本文整理汇总了C++中KSPSetOperators函数的典型用法代码示例。如果您正苦于以下问题:C++ KSPSetOperators函数的具体用法?C++ KSPSetOperators怎么用?C++ KSPSetOperators使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了KSPSetOperators函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: StokesSetupPC
PetscErrorCode StokesSetupPC(Stokes *s, KSP ksp)
{
KSP *subksp;
PC pc;
PetscInt n = 1;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = KSPGetPC(ksp, &pc);CHKERRQ(ierr);
ierr = PCFieldSplitSetIS(pc, "0", s->isg[0]);CHKERRQ(ierr);
ierr = PCFieldSplitSetIS(pc, "1", s->isg[1]);CHKERRQ(ierr);
if (s->userPC) {
ierr = PCFieldSplitSetSchurPre(pc, PC_FIELDSPLIT_SCHUR_PRE_USER, s->myS);CHKERRQ(ierr);
}
if (s->userKSP) {
ierr = PCSetUp(pc);CHKERRQ(ierr);
ierr = PCFieldSplitGetSubKSP(pc, &n, &subksp);CHKERRQ(ierr);
ierr = KSPSetOperators(subksp[1], s->myS, s->myS);CHKERRQ(ierr);
ierr = PetscFree(subksp);CHKERRQ(ierr);
}
PetscFunctionReturn(0);
}
示例2: ComputeKSPFETIDP
static PetscErrorCode ComputeKSPFETIDP(DomainData dd, KSP ksp_bddc, KSP *ksp_fetidp)
{
PetscErrorCode ierr;
KSP temp_ksp;
PC pc,D;
Mat F;
PetscFunctionBeginUser;
ierr = KSPGetPC(ksp_bddc,&pc);CHKERRQ(ierr);
ierr = PCBDDCCreateFETIDPOperators(pc,&F,&D);CHKERRQ(ierr);
ierr = KSPCreate(PetscObjectComm((PetscObject)F),&temp_ksp);CHKERRQ(ierr);
ierr = KSPSetOperators(temp_ksp,F,F);CHKERRQ(ierr);
ierr = KSPSetType(temp_ksp,KSPCG);CHKERRQ(ierr);
ierr = KSPSetPC(temp_ksp,D);CHKERRQ(ierr);
ierr = KSPSetComputeSingularValues(temp_ksp,PETSC_TRUE);CHKERRQ(ierr);
ierr = KSPSetFromOptions(temp_ksp);CHKERRQ(ierr);
ierr = KSPSetUp(temp_ksp);CHKERRQ(ierr);
*ksp_fetidp = temp_ksp;
ierr = MatDestroy(&F);CHKERRQ(ierr);
ierr = PCDestroy(&D);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例3: Solver
HeatSolverBTCS::HeatSolverBTCS(int ny_, double dy_, int nx_, double dx_):
Solver(ny_, dy_, nx_, dx_)
{
// Create a sparse matrix A
two_d_heat_BTCS(A, ny, dy, nx, dx);
dt = 1.0;
// set up linear solver context (ksp) and preconditioner (pc)
KSPCreate(PETSC_COMM_WORLD,&ksp);
KSPSetOperators(ksp,A,A);
KSPGetPC(ksp,&pc);
PCSetType(pc,PCLU);
KSPSetFromOptions(ksp);
// create rhs
VecCreateSeq(PETSC_COMM_SELF, nx*ny, &rhs);
VecSetFromOptions(rhs);
VecSet(rhs,0.0);
// prepare temp
VecCreateSeq(PETSC_COMM_SELF, nx*ny, &temp);
VecSetFromOptions(temp);
}
示例4: main
int main(int argc, char **argv){
PetscErrorCode ierr;
Vec x,b;
Mat A;
KSP ksp;
ierr=PetscInitialize(&argc,&argv,PETSC_NULL,PETSC_NULL);CHKERRQ(ierr);
PetscPrintf(PETSC_COMM_WORLD,"]> Initializing PETSc/SLEPc\n");
/*Load data*/
ierr=loadInputs(&A,&b,&x);CHKERRQ(ierr);
PetscPrintf(PETSC_COMM_WORLD,"]> Data loaded\n");
/*Create the KSP context and setup*/
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
ierr = KSPSetType(ksp,KSPFGMRES);CHKERRQ(ierr);
ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
ierr = KSPSetUp(ksp);CHKERRQ(ierr);
PetscPrintf(PETSC_COMM_WORLD,"]> Krylov Solver settings done\n");
/*Solve the system*/
PetscPrintf(PETSC_COMM_WORLD,"]> Krylov Solver Launching solving process\n");
ierr = KSPSolve(ksp, b, x); CHKERRQ(ierr);
PetscPrintf(PETSC_COMM_WORLD,"]> Krylov Solver System solved\n");
/*Clean*/
ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
ierr = VecDestroy(&b);CHKERRQ(ierr);
ierr = VecDestroy(&x);CHKERRQ(ierr);
ierr = MatDestroy(&A);CHKERRQ(ierr);
PetscPrintf(PETSC_COMM_WORLD,"]> Cleaned structures, finalizing\n");
/*Finalize PETSc*/
PetscFinalize();
return 0;
}
示例5: PressurePoissonCreate
PetscErrorCode PressurePoissonCreate( )
{
PetscErrorCode ierr;
PetscFunctionBegin;
PetscLogEventBegin(EVENT_PressurePoissonCreate,0,0,0,0);
