULL) || (dstBuffer.start==NULL)) {
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
DEBUGLOG(4, "preparing job %u to compress %u bytes with %u preload ", zcs->nextJobID, (U32)srcSize, (U32)zcs->dictSize);
zcs->jobs[jobID].src = zcs->inBuff.buffer;
zcs->jobs[jobID].srcStart = zcs->inBuff.buffer.start;
zcs->jobs[jobID].srcSize = srcSize;
zcs->jobs[jobID].dictSize = zcs->dictSize; /* note : zcs->inBuff.filled is presumed >= srcSize + dictSize */
zcs->jobs[jobID].params = zcs->params;
if (zcs->nextJobID) zcs->jobs[jobID].params.fParams.checksumFlag = 0; /* do not calculate checksum within sections, just keep it in header for first section */
zcs->jobs[jobID].cdict = zcs->nextJobID==0 ? zcs->cdict : NULL;
zcs->jobs[jobID].fullFrameSize = zcs->frameContentSize;
zcs->jobs[jobID].dstBuff = dstBuffer;
zcs->jobs[jobID].cctx = cctx;
zcs->jobs[jobID].firstChunk = (zcs->nextJobID==0);
zcs->jobs[jobID].lastChunk = endFrame;
zcs->jobs[jobID].jobCompleted = 0;
zcs->jobs[jobID].dstFlushed = 0;
zcs->jobs[jobID].jobCompleted_mutex = &zcs->jobCompleted_mutex;
zcs->jobs[jobID].jobCompleted_cond = &zcs->jobCompleted_cond;
/* get a new buffer for next input */
if (!endFrame) {
size_t const newDictSize = MIN(srcSize + zcs->dictSize, zcs->targetDictSize);
zcs->inBuff.buffer = ZSTDMT_getBuffer(zcs->buffPool, zcs->inBuffSize);
if (zcs->inBuff.buffer.start == NULL) { /* not enough memory to allocate next input buffer */
zcs->jobs[jobID].jobCompleted = 1;
zcs->nextJobID++;
ZSTDMT_waitForAllJobsCompleted(zcs);
ZSTDMT_releaseAllJobResources(zcs);
return ERROR(memory_allocation);
}
DEBUGLOG(5, "inBuff filled to %u", (U32)zcs->inBuff.filled);
zcs->inBuff.filled -= srcSize + zcs->dictSize - newDictSize;
DEBUGLOG(5, "new job : filled to %u, with %u dict and %u src", (U32)zcs->inBuff.filled, (U32)newDictSize, (U32)(zcs->inBuff.filled - newDictSize));
memmove(zcs->inBuff.buffer.start, (const char*)zcs->jobs[jobID].srcStart + zcs->dictSize + srcSize - newDictSize, zcs->inBuff.filled);
DEBUGLOG(5, "new inBuff pre-filled");
zcs->dictSize = newDictSize;
} else {
zcs->inBuff.buffer = g_nullBuffer;
zcs->inBuff.filled = 0;
zcs->dictSize = 0;
zcs->frameEnded = 1;
if (zcs->nextJobID == 0)
zcs->params.fParams.checksumFlag = 0; /* single chunk : checksum is calculated directly within worker thread */
}
DEBUGLOG(3, "posting job %u : %u bytes (end:%u) (note : doneJob = %u=>%u)", zcs->nextJobID, (U32)zcs->jobs[jobID].srcSize, zcs->jobs[jobID].lastChunk, zcs->doneJobID, zcs->doneJobID & zcs->jobIDMask);
POOL_add(zcs->factory, ZSTDMT_compressChunk, &zcs->jobs[jobID]); /* this call is blocking when thread worker pool is exhausted */
zcs->nextJobID++;
return 0;
}
示例12: cfasta_gotoh_pair_wise
int cfasta_gotoh_pair_wise (Alignment *A,int*ns, int **l_s,Constraint_list *CL)
{
/*TREATMENT OF THE TERMINAL GAP PENALTIES*/
/*TG_MODE=0---> gop and gep*/
/*TG_MODE=1---> --- gep*/
/*TG_MODE=2---> --- ---*/
int maximise;
/*VARIABLES FOR THE MULTIPLE SEQUENCE ALIGNMENT*/
int **tot_diag;
int *diag;
int ktup;
static int n_groups;
static char **group_list;
int score, new_score;
int n_chosen_diag=20;
int step;
int max_n_chosen_diag;
int l1, l2;
/********Prepare Penalties******/
maximise=CL->maximise;
ktup=CL->ktup;
/********************************/
if ( !group_list)
{
group_list=make_group_aa (&n_groups, CL->matrix_for_aa_group);
}
l1=strlen (A->seq_al[l_s[0][0]]);
l2=strlen (A->seq_al[l_s[1][0]]);
if ( !CL->fasta_step)
{
step=MIN(l1,l2);
step=(int) log ((double)MAX(step, 1));
step=MAX(step, 20);
}
else
{
step=CL->fasta_step;
}
tot_diag=evaluate_diagonals ( A, ns, l_s, CL, maximise,n_groups,group_list, ktup);
max_n_chosen_diag=strlen (A->seq_al[l_s[0][0]])+strlen (A->seq_al[l_s[1][0]])-1;
/*max_n_chosen_diag=(int)log10((double)(l1+l2))*10;*/
n_chosen_diag+=step;
