本文整理汇总了C++中Jnlst函数的典型用法代码示例。如果您正苦于以下问题:C++ Jnlst函数的具体用法?C++ Jnlst怎么用?C++ Jnlst使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了Jnlst函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: ASSERT_EXCEPTION
bool PDFullSpaceSolver::InitializeImpl(const OptionsList& options,
const std::string& prefix)
{
// Check for the algorithm options
options.GetIntegerValue("min_refinement_steps", min_refinement_steps_, prefix);
options.GetIntegerValue("max_refinement_steps", max_refinement_steps_, prefix);
ASSERT_EXCEPTION(max_refinement_steps_ >= min_refinement_steps_, OPTION_INVALID,
"Option \"max_refinement_steps\": This value must be larger than or equal to min_refinement_steps (default 1)");
options.GetNumericValue("residual_ratio_max", residual_ratio_max_, prefix);
options.GetNumericValue("residual_ratio_singular", residual_ratio_singular_, prefix);
ASSERT_EXCEPTION(residual_ratio_singular_ >= residual_ratio_max_, OPTION_INVALID,
"Option \"residual_ratio_singular\": This value must be not smaller than residual_ratio_max.");
options.GetNumericValue("residual_improvement_factor", residual_improvement_factor_, prefix);
options.GetNumericValue("neg_curv_test_tol", neg_curv_test_tol_, prefix);
options.GetBoolValue("neg_curv_test_reg", neg_curv_test_reg_, prefix);
// Reset internal flags and data
augsys_improved_ = false;
if (!augSysSolver_->Initialize(Jnlst(), IpNLP(), IpData(), IpCq(),
options, prefix)) {
return false;
}
return perturbHandler_->Initialize(Jnlst(), IpNLP(), IpData(), IpCq(),
options, prefix);
}
示例2: DBG_START_METH
bool WsmpSolverInterface::IncreaseQuality()
{
DBG_START_METH("WsmpSolverInterface::IncreaseQuality",dbg_verbosity);
if (factorizations_since_recomputed_ordering_ == -1 ||
factorizations_since_recomputed_ordering_ > 2) {
DPARM_[14] = 1.0;
pivtol_changed_ = true;
IpData().Append_info_string("RO ");
factorizations_since_recomputed_ordering_ = 0;
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"Triggering WSMP's recomputation of the ordering for next factorization.\n");
return true;
}
if (wsmp_pivtol_ == wsmp_pivtolmax_) {
return false;
}
pivtol_changed_ = true;
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"Increasing pivot tolerance for WSMP from %7.2e ",
wsmp_pivtol_);
wsmp_pivtol_ = Min(wsmp_pivtolmax_, pow(wsmp_pivtol_,0.75));
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"to %7.2e.\n",
wsmp_pivtol_);
return true;
}
示例3: DBG_START_METH
bool CGPenaltyLSAcceptor::ArmijoHolds(Number alpha_primal_test)
{
DBG_START_METH("CGPenaltyLSAcceptor::ArmijoHolds",
dbg_verbosity);
bool accept = false;
Number trial_penalty_function = CGPenCq().trial_penalty_function();
DBG_ASSERT(IsFiniteNumber(trial_penalty_function));
Jnlst().Printf(J_DETAILED, J_LINE_SEARCH,
"Checking acceptability for trial step size alpha_primal_test=%13.6e:\n", alpha_primal_test);
Jnlst().Printf(J_DETAILED, J_LINE_SEARCH,
" New values of penalty function = %23.16e (reference %23.16e):\n", trial_penalty_function, reference_penalty_function_);
if (Jnlst().ProduceOutput(J_DETAILED, J_LINE_SEARCH)) {
Jnlst().Printf(J_DETAILED, J_LINE_SEARCH,
"curr_barr = %23.16e curr_inf = %23.16e\n",
IpCq().curr_barrier_obj(),
IpCq().curr_constraint_violation());
Jnlst().Printf(J_DETAILED, J_LINE_SEARCH,
"trial_barr = %23.16e trial_inf = %23.16e\n",
IpCq().trial_barrier_obj(),
IpCq().trial_constraint_violation());
}
