本文整理汇总了C++中ME函数的典型用法代码示例。如果您正苦于以下问题:C++ ME函数的具体用法?C++ ME怎么用?C++ ME使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ME函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: transposeMultiplyMatrixR
Matrix transposeMultiplyMatrixR(const Matrix A, const Matrix B) {
/** creates a new matrix that is the product of the A and (B transpose) */
int i, j, k; /* Variables used as indices */
Matrix P = makeMatrix(A->row_dim, B->row_dim); /* Product A * B */
DEBUG(10, "Multiplying Matrix");
assert(A->row_dim == B->row_dim); /* Verify that the Matrices can be multiplied */
/* Optimized code */
for ( i = 0; i < A->row_dim; i++) {
for ( j = 0; j < B->row_dim; j++) {
ME( P, i, j) = 0;
}
}
for (k = 0; k < A->col_dim; k++) {
for ( i = 0; i < A->row_dim; i++) {
for ( j = 0; j < B->row_dim; j++) {
ME( P, i, j) += ME(A, i, k) * ME(B, j, k);
}
}
}
return P;
}
示例2: GeometrySimLeastSquaresNLS
/* This method performs an L2 based distance measure
after solving for a best fit transformation. The
best fit transformation is a combination of a 2D
scale, rotation and translation. The algorithm
solves for this transformation using a least squares
solution to a set of transformation aproximations. */
FTYPE GeometrySimLeastSquaresNLS(FaceGraph f1, FaceGraph f2){
int i;
FTYPE dist = 0.0;
Matrix g1 = makeMatrix(f1->geosize*2,1);
Matrix g2 = makeMatrix(f1->geosize*2,1);
for (i = 0; i < f1->geosize; i++) {
FTYPE dedx=0, dedy=0;
DENarrowingLocalSearch(f1->jets[i],f2->jets[i],&dedx,&dedy);
ME(g1,2*i,0) = f1->jets[i]->x ;
ME(g1,2*i+1,0) = f1->jets[i]->y ;
ME(g2,2*i,0) = f2->jets[i]->x + dedx;
ME(g2,2*i+1,0) = f2->jets[i]->y + dedy;
}
TransformLeastSquares(g1,g2);
dist = L2Dist(g1, g2);
freeMatrix(g1);
freeMatrix(g2);
return dist;
}
示例3: rowMultAdd
void rowMultAdd(Matrix m, int rSrc, int rDest, FTYPE value) {
int col = 0;
for(col = 0; col < m->col_dim; col++) {
ME(m,rDest,col) += value*ME(m,rSrc,col);
}
}
示例4: fisherVerify
void fisherVerify(Matrix fisherBasis, Matrix fisherValues, Matrix Sw, Matrix Sb) {
Matrix SbW = multiplyMatrix(Sb, fisherBasis);
Matrix SwW = multiplyMatrix(Sw, fisherBasis);
Matrix D = makeIdentityMatrix(fisherBasis->row_dim);
Matrix DSwW;
Matrix zeroMat;
int i, j;
MESSAGE("Verifying Fisher Basis.");
for (i = 0; i < D->row_dim; i++) {
ME(D, i, i) = ME(fisherValues, i, 0);
}
DSwW = multiplyMatrix(D, SwW);
zeroMat = subtractMatrix(SbW, DSwW);
for (i = 0; i < zeroMat->row_dim; i++) {
for (j = 0; j < zeroMat->col_dim; j++) {
if (!EQUAL_ZERO(ME(zeroMat, i, j), 0.000001)) {
DEBUG( -1, "Fisher validation failed.");
printf("Element: (%d,%d) value = %f", i, j, ME(zeroMat, i, j));
exit(1);
}
}
}
}
示例5: scaleMatrix
/* Return a scale Matrix */
Matrix scaleMatrix(double s){
Matrix transform = makeIdentityMatrix(3);
ME(transform,0,0) = s;
ME(transform,1,1) = s;
return transform;
}
示例6: invertRREF
/* invert a matrix using Gaussian Elimination */
Matrix invertRREF(Matrix m) {
int prealloc = alloc_matrix;
int i,j;
Matrix tmp = makeZeroMatrix(m->row_dim, m->col_dim*2);
Matrix inverse = makeMatrix(m->row_dim, m->col_dim);
DEBUG_CHECK(m->row_dim == m->col_dim,"Matrix can only be inverted if it is square");
/* build the tmp Matrix which will be passed to RREF */
for( i = 0; i < m->row_dim; i++) {
for( j = 0; j < m->col_dim; j++) {
ME(tmp,i,j) = ME(m,i,j);
if(i == j) {
ME(tmp,i,j+m->col_dim) = 1;
}
}
}
matrixRREF(tmp);
for( i = 0; i < m->row_dim; i++) {
for( j = 0; j < m->col_dim; j++) {
ME(inverse,i,j) = ME(tmp,i,j+m->col_dim);
}
}
freeMatrix(tmp);
if(prealloc != alloc_matrix - 1) {
printf("Error deallocating matricies <%s>: pre=%d post=%d",__FUNCTION__, prealloc, alloc_matrix);
exit(1);
}
return inverse;
}
示例7: reflectMatrix
Matrix reflectMatrix(int bool_x, int bool_y){
Matrix transform = makeIdentityMatrix(3);
if(bool_x) ME(transform,0,0) = -1;
if(bool_y) ME(transform,1,1) = -1;
return transform;
}
示例8: translateMatrix
/* Return a translation matrix */
Matrix translateMatrix(double dx, double dy){
Matrix transform = makeIdentityMatrix(3);
ME(transform,0,2) = dx;
ME(transform,1,2) = dy;
return transform;
}
示例9: mean_subtract_images
void
mean_subtract_images (Matrix images, Matrix mean)
{
int i, j;
for (i = 0; i < images->row_dim; i++) {