// PetscLogEventRegister(&EVENT_PressurePoissonCreate,"PressurePoissonCreate", 0);
ierr = KSPCreate(PETSC_COMM_SELF, &ksp); CHKERRQ(ierr);
KSPGetPC(ksp, &pc);
// KSPSetType(ksp, KSPCG);
// PCSetType(pc, PCICC);
// PCFactorSetLevels(pc, 0);
// KSPSetInitialGuessNonzero(ksp, PETSC_TRUE);
KSPSetType(ksp, KSPPREONLY);
PCSetType(pc, PCCHOLESKY);
PCFactorSetMatOrderingType(pc, MATORDERING_ND);
KSPSetFromOptions(ksp);
KSPSetOperators(ksp, m, m, SAME_PRECONDITIONER);
PCSetUp(pc);
ierr = IIMCreate(&iim, 12); CHKERRQ(ierr);
// IIMSetForceComponents(iim, ForceComponentNormalSimple, ForceComponentTangentialSimple);
CreateGrid2D(d1, d2, &rhsC);
CreateGrid2D(d1, d2, &p);
CreateGrid2D(d1, d2, &px);
CreateGrid2D(d1, d2, &py);
CreateGrid2D(d1, d2, &u);
CreateGrid2D(d1, d2, &v);
ierr = CreateLevelSet2D(d1,d2,&ls); CHKERRQ(ierr);
CreateLevelSet2D(d1, d2, &lstemp);
LevelSetInitializeToStar(ls,PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE);
// LevelSetInitializeToCircle(ls, PETSC_DECIDE, PETSC_DECIDE, PETSC_DECIDE);
PetscLogEventEnd(EVENT_PressurePoissonCreate,0,0,0,0);
PetscFunctionReturn(0);
}
示例6: MatAssemblyBegin
void PETSc::Solve_withPureNeumann(void)
{
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
ierr = VecAssemblyBegin(x);
ierr = VecAssemblyEnd(x);
ierr = VecAssemblyBegin(b);
ierr = VecAssemblyEnd(b);
MatNullSpaceCreate(PETSC_COMM_WORLD,PETSC_TRUE,0,PETSC_NULL,&nullsp);
KSPSetNullSpace(ksp,nullsp);
KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);
//KSPSetType(ksp,KSPMINRES);
//KSPSetType(ksp,KSPGMRES);
//KSPSetType(ksp,KSPBCGS);
KSPSetType(ksp,KSPBCGSL);
KSPBCGSLSetEll(ksp,2);
//KSPGetPC(ksp, &pc);
//PCSetType(pc, PCASM);
//PCSetType(pc, PCMG);
//PCMGSetLevels(pc, 3, &PETSC_COMM_WORLD);
//PCMGSetType(pc,PC_MG_MULTIPLICATIVE);
//PCMGSetCycleType(pc,PC_MG_CYCLE_V);
//
KSPSetFromOptions(ksp);
KSPSetUp(ksp);
//start_clock("Before Petsc Solve in pure neumann solver");
KSPSolve(ksp,b,x);
//stop_clock("After Petsc Solve in pure neumann solver");
}
示例7: main
int main(int argc, char** argv)
{
Mat Q;
Vec v, a, se;
KSP QRsolver;
PC pc;
PetscErrorCode ierr;
ierr = PetscInitialize(&argc, &argv, NULL, NULL);if (ierr) return ierr;
ierr = VecCreate(PETSC_COMM_WORLD, &v);CHKERRQ(ierr);
ierr = MatCreate(PETSC_COMM_WORLD, &Q);CHKERRQ(ierr);
ierr = MatSetType(Q, MATDENSE);CHKERRQ(ierr);
ierr = fill(Q, v);CHKERRQ(ierr);
ierr = MatCreateVecs(Q, &a, NULL);CHKERRQ(ierr);
ierr = KSPCreate(PETSC_COMM_WORLD, &QRsolver);CHKERRQ(ierr);
ierr = KSPGetPC(QRsolver, &pc);CHKERRQ(ierr);
ierr = PCSetType(pc, PCNONE);CHKERRQ(ierr);
ierr = KSPSetType(QRsolver, KSPLSQR);CHKERRQ(ierr);
ierr = KSPSetFromOptions(QRsolver);CHKERRQ(ierr);
ierr = KSPSetOperators(QRsolver, Q, Q);CHKERRQ(ierr);
ierr = MatViewFromOptions(Q, NULL, "-sys_view");CHKERRQ(ierr);
ierr = VecViewFromOptions(a, NULL, "-rhs_view");CHKERRQ(ierr);
ierr = KSPSolve(QRsolver, v, a);CHKERRQ(ierr);
ierr = KSPLSQRGetStandardErrorVec(QRsolver, &se);CHKERRQ(ierr);
if (se) {
ierr = VecViewFromOptions(se, NULL, "-se_view");CHKERRQ(ierr);
}
ierr = KSPDestroy(&QRsolver);CHKERRQ(ierr);
ierr = VecDestroy(&a);CHKERRQ(ierr);
ierr = VecDestroy(&v);CHKERRQ(ierr);
ierr = MatDestroy(&Q);CHKERRQ(ierr);
ierr = PetscFinalize();
return ierr;
}
示例8: Petsc_KSPSolve
PetscErrorCode Petsc_KSPSolve(AppCtx *obj)
{
PetscErrorCode ierr;
KSP ksp;
PC pc;
/*create the ksp context and set the operators,that is, associate the system matrix with it*/
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
ierr = KSPSetOperators(ksp,obj->Amat,obj->Amat);CHKERRQ(ierr);
