本文整理汇总了C++中J函数的典型用法代码示例。如果您正苦于以下问题:C++ J函数的具体用法?C++ J怎么用?C++ J使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了J函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: J
// NOTE: does not pass tests
SparseMatrix BSplineBasis::evalBasisJacobian(DenseVector &x) const
{
// Jacobian basis matrix
SparseMatrix J(getNumBasisFunctions(), numVariables);
//J.setZero(numBasisFunctions(), numInputs);
// Calculate partial derivatives
for (unsigned int i = 0; i < numVariables; ++i)
{
// One column in basis jacobian
std::vector<SparseVector> values(numVariables);
for (unsigned int j = 0; j < numVariables; ++j)
{
if (j == i)
{
// Differentiated basis
values.at(j) = bases.at(j).evalDerivative(x(j), 1);
}
else
{
// Normal basis
values.at(j) = bases.at(j).eval(x(j));
}
}
SparseVector Ji = kroneckerProductVectors(values);
// Fill out column
for (int k = 0; k < Ji.outerSize(); ++k)
for (SparseMatrix::InnerIterator it(Ji,k); it; ++it)
{
if (it.value() != 0)
J.insert(it.row(),i) = it.value();
}
//J.block(0,i,Ji.rows(),1) = bi.block(0,0,Ji.rows(),1);
}
J.makeCompressed();
return J;
}
示例2: f
void TestGradient::add02() {
Variable x,y;
Function f(x,y,ExprVector::new_(sqr(x)-y,x*y,false));
IntervalVector box(2);
box[0]=Interval(1,2);
box[1]=Interval(3,4);
IntervalMatrix J(2,2);
f.jacobian(box,J);
check(J[0][0],Interval(2,4));
check(J[0][1],Interval(-1,-1));
check(J[1][0],Interval(3,4));
check(J[1][1],Interval(1,2));
CPPUNIT_ASSERT(J[0][0].is_superset(Interval(2,4)));
CPPUNIT_ASSERT(J[0][1].is_superset(Interval(-1,-1)));
CPPUNIT_ASSERT(J[1][0].is_superset(Interval(3,4)));
CPPUNIT_ASSERT(J[1][1].is_superset(Interval(1,2)));
}
示例3: if
void PCM::setExtraForces(IonicGradient* forces, const ScalarFieldTilde& A_nCavityTilde) const
{ if(forces)
{ forces->init(e.iInfo);
//VDW contribution:
switch(fsp.pcmVariant)
{
case PCM_SaLSA:
case PCM_CANDLE:
case PCM_SGA13:
{ const auto& solvent = fsp.solvents[0];
const ScalarFieldTilde sTilde = J(fsp.pcmVariant==PCM_SaLSA ? shape : shapeVdw);
ScalarFieldTildeArray Ntilde(Sf.size());
for(unsigned i=0; i<Sf.size(); i++)
Ntilde[i] = solvent->Nbulk * (Sf[i] * sTilde);
const double vdwScaleEff = (fsp.pcmVariant==PCM_CANDLE) ? fsp.sqrtC6eff : fsp.vdwScale;
e.vanDerWaals->energyAndGrad(atpos, Ntilde, atomicNumbers, vdwScaleEff, 0, forces);
break;
}
default:
break; //no VDW forces
}
//Full core contribution:
switch(fsp.pcmVariant)
{
case PCM_SaLSA:
case PCM_CANDLE:
{ VectorFieldTilde gradAtpos;
nullToZero(gradAtpos, gInfo);
for(unsigned iSp=0; iSp<atpos.size(); iSp++)
for(unsigned iAtom=0; iAtom<atpos[iSp].size(); iAtom++)
{ callPref(gradSGtoAtpos)(gInfo.S, atpos[iSp][iAtom], A_nCavityTilde->dataPref(), gradAtpos.dataPref());
for(int k=0; k<3; k++)
(*forces)[iSp][iAtom][k] -= e.iInfo.species[iSp]->ZfullCore * sum(gradAtpos[k]); //negative gradient on ith atom type
}
break;
}
default:
break; //no full-core forces
}
}
}
示例4: contactConstraints
int contactConstraints(RigidBodyManipulator *r, int nc, std::vector<SupportStateElement,Eigen::aligned_allocator<SupportStateElement>>& supp, void *map_ptr, MatrixXd &n, MatrixXd &D, MatrixXd &Jp, MatrixXd &Jpdot,double terrain_height)
{
int j, k=0, nq = r->num_positions;
n.resize(nc,nq);
D.resize(nq,nc*2*m_surface_tangents);
Jp.resize(3*nc,nq);
Jpdot.resize(3*nc,nq);
Vector3d contact_pos,pos,normal;
MatrixXd J(3,nq);