n_chosen_diag=MIN(n_chosen_diag, max_n_chosen_diag);
diag=extract_N_diag (strlen (A->seq_al[l_s[0][0]]),strlen (A->seq_al[l_s[1][0]]), tot_diag, n_chosen_diag, 0);
score =make_fasta_gotoh_pair_wise ( A, ns, l_s, CL, diag);
new_score=0;
vfree ( diag);
while (new_score!=score && n_chosen_diag< max_n_chosen_diag )
{
score=new_score;
ungap_sub_aln ( A, ns[0], l_s[0]);
ungap_sub_aln ( A, ns[1], l_s[1]);
n_chosen_diag+=step;
n_chosen_diag=MIN(n_chosen_diag, max_n_chosen_diag);
diag =extract_N_diag (strlen (A->seq_al[l_s[0][0]]),strlen (A->seq_al[l_s[1][0]]), tot_diag, n_chosen_diag, 0);
new_score=make_fasta_gotoh_pair_wise ( A, ns, l_s, CL, diag);
vfree ( diag);
}
score=new_score;
free_int (tot_diag, -1);
return score;
}
示例13: audit
/*
* The audit system call. Trust what the user has sent down and save it
* away in the audit file. User passes a complete audit record and its
* length. We will fill in the time stamp, check the header and the length
* Put a trailer and a sequence token if policy requires.
* In the future length might become size_t instead of an int.
*
* The call is valid whether or not AUDIT_PERZONE is set (think of
* login to a zone). When the local audit state (auk_auditstate) is
* AUC_INIT_AUDIT, records are accepted even though auditd isn't
* running.
*/
int
audit(caddr_t record, int length)
{
char c;
int count, l;
token_t *m, *n, *s, *ad;
int hdrlen, delta;
adr_t hadr;
adr_t sadr;
int size; /* 0: 32 bit utility 1: 64 bit utility */
int host_len;
size_t zlen;
au_kcontext_t *kctx = GET_KCTX_PZ;
/* if auditing not enabled, then don't generate an audit record */
if (kctx->auk_auditstate != AUC_AUDITING &&
kctx->auk_auditstate != AUC_INIT_AUDIT)
return (0);
/* Only privileged processes can audit */
if (secpolicy_audit_modify(CRED()) != 0)
return (EPERM);
/* Max user record size is 32K */
if (length > AUDIT_REC_SIZE)
return (E2BIG);
/*
* The specified length must be at least as big as the smallest
* possible header token. Later after beginning to scan the
* header we'll determine the true minimum length according to
* the header type and attributes.
*/
#define AU_MIN_HEADER_LEN (sizeof (char) + sizeof (int32_t) + \
sizeof (char) + sizeof (short) + sizeof (short) + \
(sizeof (int32_t) * 2))
if (length < AU_MIN_HEADER_LEN)
return (EINVAL);
/* Read in user's audit record */
count = length;
m = n = s = ad = NULL;
while (count) {
m = au_getclr();
if (!s)
s = n = m;
else {
n->next_buf = m;
n = m;
}
l = MIN(count, AU_BUFSIZE);
if (copyin(record, memtod(m, caddr_t), (size_t)l)) {
/* copyin failed release au_membuf */
au_free_rec(s);
return (EFAULT);
}
record += l;
count -= l;
m->len = (uchar_t)l;
}
/* Now attach the entire thing to ad */
au_write((caddr_t *)&(ad), s);
/* validate header token type. trust everything following it */
adr_start(&hadr, memtod(s, char *));
(void) adr_getchar(&hadr, &c);
switch (c) {
case AUT_HEADER32:
/* size vers+event_ID+event_modifier fields */
delta = 1 + 2 + 2;
hdrlen = 1 + 4 + delta + (sizeof (int32_t) * 2);
size = HEADER_SIZE32;
break;
#ifdef _LP64
case AUT_HEADER64:
/* size vers+event_ID+event_modifier fields */
delta = 1 + 2 + 2;
hdrlen = 1 + 4 + delta + (sizeof (int64_t) * 2);
size = HEADER_SIZE64;
break;
#endif
case AUT_HEADER32_EX:
/*
* Skip over the length/version/type/mod fields and
//.........这里部分代码省略.........
示例14: privcmd_ioctl
static int
privcmd_ioctl(struct cdev *dev, unsigned long cmd, caddr_t arg,
int mode, struct thread *td)
{
int error, i;
switch (cmd) {
case IOCTL_PRIVCMD_HYPERCALL: {
struct ioctl_privcmd_hypercall *hcall;
hcall = (struct ioctl_privcmd_hypercall *)arg;
#ifdef __amd64__
/*
* The hypervisor page table walker will refuse to access
* user-space pages if SMAP is enabled, so temporary disable it
* while performing the hypercall.