/*get the preconditioner context, set its type and the tolerances*/
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCLU);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);
/*get the command line options if there are any and set them*/
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
/*get the linear system (ksp) solve*/
ierr = KSPSolve(ksp,obj->ksp_rhs,obj->ksp_sol);CHKERRQ(ierr);
KSPDestroy(&ksp);
return 0;
}
示例9: KSPCreate
void Field_solver::create_solver_and_preconditioner( KSP *ksp, PC *pc, Mat *A )
{
PetscReal rtol = 1.e-12;
// Default.
// Possible to specify from command line using '-ksp_rtol' option.
PetscErrorCode ierr;
ierr = KSPCreate( PETSC_COMM_WORLD, ksp ); CHKERRXX(ierr);
ierr = KSPSetOperators( *ksp, *A, *A, DIFFERENT_NONZERO_PATTERN ); CHKERRXX(ierr);
//ierr = KSPSetOperators( *ksp, *A, *A ); CHKERRXX(ierr);
ierr = KSPGetPC( *ksp, pc ); CHKERRXX(ierr);
ierr = PCSetType( *pc, PCGAMG ); CHKERRXX(ierr);
ierr = KSPSetType( *ksp, KSPGMRES ); CHKERRXX(ierr);
ierr = KSPSetTolerances( *ksp, rtol,
PETSC_DEFAULT, PETSC_DEFAULT, PETSC_DEFAULT); CHKERRXX(ierr);
ierr = KSPSetFromOptions( *ksp ); CHKERRXX(ierr);
ierr = KSPSetInitialGuessNonzero( *ksp, PETSC_TRUE ); CHKERRXX( ierr );
// For test purposes
//ierr = KSPSetInitialGuessNonzero( *ksp, PETSC_FALSE ); CHKERRXX( ierr );
ierr = KSPSetUp( *ksp ); CHKERRXX(ierr);
return;
}
示例10: main
int main(int argc,char **args)
{
Vec x,b,u; /* approx solution, RHS, exact solution */
Mat A; /* linear system matrix */
KSP ksp; /* KSP context */
KSP *subksp; /* array of local KSP contexts on this processor */
PC pc; /* PC context */
PC subpc; /* PC context for subdomain */
PetscReal norm; /* norm of solution error */
PetscErrorCode ierr;
PetscInt i,j,Ii,J,*blks,m = 4,n;
PetscMPIInt rank,size;
PetscInt its,nlocal,first,Istart,Iend;
PetscScalar v,one = 1.0,none = -1.0;
PetscBool isbjacobi;
PetscInitialize(&argc,&args,(char*)0,help);
ierr = PetscOptionsGetInt(NULL,"-m",&m,NULL);CHKERRQ(ierr);
ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);CHKERRQ(ierr);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRQ(ierr);
n = m+2;
/* -------------------------------------------------------------------
Compute the matrix and right-hand-side vector that define
the linear system, Ax = b.
------------------------------------------------------------------- */
/*
Create and assemble parallel matrix
*/
ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr);
ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,m*n,m*n);CHKERRQ(ierr);
ierr = MatSetFromOptions(A);CHKERRQ(ierr);
ierr = MatMPIAIJSetPreallocation(A,5,NULL,5,NULL);CHKERRQ(ierr);
ierr = MatSeqAIJSetPreallocation(A,5,NULL);CHKERRQ(ierr);
ierr = MatGetOwnershipRange(A,&Istart,&Iend);CHKERRQ(ierr);
for (Ii=Istart; Ii<Iend; Ii++) {
v = -1.0; i = Ii/n; j = Ii - i*n;
if (i>0) {J = Ii - n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
if (i<m-1) {J = Ii + n; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
if (j>0) {J = Ii - 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
if (j<n-1) {J = Ii + 1; ierr = MatSetValues(A,1,&Ii,1,&J,&v,ADD_VALUES);CHKERRQ(ierr);}
v = 4.0; ierr = MatSetValues(A,1,&Ii,1,&Ii,&v,ADD_VALUES);CHKERRQ(ierr);
}
ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
/*
Create parallel vectors
*/
ierr = VecCreate(PETSC_COMM_WORLD,&u);CHKERRQ(ierr);
ierr = VecSetSizes(u,PETSC_DECIDE,m*n);CHKERRQ(ierr);
ierr = VecSetFromOptions(u);CHKERRQ(ierr);
ierr = VecDuplicate(u,&b);CHKERRQ(ierr);
ierr = VecDuplicate(b,&x);CHKERRQ(ierr);
/*
Set exact solution; then compute right-hand-side vector.