Matrix<double,3,m_surface_tangents> d;
for (std::vector<SupportStateElement,Eigen::aligned_allocator<SupportStateElement>>::iterator iter = supp.begin(); iter!=supp.end(); iter++) {
if (nc>0) {
for (std::vector<Vector4d,aligned_allocator<Vector4d>>::iterator pt_iter=iter->contact_pts.begin(); pt_iter!=iter->contact_pts.end(); pt_iter++) {
r->forwardKin(iter->body_idx,*pt_iter,0,contact_pos);
r->forwardJac(iter->body_idx,*pt_iter,0,J);
collisionDetect(map_ptr,contact_pos,pos,&normal,terrain_height);
surfaceTangents(normal,d);
n.row(k) = normal.transpose()*J;
for (j=0; j<m_surface_tangents; j++) {
D.col(2*k*m_surface_tangents+j) = J.transpose()*d.col(j);
D.col((2*k+1)*m_surface_tangents+j) = -D.col(2*k*m_surface_tangents+j);
}
// store away kin sols into Jp and Jpdot
// NOTE: I'm cheating and using a slightly different ordering of J and Jdot here
Jp.block(3*k,0,3,nq) = J;
r->forwardJacDot(iter->body_idx,*pt_iter,0,J);
Jpdot.block(3*k,0,3,nq) = J;
k++;
}
}
}
return k;
}
示例5: A
void BlockMatrixTest::testZero()
{
std::cout << "--> Test: zero." <<std::endl;
SP::SiconosMatrix A(new SimpleMatrix(2, 2));
A->eye();
SP::SiconosMatrix H(new SimpleMatrix(2, 4));
H->eye();
SP::SiconosMatrix I(new SimpleMatrix(5, 2));
I->eye();
SP::SiconosMatrix J(new SimpleMatrix(5, 4));
J->eye();
std::vector<SP::SiconosMatrix> v(4);
v[0] = A ;
v[1] = H ;
v[2] = I ;
v[3] = J ;
SP::SiconosMatrix test(new BlockMatrix(v, 2, 2));
test->zero();
unsigned int n1 = test->size(0);
unsigned int n2 = test->size(1);
for (unsigned int i = 0; i < n1; ++i)
for (unsigned int j = 0; j < n2; ++j)
CPPUNIT_ASSERT_EQUAL_MESSAGE("testZero : ", (*test)(i, j) == 0, true);
for (unsigned int i = 0; i < 2; ++i)
{
for (unsigned int j = 0; j < 2; ++j)
CPPUNIT_ASSERT_EQUAL_MESSAGE("testZero : ", (*A)(i, j) == 0, true);
for (unsigned int j = 0; j < 4; ++j)
CPPUNIT_ASSERT_EQUAL_MESSAGE("testZero : ", (*H)(i, j) == 0, true);
}
for (unsigned int i = 0; i < 5; ++i)
{
for (unsigned int j = 0; j < 2; ++j)
CPPUNIT_ASSERT_EQUAL_MESSAGE("testZero : ", (*I)(i, j) == 0, true);
for (unsigned int j = 0; j < 4; ++j)
CPPUNIT_ASSERT_EQUAL_MESSAGE("testZero : ", (*J)(i, j) == 0, true);
}
std::cout << "--> zero test ended with success." <<std::endl;
}
示例6: evaluateFields
void EquivalentInclusionConductivity<EvalT, Traits>::
evaluateFields(typename Traits::EvalData workset)
{
int numCells = workset.numCells;
if (is_constant) {
for (int cell=0; cell < numCells; ++cell) {
for (int qp=0; qp < numQPs; ++qp) {
effectiveK(cell,qp) = constant_value;
}
}
}
#ifdef ALBANY_STOKHOS
else {
for (int cell=0; cell < numCells; ++cell) {
for (int qp=0; qp < numQPs; ++qp) {
Teuchos::Array<MeshScalarT> point(numDims);
for (int i=0; i<numDims; i++)
point[i] = Sacado::ScalarValue<MeshScalarT>::eval(coordVec(cell,qp,i));
effectiveK(cell,qp) = exp_rf_kl->evaluate(point, rv);
}
}
}
#endif
if (isPoroElastic) {
for (int cell=0; cell < numCells; ++cell) {
for (int qp=0; qp < numQPs; ++qp) {
effectiveK(cell,qp) = porosity(cell,qp)*condKf +
(J(cell,qp)-porosity(cell,qp))*condKs;
// effectiveK(cell,qp) = condKf
// + ( J(cell,qp) - porosity(cell,qp))*
// (condKs - condKf)*condKf/
// ((condKs - condKf)*porosity(cell,qp)
// + J(cell,qp)*condKf);
}
}
}
}
示例7: has_additional_liberty
/* Does the string at (i, j) have any more liberty than the one at
* (libi, libj)?