// Now check the Armijo condition
accept = Compare_le(trial_penalty_function-reference_penalty_function_,
eta_penalty_*alpha_primal_test*reference_direct_deriv_penalty_function_,
reference_penalty_function_);
return accept;
}
示例4: IpData
char CGPenaltyLSAcceptor::UpdateForNextIteration(Number alpha_primal_test)
{
char info_alpha_primal_char='n';
if (pen_curr_mu_ > IpData().curr_mu()) {
pen_curr_mu_ = IpData().curr_mu();
best_KKT_error_ = -1.;
}
// See if the current iterate has the least KKT errors so far
// If so, store the current iterate
if (CurrentIsBest()) {
StoreBestPoint();
}
// update piecewise penalty parameters
PiecewisePenalty_.Print( Jnlst() );
if (!accepted_by_Armijo_) {
PiecewisePenalty_.UpdateEntry(IpCq().trial_barrier_obj(),
IpCq().trial_constraint_violation());
}
PiecewisePenalty_.Print( Jnlst() );
// update regular penalty parameter
if (CGPenData().CurrPenaltyPert() != 0) {
info_alpha_primal_char = UpdatePenaltyParameter();
}
return info_alpha_primal_char;
}
示例5: be
/* The functions SchurSolve do IFT step, if S_==NULL, and DenseGenSchurDriver otherwise. */
bool DenseGenSchurDriver::SchurSolve(SmartPtr<IteratesVector> lhs, // new left hand side will be stored here
SmartPtr<const IteratesVector> rhs, // rhs r_s
SmartPtr<Vector> delta_u, // should be (u_p - u_0) WATCH OUT FOR THE SIGN! I like it this way, so that u_0+delta_u = u_p, but victor always used it the other way round, so be careful. At the end, delta_nu is saved in here.
SmartPtr<IteratesVector> sol) // the vector K^(-1)*r_s which usually should have been computed before.
{
DBG_START_METH("DenseGenSchurDriver::SchurSolve", dbg_verbosity);
DBG_ASSERT(IsValid(S_));
bool retval;
// set up rhs of equation (3.48a)
SmartPtr<Vector> delta_rhs = delta_u->MakeNew();
data_B()->Multiply(*sol, *delta_rhs);
delta_rhs->Print(Jnlst(),J_VECTOR,J_USER1,"delta_rhs");
delta_rhs->Scal(-1.0);
delta_rhs->Axpy(1.0, *delta_u);
delta_rhs->Print(Jnlst(),J_VECTOR,J_USER1,"rhs 3.48a");
// solve equation (3.48a) for delta_nu
SmartPtr<DenseVector> delta_nu = dynamic_cast<DenseVector*>(GetRawPtr(delta_rhs))->MakeNewDenseVector();
delta_nu->Copy(*delta_rhs);
S_->LUSolveVector(*delta_nu); // why is LUSolveVector not bool??
delta_nu->Print(Jnlst(),J_VECTOR,J_USER1,"delta_nu");
// solve equation (3.48b) for lhs (=delta_s)
SmartPtr<IteratesVector> new_rhs = lhs->MakeNewIteratesVector();
data_A()->TransMultiply(*delta_nu, *new_rhs);
new_rhs->Axpy(-1.0, *rhs);
new_rhs->Scal(-1.0);
new_rhs->Print(Jnlst(),J_VECTOR,J_USER1,"new_rhs");
retval = backsolver_->Solve(lhs, ConstPtr(new_rhs));
return retval;
}
示例6: DBG_START_METH
ESymSolverStatus MumpsSolverInterface::Solve(Index nrhs, double *rhs_vals)
{
DBG_START_METH("MumpsSolverInterface::Solve", dbg_verbosity);
DMUMPS_STRUC_C* mumps_data = (DMUMPS_STRUC_C*)mumps_ptr_;
ESymSolverStatus retval = SYMSOLVER_SUCCESS;
if (HaveIpData()) {
IpData().TimingStats().LinearSystemBackSolve().Start();
}
for (Index i = 0; i < nrhs; i++) {
Index offset = i * mumps_data->n;
mumps_data->rhs = &(rhs_vals[offset]);
mumps_data->job = 3;//solve
Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
"Calling MUMPS-3 for solve at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
dmumps_c(mumps_data);
Jnlst().Printf(J_MOREDETAILED, J_LINEAR_ALGEBRA,
"Done with MUMPS-3 for solve at cpu time %10.3f (wall %10.3f).\n", CpuTime(), WallclockTime());