*/
ierr = VecSet(u,one);CHKERRQ(ierr);
ierr = MatMult(A,u,b);CHKERRQ(ierr);
/*
Create linear solver context
*/
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.
*/
ierr = KSPSetOperators(ksp,A,A);CHKERRQ(ierr);
/*
Set default preconditioner for this program to be block Jacobi.
This choice can be overridden at runtime with the option
-pc_type <type>
*/
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCBJACOBI);CHKERRQ(ierr);
/* -------------------------------------------------------------------
Define the problem decomposition
------------------------------------------------------------------- */
/*
Call PCBJacobiSetTotalBlocks() to set individually the size of
each block in the preconditioner. This could also be done with
the runtime option
-pc_bjacobi_blocks <blocks>
Also, see the command PCBJacobiSetLocalBlocks() to set the
local blocks.
Note: The default decomposition is 1 block per processor.
*/
ierr = PetscMalloc1(m,&blks);CHKERRQ(ierr);
for (i=0; i<m; i++) blks[i] = n;
ierr = PCBJacobiSetTotalBlocks(pc,m,blks);CHKERRQ(ierr);
ierr = PetscFree(blks);CHKERRQ(ierr);
//.........这里部分代码省略.........
示例11: TaylorGalerkinStepIIMomentum
//.........这里部分代码省略.........
PetscReal hx, hy, area;
const PetscInt *necon;
PetscInt j, k, e, ne, nc, mx, my;
PetscErrorCode ierr;
PetscFunctionBeginUser;
ierr = PetscObjectGetComm((PetscObject) da, &comm);CHKERRQ(ierr);
ierr = DMSetMatType(da,MATAIJ);CHKERRQ(ierr);
ierr = DMCreateMatrix(da, &mat);CHKERRQ(ierr);
ierr = MatSetOption(mat,MAT_NEW_NONZERO_ALLOCATION_ERR,PETSC_FALSE);CHKERRQ(ierr);
ierr = DMGetGlobalVector(da, &rhs_u);CHKERRQ(ierr);
ierr = DMGetGlobalVector(da, &rhs_v);CHKERRQ(ierr);
ierr = KSPCreate(comm, &ksp);CHKERRQ(ierr);
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
ierr = DMDAGetInfo(da, 0, &mx, &my, 0,0,0,0,0,0,0,0,0,0);CHKERRQ(ierr);
hx = 1.0 / (PetscReal)(mx-1);
hy = 1.0 / (PetscReal)(my-1);
area = 0.5*hx*hy;
ierr = VecGetArray(user->sol_n.u, &u_n);CHKERRQ(ierr);
ierr = VecGetArray(user->sol_n.v, &v_n);CHKERRQ(ierr);
ierr = VecGetArray(user->mu, &mu_n);CHKERRQ(ierr);
ierr = VecGetArray(user->sol_phi.u, &u_phi);CHKERRQ(ierr);
ierr = VecGetArray(user->sol_phi.v, &v_phi);CHKERRQ(ierr);
ierr = VecGetArray(user->sol_phi.rho_u, &rho_u_phi);CHKERRQ(ierr);
ierr = VecGetArray(user->sol_phi.rho_v, &rho_v_phi);CHKERRQ(ierr);
ierr = DMDAGetElements(da, &ne, &nc, &necon);CHKERRQ(ierr);
for (e = 0; e < ne; e++) {
for (j = 0; j < 3; j++) {
idx[j] = necon[3*e+j];
values_u[j] = 0.0;
values_v[j] = 0.0;
}
/* Get basis function deriatives (we need the orientation of the element here) */
if (idx[1] > idx[0]) {
psi_x[0] = -hy; psi_x[1] = hy; psi_x[2] = 0.0;
psi_y[0] = -hx; psi_y[1] = 0.0; psi_y[2] = hx;
} else {
psi_x[0] = hy; psi_x[1] = -hy; psi_x[2] = 0.0;
psi_y[0] = hx; psi_y[1] = 0.0; psi_y[2] = -hx;
}
/* <\nabla\psi, F^{n+\phi}_e>: Divergence of the element-averaged convective fluxes */
for (j = 0; j < 3; j++) {
values_u[j] += psi_x[j]*rho_u_phi[e]*u_phi[e] + psi_y[j]*rho_u_phi[e]*v_phi[e];
values_v[j] += psi_x[j]*rho_v_phi[e]*u_phi[e] + psi_y[j]*rho_v_phi[e]*v_phi[e];
}
/* -<\nabla\psi, F^n_v>: Divergence of the viscous fluxes */
for (j = 0; j < 3; j++) {