*/
static int
has_additional_liberty(int i, int j, int libi, int libj)
{
int pos = POS(i, j);
do {
int ai = I(pos);
int aj = J(pos);
int k;
for (k = 0; k < 4; k++) {
int bi = ai + deltai[k];
int bj = aj + deltaj[k];
if (on_board(bi, bj) && get_board(bi, bj) == EMPTY
&& (bi != libi || bj != libj))
return 1;
}
pos = next_stone[pos];
} while (pos != POS(i, j));
return 0;
}
示例8: J
int IKCom::calc_jacobian()
{
if(n_const == 0) return 0;
int n_dof = ik->NumDOF();
fMat Jtemp;
J.resize(n_const, n_dof);
Jtemp.resize(3, n_dof);
Jtemp.zero();
ik->ComJacobian(Jtemp, cur_com, charname);
int i, j, count = 0;
for(i=0; i<3; i++)
{
if(const_index[i] == IK::HAVE_CONSTRAINT)
{
for(j=0; j<n_dof; j++)
J(count, j) = Jtemp(i, j);
count++;
}
}
return 0;
}
示例9: assert
void Function::hansen_matrix(const IntervalVector& box, IntervalMatrix& H, const VarSet& set) const {
int n=set.nb_var;
int m=image_dim();
assert(H.nb_cols()==n);
assert(box.size()==nb_var());
assert(H.nb_rows()==m);
IntervalVector var_box=set.var_box(box);
IntervalVector param_box=set.param_box(box);
IntervalVector x=var_box.mid();
IntervalMatrix J(m,n);
for (int var=0; var<n; var++) {
//var=tab[i];
x[var]=var_box[var];
jacobian(set.full_box(x,param_box),J,set);
H.set_col(var,J.col(var));
}
}
示例10: main
int main()
{
Array<float,2> test(8,8), test2(5,5) ;
test = 5;
Range I(2,6) ;
Range J(3,7) ;
// Koenig lookup hack
#if defined(__GNUC__) && (__GNUC__ < 3)
test2 = where(blitz::operator> (test(I,J), test(I-1,J)), 0, test(I,J));
#else
test2 = where(test(I,J) > test(I-1,J), 0, test(I,J));
#endif
BZTEST(test2(3,3) == 5);
cout << test2 << endl ;
}
示例11: J
void DfFockMatrix::setCoulomb(const METHOD_TYPE nMethodType,
TlDenseSymmetricMatrix_Lapack& F) {
TlDenseSymmetricMatrix_Lapack J(this->m_nNumOfAOs);
if (this->J_engine_ == J_ENGINE_RI_J) {
this->setCoulomb<TlDenseSymmetricMatrix_Lapack, TlDenseVector_Lapack,
DfEriX>(nMethodType, J);
// if (this->isUseNewEngine_ == true) {
// this->logger(" use new engine\n");
// this->setCoulomb<TlDenseSymmetricMatrix_Lapack, TlDenseVector_Lapack,
// DfEriX>(nMethodType,
// J);
// } else {
// this->setCoulomb<TlDenseSymmetricMatrix_Lapack, TlDenseVector_Lapack,
// DfEri>(nMethodType, J);
// }
F += J;
// update method
if (this->m_nIteration > 1) {
const TlDenseSymmetricMatrix_Lapack prevJ =
DfObject::getJMatrix<TlDenseSymmetricMatrix_Lapack>(
this->m_nIteration - 1);
J += prevJ;
}
this->saveJMatrix(this->m_nIteration, J);
} else {
J = this->getJMatrix<TlDenseSymmetricMatrix_Lapack>(this->m_nIteration);
// update method
if (this->m_nIteration > 1) {
const TlDenseSymmetricMatrix_Lapack prevJ =
DfObject::getJMatrix<TlDenseSymmetricMatrix_Lapack>(
this->m_nIteration - 1);
J -= prevJ;
}
F += J;
}
}
示例12: J
std::unique_ptr<flattened_tensor> M::compute(const index_literal_list& indices)
{
if(indices.size() != M_TENSOR_INDICES) throw tensor_exception("M indices");
auto result = std::make_unique<flattened_tensor>(this->fl.get_flattened_size<field_index>(M_TENSOR_INDICES));
const field_index max_i = this->shared.get_max_field_index(indices[0]->get_variance());