int error = mumps_data->info[0];
if (error < 0) {
Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
"Error=%d returned from MUMPS in Solve.\n",
error);
retval = SYMSOLVER_FATAL_ERROR;
}
}
if (HaveIpData()) {
IpData().TimingStats().LinearSystemBackSolve().End();
}
return retval;
}
示例7: Jnlst
void IpoptAlgorithm::UpdateHessian()
{
Jnlst().Printf(J_DETAILED, J_MAIN, "\n**************************************************\n");
Jnlst().Printf(J_DETAILED, J_MAIN, "*** Update HessianMatrix for Iteration %d:", IpData().iter_count());
Jnlst().Printf(J_DETAILED, J_MAIN, "\n**************************************************\n\n");
hessian_updater_->UpdateHessian();
}
示例8: DBG_START_METH
bool LoqoMuOracle::CalculateMu(Number mu_min, Number mu_max,
Number& new_mu)
{
DBG_START_METH("LoqoMuOracle::CalculateMu",
dbg_verbosity);
Number avrg_compl = IpCq().curr_avrg_compl();
Jnlst().Printf(J_DETAILED, J_BARRIER_UPDATE,
" Average complemantarity is %lf\n", avrg_compl);
Number xi = IpCq().curr_centrality_measure();
Jnlst().Printf(J_DETAILED, J_BARRIER_UPDATE,
" Xi (distance from uniformity) is %lf\n", xi);
//Number factor = 1.-tau_min_; //This is the original values
Number factor = 0.05; //This is the value I used otherwise
Number sigma = 0.1*pow(Min(factor*(1.-xi)/xi,2.),3.);
Number mu = sigma*avrg_compl;
Jnlst().Printf(J_DETAILED, J_BARRIER_UPDATE,
" Barrier parameter proposed by LOQO rule is %lf\n", mu);
// DELETEME
char ssigma[40];
sprintf(ssigma, " sigma=%8.2e", sigma);
IpData().Append_info_string(ssigma);
sprintf(ssigma, " xi=%8.2e ", IpCq().curr_centrality_measure());
IpData().Append_info_string(ssigma);
new_mu = Max(Min(mu_max, mu), mu_min);
return true;
}
示例9: switch
void
AdaptiveMuUpdate::RememberCurrentPointAsAccepted()
{
switch (adaptive_mu_globalization_) {
case KKT_ERROR : {
Number curr_error = quality_function_pd_system();
Index num_refs = (Index)refs_vals_.size();
if (num_refs >= num_refs_max_) {
refs_vals_.pop_front();
}
refs_vals_.push_back(curr_error);
if (Jnlst().ProduceOutput(J_MOREDETAILED, J_BARRIER_UPDATE)) {
Index num_refs = 0;
std::list<Number>::iterator iter;
for (iter = refs_vals_.begin(); iter != refs_vals_.end();
iter++) {
num_refs++;
Jnlst().Printf(J_MOREDETAILED, J_BARRIER_UPDATE,
"pd system reference[%2d] = %.6e\n", num_refs, *iter);
}
}
}
break;
case FILTER_OBJ_CONSTR : {
/*
Number theta = IpCq().curr_constraint_violation();
filter_.AddEntry(IpCq().curr_f() - filter_margin_fact_*theta,
IpCq().curr_constraint_violation() - filter_margin_fact_*theta,
IpData().iter_count());
filter_.Print(Jnlst());
*/
filter_.AddEntry(IpCq().curr_f(),
IpCq().curr_constraint_violation(),
IpData().iter_count());
filter_.Print(Jnlst());
}
break;
case NEVER_MONOTONE_MODE : {
// Nothing to be done
}
break;
default:
DBG_ASSERT(false && "Unknown corrector_type value.");
}
if (restore_accepted_iterate_) {
// Keep pointers to this iterate so that it could be restored
accepted_point_ = IpData().curr();
}
}
示例10: DBG_START_METH
void TSymLinearSolver::GiveMatrixToSolver(bool new_matrix,
const SymMatrix& sym_A)
{
DBG_START_METH("TSymLinearSolver::GiveMatrixToSolver",dbg_verbosity);
DBG_PRINT((1,"new_matrix = %d\n",new_matrix));
double* pa = solver_interface_->GetValuesArrayPtr();
double* atriplet;
if (matrix_format_!=SparseSymLinearSolverInterface::Triplet_Format) {
atriplet = new double[nonzeros_triplet_];
}
else {
atriplet = pa;