for (j = 0; j < images->col_dim; j++) {
ME(images, i, j) -= ME(mean, i, 0);
}
}
}
示例10: rotateMatrix
/* Return a rotation matrix */
Matrix rotateMatrix(double theta){
Matrix transform = makeIdentityMatrix(3);
ME(transform,0,0) = cos(theta);
ME(transform,1,1) = cos(theta);
ME(transform,0,1) = -sin(theta);
ME(transform,1,0) = sin(theta);
return transform;
}
示例11: rowSwap
void rowSwap(Matrix m, int rSrc, int rDest) {
int col = 0;
FTYPE tmp;
for(col = 0; col < m->col_dim; col++) {
tmp = ME(m,rSrc,col);
ME(m,rSrc,col) = ME(m,rDest,col);
ME(m,rDest,col) = tmp;
}
}
示例12: duplicateMatrix
Matrix duplicateMatrix(const Matrix mat) {
Matrix dup = makeMatrix(mat->row_dim, mat->col_dim);
int i, j;
for (i = 0; i < mat->row_dim; i++) {
for (j = 0; j < mat->col_dim; j++) {
ME(dup, i, j) = ME(mat, i, j);
}
}
return dup;
}
示例13: L2Dist
FTYPE L2Dist(Matrix g1, Matrix g2){
FTYPE dist = 0.0;
int i;
for (i = 0; i < g1->row_dim/2; i++) {
dist += SQR(ME(g1,2*i,0) - ME(g2,2*i,0));
dist += SQR(ME(g1,2*i+1,0) - ME(g2,2*i+1,0));
}
return sqrt(dist);
}
示例14: basis
/*
This function reads images in to a vector. That vector is then mean subtracted
and then projected onto an optimal basis (PCA, LDA or LPP). Returned is a matrix
that contains the images after they have been projected onto the subspace.
*/
Matrix
readAndProjectImages (Subspace *s, char *imageNamesFile, char *imageDirectory, int *numImages, ImageList **srt)
{
int i, j;
Matrix images, vector, smallVector;
char name[FILE_LINE_LENGTH];
ImageList *subject, *replicate;
DEBUG(1, "Reading training file names from file");
*srt = getImageNames(imageNamesFile, numImages);
DEBUG_CHECK(*srt, "Error: header no imagenames found in file image list file");
/* Automatically determine number of pixels in images */
sprintf(name, "%s/%s", imageDirectory, (*srt)->filename);
DEBUG(1, "Autodetecting number of pixels, i.e. vector length based on the size of image 0.");
DEBUG_CHECK (autoFileLength(name) == s->numPixels, "Images sizes do not match subspace basis vector size");
DEBUG_INT(1, "Vector length", s->numPixels);
DEBUG_CHECK(s->numPixels > 0, "Error positive value required for a Vector Length");
/*Images stored in the columns of a matrix */
DEBUG(1, "Allocating image matrix");
images = makeMatrix(s->basis->col_dim, *numImages);
vector = makeMatrix(s->numPixels, 1);
i = 0;
for (subject = *srt; subject; subject = subject->next_subject) {
for (replicate = subject; replicate; replicate = replicate->next_replicate) {
if (debuglevel > 0)
printf("%s ", replicate->filename);
sprintf(name, "%s/%s", imageDirectory, replicate->filename);
replicate->imageIndex = i;
readFile(name, 0, vector);
writeProgress("Reading images", i,*numImages);
smallVector = centerThenProjectImages(s, vector);
/* Copy the smaller vector into the image matrix*/
for (j = 0; j < smallVector->row_dim; j++) {
ME(images, j, i) = ME(smallVector, j, 0);
}
freeMatrix(smallVector);
i++; /* increament the image index */
}
if (debuglevel > 0)
printf("\n");
}
return images;
}
示例15: matrixRREF
void matrixRREF(Matrix m) {
int prealloc = alloc_matrix;
int pivotCol = 0;
int pivotRow = 0;
int row;
FTYPE absVal;
int tmp = 0;
while(1) {
/* Select the row with the largest absolute value, or move to the next row
if there is no value int the column */
absVal = 0.0;
while( absVal == 0.0 && pivotCol < m->col_dim) {
absVal = ABS(ME(m,pivotRow,pivotCol));
tmp = pivotRow;
for(row = pivotRow+1; row < m->row_dim; row++) {
if( ABS(ME(m,row,pivotCol)) > absVal ) {
absVal = ABS(ME(m,row,pivotCol));
tmp = row;
}
}
if(absVal == 0) {
pivotCol++;
}
}
/* return if the RREF has been found */
if( pivotCol >= m->col_dim || pivotRow >= m->row_dim) return;
/* make sure that the pivot row is in the correct position */
if(pivotRow != tmp) rowSwap(m,tmp,pivotRow);
/* rescale the Pivot Row */
rowMult( m, pivotRow,1.0/ME(m,pivotRow,pivotCol) );
/* This part of the algorithm is not as effecent as it could be,
but it works for now. */
for(row = 0; row < m->row_dim; row++) {
if(row != pivotRow) {
rowMultAdd(m,pivotRow,row,-ME(m,row,pivotCol));
}
}
pivotRow++;
pivotCol++;
}
if(prealloc != alloc_matrix) {
printf("Error deallocating matricies <%s>: pre=%d post=%d",__FUNCTION__, prealloc, alloc_matrix);
exit(1);
}
}