/* \tau_{xx} = 2/3 \mu(T) (2 {\partial u\over\partial x} - {\partial v\over\partial y}) */
/* \tau_{xy} = \mu(T) ( {\partial u\over\partial y} + {\partial v\over\partial x}) */
/* \tau_{yy} = 2/3 \mu(T) (2 {\partial v\over\partial y} - {\partial u\over\partial x}) */
mu = 0.0;
tau_xx = 0.0;
tau_xy = 0.0;
tau_yy = 0.0;
for (k = 0; k < 3; k++) {
mu += mu_n[idx[k]];
tau_xx += 2.0*psi_x[k]*u_n[idx[k]] - psi_y[k]*v_n[idx[k]];
tau_xy += psi_y[k]*u_n[idx[k]] + psi_x[k]*v_n[idx[k]];
tau_yy += 2.0*psi_y[k]*v_n[idx[k]] - psi_x[k]*u_n[idx[k]];
}
mu /= 3.0;
tau_xx *= (2.0/3.0)*mu;
tau_xy *= mu;
tau_yy *= (2.0/3.0)*mu;
values_u[j] -= area*(psi_x[j]*tau_xx + psi_y[j]*tau_xy);
values_v[j] -= area*(psi_x[j]*tau_xy + psi_y[j]*tau_yy);
}
/* Accumulate to global structures */
ierr = VecSetValuesLocal(rhs_u, 3, idx, values_u, ADD_VALUES);CHKERRQ(ierr);
ierr = VecSetValuesLocal(rhs_v, 3, idx, values_v, ADD_VALUES);CHKERRQ(ierr);
ierr = MatSetValuesLocal(mat, 3, idx, 3, idx, identity, ADD_VALUES);CHKERRQ(ierr);
}
ierr = DMDARestoreElements(da, &ne, &nc, &necon);CHKERRQ(ierr);
ierr = VecRestoreArray(user->sol_n.u, &u_n);CHKERRQ(ierr);
ierr = VecRestoreArray(user->sol_n.v, &v_n);CHKERRQ(ierr);
ierr = VecRestoreArray(user->mu, &mu_n);CHKERRQ(ierr);
ierr = VecRestoreArray(user->sol_phi.u, &u_phi);CHKERRQ(ierr);
ierr = VecRestoreArray(user->sol_phi.v, &v_phi);CHKERRQ(ierr);
ierr = VecRestoreArray(user->sol_phi.rho_u, &rho_u_phi);CHKERRQ(ierr);
ierr = VecRestoreArray(user->sol_phi.rho_v, &rho_v_phi);CHKERRQ(ierr);
ierr = VecAssemblyBegin(rhs_u);CHKERRQ(ierr);
ierr = VecAssemblyBegin(rhs_v);CHKERRQ(ierr);
ierr = MatAssemblyBegin(mat, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = VecAssemblyEnd(rhs_u);CHKERRQ(ierr);
ierr = VecAssemblyEnd(rhs_v);CHKERRQ(ierr);
ierr = MatAssemblyEnd(mat, MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
ierr = VecScale(rhs_u,user->dt);CHKERRQ(ierr);
ierr = VecScale(rhs_v,user->dt);CHKERRQ(ierr);
ierr = KSPSetOperators(ksp, mat, mat, DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
ierr = KSPSolve(ksp, rhs_u, user->sol_np1.rho_u);CHKERRQ(ierr);
ierr = KSPSolve(ksp, rhs_v, user->sol_np1.rho_v);CHKERRQ(ierr);
ierr = KSPDestroy(&ksp);CHKERRQ(ierr);
ierr = MatDestroy(&mat);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(da, &rhs_u);CHKERRQ(ierr);
ierr = DMRestoreGlobalVector(da, &rhs_v);CHKERRQ(ierr);
PetscFunctionReturn(0);
}
示例12: PCSetUp_MG
PetscErrorCode PCSetUp_MG(PC pc)
{
PC_MG *mg = (PC_MG*)pc->data;
PC_MG_Levels **mglevels = mg->levels;
PetscErrorCode ierr;
PetscInt i,n = mglevels[0]->levels;
PC cpc;
PetscBool dump = PETSC_FALSE,opsset,use_amat,missinginterpolate = PETSC_FALSE;
Mat dA,dB;
Vec tvec;
DM *dms;
PetscViewer viewer = 0;
PetscFunctionBegin;
/* FIX: Move this to PCSetFromOptions_MG? */
if (mg->usedmfornumberoflevels) {
PetscInt levels;
ierr = DMGetRefineLevel(pc->dm,&levels);CHKERRQ(ierr);
levels++;
if (levels > n) { /* the problem is now being solved on a finer grid */
ierr = PCMGSetLevels(pc,levels,NULL);CHKERRQ(ierr);
n = levels;
ierr = PCSetFromOptions(pc);CHKERRQ(ierr); /* it is bad to call this here, but otherwise will never be called for the new hierarchy */
mglevels = mg->levels;
}
}
ierr = KSPGetPC(mglevels[0]->smoothd,&cpc);CHKERRQ(ierr);