*/
if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
stac();
#endif
error = privcmd_hypercall(hcall->op, hcall->arg[0],
hcall->arg[1], hcall->arg[2], hcall->arg[3], hcall->arg[4]);
#ifdef __amd64__
if (cpu_stdext_feature & CPUID_STDEXT_SMAP)
clac();
#endif
if (error >= 0) {
hcall->retval = error;
error = 0;
} else {
error = xen_translate_error(error);
hcall->retval = 0;
}
break;
}
case IOCTL_PRIVCMD_MMAPBATCH: {
struct ioctl_privcmd_mmapbatch *mmap;
vm_map_t map;
vm_map_entry_t entry;
vm_object_t mem;
vm_pindex_t pindex;
vm_prot_t prot;
boolean_t wired;
struct xen_add_to_physmap_range add;
xen_ulong_t *idxs;
xen_pfn_t *gpfns;
int *errs, index;
struct privcmd_map *umap;
uint16_t num;
mmap = (struct ioctl_privcmd_mmapbatch *)arg;
if ((mmap->num == 0) ||
((mmap->addr & PAGE_MASK) != 0)) {
error = EINVAL;
break;
}
map = &td->td_proc->p_vmspace->vm_map;
error = vm_map_lookup(&map, mmap->addr, VM_PROT_NONE, &entry,
&mem, &pindex, &prot, &wired);
if (error != KERN_SUCCESS) {
error = EINVAL;
break;
}
if ((entry->start != mmap->addr) ||
(entry->end != mmap->addr + (mmap->num * PAGE_SIZE))) {
vm_map_lookup_done(map, entry);
error = EINVAL;
break;
}
vm_map_lookup_done(map, entry);
if ((mem->type != OBJT_MGTDEVICE) ||
(mem->un_pager.devp.ops != &privcmd_pg_ops)) {
error = EINVAL;
break;
}
umap = mem->handle;
add.domid = DOMID_SELF;
add.space = XENMAPSPACE_gmfn_foreign;
add.foreign_domid = mmap->dom;
/*
* The 'size' field in the xen_add_to_physmap_range only
* allows for UINT16_MAX mappings in a single hypercall.
*/
num = MIN(mmap->num, UINT16_MAX);
idxs = malloc(sizeof(*idxs) * num, M_PRIVCMD, M_WAITOK);
gpfns = malloc(sizeof(*gpfns) * num, M_PRIVCMD, M_WAITOK);
errs = malloc(sizeof(*errs) * num, M_PRIVCMD, M_WAITOK);
set_xen_guest_handle(add.idxs, idxs);
set_xen_guest_handle(add.gpfns, gpfns);
set_xen_guest_handle(add.errs, errs);
/* Allocate a bitset to store broken page mappings. */
umap->err = BITSET_ALLOC(mmap->num, M_PRIVCMD,
M_WAITOK | M_ZERO);
//.........这里部分代码省略.........
示例15: DrawRegion
void DrawRegion( Region key, float scale ) {
if ( key == NULL ) return;
int stable = key->stable;
char name[256];
sprintf(name,"/tmp/T%03d.ppm",stable);
Image out = ReadPPMFile(name);
static int count = 0;
if ( !ImageIsGood(out) ) {
out = ConvertImage1(CopyImage(key->image));
sprintf(name,"/tmp/R%05d.ppm",count++);
} else sprintf(name,"/tmp/T%03d.ppm",stable);
fprintf(stderr,".");
int rv = RandomNumber(0,255);
int gv = RandomNumber(0,rv);
int bv = RandomNumber(0,gv);
int color = PIX3(rv,gv,bv);
DrawPolygon(key->border,out,color);
Ellipse e1 = NewEllipse(key->row,key->col,key->maj*scale,key->min*scale,key->phi);
DrawEllipse(e1,out,color); free(e1);
Image patch = CreateImage(41*sqrt(2),41*sqrt(2));
RegionToPatch(key,key->image,patch,scale);
FVec hist = GenerateOrientationHistogram(patch);
GaussianBlur1D(hist->values,hist->l,hist->r,2);
DrawFVec(hist,10,10,200,400,PIX3(0,0,250),out);
FVecFree(hist);
if ( PolygonIsGood(key->sizes) ) {
struct PointSt p1 = key->sizes->vertices[0];
struct PointSt p2 = key->sizes->vertices[key->sizes->numberOfVertices-1];
int i;
hist = FVecNew(0,255);
Point p;
while ( ( p = NextPolygonVertex(key->sizes) ) != NULL ) FVecSetAt(hist,p->y,p->x);
if ( p1.y < p2.y ) {
for(i=p1.y;i<=p2.y;i++) if ( hist->values[i] == 0.0 ) FVecAddAt(hist,i,1);
} else {
for(i=p2.y;i>=p1.y;i--) if ( hist->values[i] == 0.0 ) FVecAddAt(hist,i,1);
}
hist->l = MIN(p1.y,p2.y);
hist->r = MAX(p2.y-1,p1.y-1);
DrawSizeFVec(hist,497,0,1021,1023,color,stable,out);
DrawSizeFVec(hist,498,0,1022,1023,color,stable,out);
DrawSizeFVec(hist,499,0,1023,1023,color,stable,out);
}
WritePPM(name,out);
FreeImage(out);
}