}
//DBG_PRINT_MATRIX(3, "Aunscaled", sym_A);
TripletHelper::FillValues(nonzeros_triplet_, sym_A, atriplet);
if (DBG_VERBOSITY()>=3) {
for (Index i=0; i<nonzeros_triplet_; i++) {
DBG_PRINT((3, "KKTunscaled(%6d,%6d) = %24.16e\n", airn_[i], ajcn_[i], atriplet[i]));
}
}
if (use_scaling_) {
IpData().TimingStats().LinearSystemScaling().Start();
DBG_ASSERT(scaling_factors_);
if (new_matrix || just_switched_on_scaling_) {
// only compute scaling factors if the matrix has not been
// changed since the last call to this method
bool retval =
scaling_method_->ComputeSymTScalingFactors(dim_, nonzeros_triplet_,
airn_, ajcn_,
atriplet, scaling_factors_);
if (!retval) {
Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
"Error during computation of scaling factors.\n");
THROW_EXCEPTION(ERROR_IN_LINEAR_SCALING_METHOD, "scaling_method_->ComputeSymTScalingFactors returned false.")
}
// complain if not in debug mode
if (Jnlst().ProduceOutput(J_MOREVECTOR, J_LINEAR_ALGEBRA)) {
for (Index i=0; i<dim_; i++) {
Jnlst().Printf(J_MOREVECTOR, J_LINEAR_ALGEBRA,
"scaling factor[%6d] = %22.17e\n",
i, scaling_factors_[i]);
}
}
just_switched_on_scaling_ = false;
}
示例11: DBG_START_METH
ESymSolverStatus WsmpSolverInterface::Solve(
const Index* ia,
const Index* ja,
Index nrhs,
double *rhs_vals)
{
DBG_START_METH("WsmpSolverInterface::Solve",dbg_verbosity);
IpData().TimingStats().LinearSystemBackSolve().Start();
// Call WSMP to solve for some right hand sides (including
// iterative refinement)
// ToDo: Make iterative refinement an option?
ipfint N = dim_;
ipfint LDB = dim_;
ipfint NRHS = nrhs;
ipfint NAUX = 0;
IPARM_[1] = 4; // Forward and Backward Elimintation
IPARM_[2] = 5; // Iterative refinement
IPARM_[5] = 1;
DPARM_[5] = 1e-12;
ipfint idmy;
double ddmy;
F77_FUNC(wssmp,WSSMP)(&N, ia, ja, a_, &ddmy, PERM_, INVP_,
rhs_vals, &LDB, &NRHS, &ddmy, &NAUX,
&idmy, IPARM_, DPARM_);
IpData().TimingStats().LinearSystemBackSolve().End();
Index ierror = IPARM_[63];
if (ierror!=0) {
if (ierror==-102) {
Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
"Error: WSMP is not able to allocate sufficient amount of memory during ordering/symbolic factorization.\n");
}
else {
Jnlst().Printf(J_ERROR, J_LINEAR_ALGEBRA,
"Error in WSMP during ordering/symbolic factorization phase.\n Error code is %d.\n", ierror);
}
return SYMSOLVER_FATAL_ERROR;
}
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"Number of iterative refinement steps in WSSMP: %d\n",
IPARM_[5]);
return SYMSOLVER_SUCCESS;
}
示例12: Jnlst
bool Ma86SolverInterface::IncreaseQuality()
{
if (control_.u >= umax_) {
return false;
}
pivtol_changed_ = true;
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"Increasing pivot tolerance for HSL_MA86 from %7.2e ",
control_.u);
control_.u = Min(umax_, pow(control_.u,0.75));
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"to %7.2e.\n",
control_.u);
return true;
}
示例13: IpData
void IpoptAlgorithm::PrintProblemStatistics()
{
if (!Jnlst().ProduceOutput(J_SUMMARY, J_STATISTICS)) {
// nothing to print
return;
}
SmartPtr<const Vector> x = IpData().curr()->x();
SmartPtr<const Vector> x_L = IpNLP().x_L();
SmartPtr<const Vector> x_U = IpNLP().x_U();
SmartPtr<const Matrix> Px_L = IpNLP().Px_L();
SmartPtr<const Matrix> Px_U = IpNLP().Px_U();
Index nx_tot, nx_only_lower, nx_both, nx_only_upper;
calc_number_of_bounds(*IpData().curr()->x(), *IpNLP().x_L(), *IpNLP().x_U(),