/* If user did not provide fine grid operators OR operator was not updated since last global KSPSetOperators() */
/* so use those from global PC */
/* Is this what we always want? What if user wants to keep old one? */
ierr = KSPGetOperatorsSet(mglevels[n-1]->smoothd,NULL,&opsset);CHKERRQ(ierr);
if (opsset) {
Mat mmat;
ierr = KSPGetOperators(mglevels[n-1]->smoothd,NULL,&mmat);CHKERRQ(ierr);
if (mmat == pc->pmat) opsset = PETSC_FALSE;
}
if (!opsset) {
ierr = PCGetUseAmat(pc,&use_amat);CHKERRQ(ierr);
if(use_amat){
ierr = PetscInfo(pc,"Using outer operators to define finest grid operator \n because PCMGGetSmoother(pc,nlevels-1,&ksp);KSPSetOperators(ksp,...); was not called.\n");CHKERRQ(ierr);
ierr = KSPSetOperators(mglevels[n-1]->smoothd,pc->mat,pc->pmat);CHKERRQ(ierr);
}
else {
ierr = PetscInfo(pc,"Using matrix (pmat) operators to define finest grid operator \n because PCMGGetSmoother(pc,nlevels-1,&ksp);KSPSetOperators(ksp,...); was not called.\n");CHKERRQ(ierr);
ierr = KSPSetOperators(mglevels[n-1]->smoothd,pc->pmat,pc->pmat);CHKERRQ(ierr);
}
}
for (i=n-1; i>0; i--) {
if (!(mglevels[i]->interpolate || mglevels[i]->restrct)) {
missinginterpolate = PETSC_TRUE;
continue;
}
}
/*
Skipping if user has provided all interpolation/restriction needed (since DM might not be able to produce them (when coming from SNES/TS)
Skipping for galerkin==2 (externally managed hierarchy such as ML and GAMG). Cleaner logic here would be great. Wrap ML/GAMG as DMs?
*/
if (missinginterpolate && pc->dm && mg->galerkin != 2 && !pc->setupcalled) {
/* construct the interpolation from the DMs */
Mat p;
Vec rscale;
ierr = PetscMalloc1(n,&dms);CHKERRQ(ierr);
dms[n-1] = pc->dm;
/* Separately create them so we do not get DMKSP interference between levels */
for (i=n-2; i>-1; i--) {ierr = DMCoarsen(dms[i+1],MPI_COMM_NULL,&dms[i]);CHKERRQ(ierr);}
for (i=n-2; i>-1; i--) {
DMKSP kdm;
PetscBool dmhasrestrict;
ierr = KSPSetDM(mglevels[i]->smoothd,dms[i]);CHKERRQ(ierr);
if (mg->galerkin) {ierr = KSPSetDMActive(mglevels[i]->smoothd,PETSC_FALSE);CHKERRQ(ierr);}
ierr = DMGetDMKSPWrite(dms[i],&kdm);CHKERRQ(ierr);
/* Ugly hack so that the next KSPSetUp() will use the RHS that we set. A better fix is to change dmActive to take
* a bitwise OR of computing the matrix, RHS, and initial iterate. */
kdm->ops->computerhs = NULL;
kdm->rhsctx = NULL;
if (!mglevels[i+1]->interpolate) {
ierr = DMCreateInterpolation(dms[i],dms[i+1],&p,&rscale);CHKERRQ(ierr);
ierr = PCMGSetInterpolation(pc,i+1,p);CHKERRQ(ierr);
if (rscale) {ierr = PCMGSetRScale(pc,i+1,rscale);CHKERRQ(ierr);}
ierr = VecDestroy(&rscale);CHKERRQ(ierr);
ierr = MatDestroy(&p);CHKERRQ(ierr);
}
ierr = DMHasCreateRestriction(dms[i],&dmhasrestrict);CHKERRQ(ierr);
if (dmhasrestrict && !mglevels[i+1]->restrct){
ierr = DMCreateRestriction(dms[i],dms[i+1],&p);CHKERRQ(ierr);
ierr = PCMGSetRestriction(pc,i+1,p);CHKERRQ(ierr);
ierr = MatDestroy(&p);CHKERRQ(ierr);
}
}
for (i=n-2; i>-1; i--) {ierr = DMDestroy(&dms[i]);CHKERRQ(ierr);}
ierr = PetscFree(dms);CHKERRQ(ierr);
}
if (pc->dm && !pc->setupcalled) {
/* finest smoother also gets DM but it is not active, independent of whether galerkin==2 */
//.........这里部分代码省略.........