const field_index max_j = this->shared.get_max_field_index(indices[1]->get_variance());
// set up a TensorJanitor to manage use of cache
TensorJanitor J(*this, indices);
for(field_index i = field_index(0, indices[0]->get_variance()); i < max_i; ++i)
{
for(field_index j = field_index(0, indices[1]->get_variance()); j < max_j; ++j)
{
(*result)[this->fl.flatten(i, j)] = this->compute_component(i, j);
}
}
return(result);
}
示例13: fabs
/**
* General implementation of the method for all peaks. Calculates derivatives
* only
* for a range of x values limited to a certain number of FWHM around the peak
* centre.
* For the points outside the range all derivatives are set to 0.
* Calls functionDerivLocal() to compute the actual values
* @param out :: Derivatives
* @param xValues :: X values for data points
* @param nData :: Number of data points
*/
void IPeakFunction::functionDeriv1D(Jacobian *out, const double *xValues,
const size_t nData) {
double c = this->centre();
double dx = fabs(s_peakRadius * this->fwhm());
int i0 = -1;
int n = 0;
for (size_t i = 0; i < nData; ++i) {
if (fabs(xValues[i] - c) < dx) {
if (i0 < 0)
i0 = static_cast<int>(i);
++n;
} else {
for (size_t ip = 0; ip < this->nParams(); ++ip) {
out->set(i, ip, 0.0);
}
}
}
if (i0 < 0 || n == 0)
return;
PartialJacobian1 J(out, i0);
this->functionDerivLocal(&J, xValues + i0, n);
}
示例14: reading_hotspots
/* Based on the entries in the reading cache and their nodes field,
* compute where the relatively most expensive tactical reading is
* going on.
*/
void
reading_hotspots(float values[BOARDMAX])
{
int m, n, k;
int sum_nodes = 0;
for (m = 0; m < board_size; m++)
for (n = 0; n < board_size; n++)
values[POS(m, n)] = 0.0;
/* Compute the total number of nodes for the cached entries. */
for (k = 0; k < persistent_reading_cache_size; k++)
sum_nodes += persistent_reading_cache[k].nodes;
if (sum_nodes <= 100)
return;
/* Loop over all entries and increase the value of vertices adjacent
* to dragons involving expensive tactical reading.
*/
for (k = 0; k < persistent_reading_cache_size; k++) {
struct reading_cache *entry = &(persistent_reading_cache[k]);
float contribution = entry->nodes / (float) sum_nodes;
if (0) {
gprintf("Reading hotspots: %d %1m %f\n", entry->routine, entry->str,
contribution);
}
switch (entry->routine) {
case ATTACK:
case FIND_DEFENSE:
mark_string_hotspot_values(values, I(entry->str), J(entry->str),
contribution);
break;
default:
gg_assert(0); /* Shouldn't happen. */
break;
}
}
}
示例15: J
/** \brief Calculate the Jacobian using numerical differentiation by column
*/
std::vector<std::vector<double> > FuncWrapperND::Jacobian(const std::vector<double> &x)
{
double epsilon;
std::size_t N = x.size();
std::vector<double> r, xp;
std::vector<std::vector<double> > J(N, std::vector<double>(N, 0));
std::vector<double> r0 = call(x);
// Build the Jacobian by column
for (std::size_t i = 0; i < N; ++i)
{
xp = x;
epsilon = 0.001*x[i];
xp[i] += epsilon;
r = call(xp);
for(std::size_t j = 0; j < N; ++j)
{
J[j][i] = (r[j]-r0[j])/epsilon;
}
}
return J;
}