*IpNLP().Px_L(), *IpNLP().Px_U(),
nx_tot, nx_only_lower, nx_both, nx_only_upper);
Index ns_tot, ns_only_lower, ns_both, ns_only_upper;
calc_number_of_bounds(*IpData().curr()->s(), *IpNLP().d_L(), *IpNLP().d_U(),
*IpNLP().Pd_L(), *IpNLP().Pd_U(),
ns_tot, ns_only_lower, ns_both, ns_only_upper);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
"Total number of variables............................: %8d\n",nx_tot);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
" variables with only lower bounds: %8d\n",
nx_only_lower);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
" variables with lower and upper bounds: %8d\n",nx_both);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
" variables with only upper bounds: %8d\n",
nx_only_upper);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
"Total number of equality constraints.................: %8d\n",
IpData().curr()->y_c()->Dim());
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
"Total number of inequality constraints...............: %8d\n",ns_tot);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
" inequality constraints with only lower bounds: %8d\n",
ns_only_lower);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
" inequality constraints with lower and upper bounds: %8d\n",ns_both);
Jnlst().Printf(J_SUMMARY, J_STATISTICS,
" inequality constraints with only upper bounds: %8d\n\n",
ns_only_upper);
}
示例14: DBG_START_METH
bool Ma27TSolverInterface::IncreaseQuality()
{
DBG_START_METH("Ma27TSolverInterface::IncreaseQuality",dbg_verbosity);
if (pivtol_ == pivtolmax_) {
return false;
}
pivtol_changed_ = true;
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"Indreasing pivot tolerance for MA27 from %7.2e ",
pivtol_);
pivtol_ = Min(pivtolmax_, pow(pivtol_,0.75));
Jnlst().Printf(J_DETAILED, J_LINEAR_ALGEBRA,
"to %7.2e.\n",
pivtol_);
return true;
}
示例15: DBG_START_METH
void IpoptAlgorithm::ComputeFeasibilityMultipliers()
{
DBG_START_METH("IpoptAlgorithm::ComputeFeasibilityMultipliers",
dbg_verbosity);
DBG_ASSERT(IpCq().IsSquareProblem());
// if we don't have an object for computing least square
// multipliers we don't compute them
if (IsNull(eq_multiplier_calculator_)) {
Jnlst().Printf(J_WARNING, J_SOLUTION,
"This is a square problem, but multipliers cannot be recomputed at solution, since no eq_mult_calculator object is available in IpoptAlgorithm\n");
return;
}
SmartPtr<IteratesVector> iterates = IpData().curr()->MakeNewContainer();
SmartPtr<Vector> tmp = iterates->z_L()->MakeNew();
tmp->Set(0.);
iterates->Set_z_L(*tmp);
tmp = iterates->z_U()->MakeNew();
tmp->Set(0.);
iterates->Set_z_U(*tmp);
tmp = iterates->v_L()->MakeNew();
tmp->Set(0.);
iterates->Set_v_L(*tmp);
tmp = iterates->v_U()->MakeNew();
tmp->Set(0.);
iterates->Set_v_U(*tmp);
SmartPtr<Vector> y_c = iterates->y_c()->MakeNew();
SmartPtr<Vector> y_d = iterates->y_d()->MakeNew();
IpData().set_trial(iterates);
IpData().AcceptTrialPoint();
bool retval = eq_multiplier_calculator_->CalculateMultipliers(*y_c, *y_d);
if (retval) {
//Check if following line is really necessary
iterates = IpData().curr()->MakeNewContainer();
iterates->Set_y_c(*y_c);
iterates->Set_y_d(*y_d);
IpData().set_trial(iterates);
IpData().AcceptTrialPoint();
}
else {
Jnlst().Printf(J_WARNING, J_SOLUTION,
"Cannot recompute multipliers for feasibility problem. Error in eq_mult_calculator\n");
}
}