示例13: main
int main(int argc,char **args)
{
Mat C;
PetscErrorCode ierr;
PetscInt N = 2,rowidx,colidx;
Vec u,b,r;
KSP ksp;
PetscReal norm;
PetscMPIInt rank,size;
PetscScalar v;
PetscInitialize(&argc,&args,(char*)0,help);
ierr = MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
CHKERRQ(ierr);
ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);
CHKERRQ(ierr);
/* create stiffness matrix C = [1 2; 2 3] */
ierr = MatCreate(PETSC_COMM_WORLD,&C);
CHKERRQ(ierr);
ierr = MatSetSizes(C,PETSC_DECIDE,PETSC_DECIDE,N,N);
CHKERRQ(ierr);
ierr = MatSetFromOptions(C);
CHKERRQ(ierr);
ierr = MatSetUp(C);
CHKERRQ(ierr);
if (!rank) {
rowidx = 0;
colidx = 0;
v = 1.0;
ierr = MatSetValues(C,1,&rowidx,1,&colidx,&v,INSERT_VALUES);
CHKERRQ(ierr);
rowidx = 0;
colidx = 1;
v = 2.0;
ierr = MatSetValues(C,1,&rowidx,1,&colidx,&v,INSERT_VALUES);
CHKERRQ(ierr);
rowidx = 1;
colidx = 0;
v = 2.0;
ierr = MatSetValues(C,1,&rowidx,1,&colidx,&v,INSERT_VALUES);
CHKERRQ(ierr);
rowidx = 1;
colidx = 1;
v = 3.0;
ierr = MatSetValues(C,1,&rowidx,1,&colidx,&v,INSERT_VALUES);
CHKERRQ(ierr);
}
ierr = MatAssemblyBegin(C,MAT_FINAL_ASSEMBLY);
CHKERRQ(ierr);
ierr = MatAssemblyEnd(C,MAT_FINAL_ASSEMBLY);
CHKERRQ(ierr);
/* create right hand side and solution */
ierr = VecCreate(PETSC_COMM_WORLD,&u);
CHKERRQ(ierr);
ierr = VecSetSizes(u,PETSC_DECIDE,N);
CHKERRQ(ierr);
ierr = VecSetFromOptions(u);
CHKERRQ(ierr);
ierr = VecDuplicate(u,&b);
CHKERRQ(ierr);
ierr = VecDuplicate(u,&r);
CHKERRQ(ierr);
ierr = VecSet(u,0.0);
CHKERRQ(ierr);
ierr = VecSet(b,1.0);
CHKERRQ(ierr);
/* solve linear system C*u = b */
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);
CHKERRQ(ierr);
ierr = KSPSetOperators(ksp,C,C);
CHKERRQ(ierr);
ierr = KSPSetFromOptions(ksp);
CHKERRQ(ierr);
ierr = KSPSolve(ksp,b,u);
CHKERRQ(ierr);
/* check residual r = C*u - b */
ierr = MatMult(C,u,r);
CHKERRQ(ierr);
ierr = VecAXPY(r,-1.0,b);
CHKERRQ(ierr);
ierr = VecNorm(r,NORM_2,&norm);
CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"|| C*u - b|| = %g\n",(double)norm);
CHKERRQ(ierr);
/* solve C^T*u = b twice */
ierr = KSPSolveTranspose(ksp,b,u);
CHKERRQ(ierr);
/* check residual r = C^T*u - b */
ierr = MatMultTranspose(C,u,r);
CHKERRQ(ierr);
ierr = VecAXPY(r,-1.0,b);
CHKERRQ(ierr);
ierr = VecNorm(r,NORM_2,&norm);
CHKERRQ(ierr);
//.........这里部分代码省略.........
示例14: main
//.........这里部分代码省略.........
ierr = MatAssemblyEnd(C1,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr);
/*
Indicate same nonzero structure of successive linear system matrices
*/
ierr = MatSetOption(C1,MAT_NEW_NONZERO_LOCATIONS,PETSC_TRUE);CHKERRQ(ierr);
/*
Compute right-hand-side vector
*/
ierr = MatMult(C1,u,b1);CHKERRQ(ierr);
/*
Set operators. Here the matrix that defines the linear system
also serves as the preconditioning matrix.
- The flag SAME_NONZERO_PATTERN indicates that the
preconditioning matrix has identical nonzero structure
as during the last linear solve (although the values of
the entries have changed). Thus, we can save some
work in setting up the preconditioner (e.g., no need to
redo symbolic factorization for ILU/ICC preconditioners).
- If the nonzero structure of the matrix is different during
the second linear solve, then the flag DIFFERENT_NONZERO_PATTERN
must be used instead. If you are unsure whether the
matrix structure has changed or not, use the flag
DIFFERENT_NONZERO_PATTERN.
- Caution: If you specify SAME_NONZERO_PATTERN, PETSc
believes your assertion and does not check the structure
of the matrix. If you erroneously claim that the structure
is the same when it actually is not, the new preconditioner
will not function correctly. Thus, use this optimization
feature with caution!
*/
ierr = KSPSetOperators(ksp1,C1,C1,SAME_NONZERO_PATTERN);CHKERRQ(ierr);
/*
Use the previous solution of linear system #1 as the initial
guess for the next solve of linear system #1. The user MUST
call KSPSetInitialGuessNonzero() in indicate use of an initial
guess vector; otherwise, an initial guess of zero is used.
*/
if (t>0) {
ierr = KSPSetInitialGuessNonzero(ksp1,PETSC_TRUE);CHKERRQ(ierr);
}
/*
Solve the first linear system. Here we explicitly call
KSPSetUp() for more detailed performance monitoring of
certain preconditioners, such as ICC and ILU. This call
is optional, ase KSPSetUp() will automatically be called
within KSPSolve() if it hasn't been called already.
*/
ierr = KSPSetUp(ksp1);CHKERRQ(ierr);
ierr = KSPSolve(ksp1,b1,x1);CHKERRQ(ierr);
ierr = KSPGetIterationNumber(ksp1,&its);CHKERRQ(ierr);
/*
Check error of solution to first linear system
*/
ierr = CheckError(u,x1,b1,its,1.e-4,CHECK_ERROR);CHKERRQ(ierr);
/* - - - - - - - - - - - - Stage 2: - - - - - - - - - - - - - -
Assemble and solve second linear system
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
/*
示例15: internal_solve
long internal_solve()
{
/*
Create linear solver context
*/
ierr = KSPCreate(PETSC_COMM_WORLD,&ksp);CHKERRQ(ierr);
ierr = KSPSetOperators(ksp,A,A,DIFFERENT_NONZERO_PATTERN);CHKERRQ(ierr);
ierr = KSPGetPC(ksp,&pc);CHKERRQ(ierr);
ierr = PCSetType(pc,PCJACOBI);CHKERRQ(ierr);
ierr = KSPSetTolerances(ksp,1.e-7,PETSC_DEFAULT,PETSC_DEFAULT,PETSC_DEFAULT);CHKERRQ(ierr);
ierr = KSPSetFromOptions(ksp);CHKERRQ(ierr);
/* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
Solve the linear system
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */
ierr = KSPSolve(ksp,b,x);CHKERRQ(ierr);
PetscScalar* solution_vector;
VecGetArray(x,&solution_vector);
for (long i =0; i < n; ++i)
{
sol_vec.push_back(solution_vector[i]);
}
int reason=0;
KSPGetConvergedReason(ksp,(KSPConvergedReason*)&reason);
switch(reason)
{
case 2:
std::cout << "### CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_CONVERGED_RTOL .. " << std::endl;
break;
case 3:
std::cout << "### CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_CONVERGED_ATOL .. " << std::endl;
break;
case 4:
std::cout << "### CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_CONVERGED_ITS .. " << std::endl;
break;
case 5:
std::cout << "### CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_CONVERGED_QCG_NEG_CURVE .. " << std::endl;
break;
case 6:
std::cout << "### CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_CONVERGED_QCG_CONSTRAINED .. " << std::endl;
break;
case 7:
std::cout << "### CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_CONVERGED_STEP_LENGTH .. " << std::endl;
break;
case -3:
std::cout << "### !! N O T !! CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_DIVERGED_ITS .. " << std::endl;
break;
case -4:
std::cout << "### !! N O T !! CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_DIVERGED_DTOL .. " << std::endl;
break;
case -5:
std::cout << "### !! N O T !! CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_DIVERGED_BREAKDOWN .. " << std::endl;
break;
case -6:
std::cout << "### !! N O T !! CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_DIVERGED_BREAKDOWN_BICG .. " << std::endl;
break;
case -7:
std::cout << "### !! N O T !! CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_DIVERGED_NONSYMMETRIC .. " << std::endl;
break;
case -8:
std::cout << "### !! N O T !! CONVERGED ### " << std::endl;
std::cout << "### KSP ..KSP_DIVERGED_INDEFINITE_PC .. " << std::endl;
break;
default:
std::cout << "### KSP .. no problem detected.. " << std::endl;
break;
}
/*
ierr = KSPView(ksp,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);
Check the error
ierr = VecAXPY(x,neg_one,u);CHKERRQ(ierr);
ierr = VecNorm(x,NORM_2,&norm);CHKERRQ(ierr);
ierr = KSPGetIterationNumber(ksp,&its);CHKERRQ(ierr);
ierr = PetscPrintf(PETSC_COMM_WORLD,"Norm of error %A, Iterations %D\n",
norm,its);CHKERRQ(ierr);
*/
return 0;
}