本文整理汇总了C++中ItemIdIsUsed函数的典型用法代码示例。如果您正苦于以下问题:C++ ItemIdIsUsed函数的具体用法?C++ ItemIdIsUsed怎么用?C++ ItemIdIsUsed使用的例子?那么恭喜您, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了ItemIdIsUsed函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: brin_start_evacuating_page
/*
* Initiate page evacuation protocol.
*
* The page must be locked in exclusive mode by the caller.
*
* If the page is not yet initialized or empty, return false without doing
* anything; it can be used for revmap without any further changes. If it
* contains tuples, mark it for evacuation and return true.
*/
bool
brin_start_evacuating_page(Relation idxRel, Buffer buf)
{
OffsetNumber off;
OffsetNumber maxoff;
Page page;
page = BufferGetPage(buf);
if (PageIsNew(page))
return false;
maxoff = PageGetMaxOffsetNumber(page);
for (off = FirstOffsetNumber; off <= maxoff; off++)
{
ItemId lp;
lp = PageGetItemId(page, off);
if (ItemIdIsUsed(lp))
{
/* prevent other backends from adding more stuff to this page */
BrinPageFlags(page) |= BRIN_EVACUATE_PAGE;
MarkBufferDirtyHint(buf, true);
return true;
}
}
return false;
}
示例2: XLogIsValidTuple
/*
* MUST BE CALLED ONLY ON RECOVERY.
*
* Check if exists valid (inserted by not aborted xaction) heap tuple
* for given item pointer
*/
bool
XLogIsValidTuple(RelFileNode hnode, ItemPointer iptr)
{
Relation reln;
Buffer buffer;
Page page;
ItemId lp;
HeapTupleHeader htup;
reln = XLogOpenRelation(false, RM_HEAP_ID, hnode);
if (!RelationIsValid(reln))
return (false);
buffer = ReadBuffer(reln, ItemPointerGetBlockNumber(iptr));
if (!BufferIsValid(buffer))
return (false);
LockBuffer(buffer, BUFFER_LOCK_SHARE);
page = (Page) BufferGetPage(buffer);
if (PageIsNew((PageHeader) page) ||
ItemPointerGetOffsetNumber(iptr) > PageGetMaxOffsetNumber(page))
{
UnlockAndReleaseBuffer(buffer);
return (false);
}
if (PageGetSUI(page) != ThisStartUpID)
{
Assert(PageGetSUI(page) < ThisStartUpID);
UnlockAndReleaseBuffer(buffer);
return (true);
}
lp = PageGetItemId(page, ItemPointerGetOffsetNumber(iptr));
if (!ItemIdIsUsed(lp) || ItemIdDeleted(lp))
{
UnlockAndReleaseBuffer(buffer);
return (false);
}
htup = (HeapTupleHeader) PageGetItem(page, lp);
/* MUST CHECK WASN'T TUPLE INSERTED IN PREV STARTUP */
if (!(htup->t_infomask & HEAP_XMIN_COMMITTED))
{
if (htup->t_infomask & HEAP_XMIN_INVALID ||
(htup->t_infomask & HEAP_MOVED_IN &&
TransactionIdDidAbort(HeapTupleHeaderGetXvac(htup))) ||
TransactionIdDidAbort(HeapTupleHeaderGetXmin(htup)))
{
UnlockAndReleaseBuffer(buffer);
return (false);
}
}
UnlockAndReleaseBuffer(buffer);
return (true);
}
示例3: PageGetHeapFreeSpace
/*
* PageGetHeapFreeSpace
* Returns the size of the free (allocatable) space on a page,
* reduced by the space needed for a new line pointer.
*
* The difference between this and PageGetFreeSpace is that this will return
* zero if there are already MaxHeapTuplesPerPage line pointers in the page
* and none are free. We use this to enforce that no more than
* MaxHeapTuplesPerPage line pointers are created on a heap page. (Although
* no more tuples than that could fit anyway, in the presence of redirected
* or dead line pointers it'd be possible to have too many line pointers.
* To avoid breaking code that assumes MaxHeapTuplesPerPage is a hard limit
* on the number of line pointers, we make this extra check.)
*/
Size
PageGetHeapFreeSpace(Page page)
{
Size space;
space = PageGetFreeSpace(page);
if (space > 0)
{
OffsetNumber offnum,
nline;
/*
* Are there already MaxHeapTuplesPerPage line pointers in the page?
*/
nline = PageGetMaxOffsetNumber(page);
if (nline >= MaxHeapTuplesPerPage)
{
if (PageHasFreeLinePointers((PageHeader) page))
{
/*
* Since this is just a hint, we must confirm that there is
* indeed a free line pointer
*/
for (offnum = FirstOffsetNumber; offnum <= nline; offnum = OffsetNumberNext(offnum))
{
ItemId lp = PageGetItemId(page, offnum);
if (!ItemIdIsUsed(lp))
break;
}
if (offnum > nline)
{
/*
* The hint is wrong, but we can't clear it here since we
* don't have the ability to mark the page dirty.
*/
space = 0;
}
}
else
{
/*
* Although the hint might be wrong, PageAddItem will believe
* it anyway, so we must believe it too.
*/
space = 0;
}
}
}
return space;
}
示例4: XLogIsOwnerOfTuple
/*
* Check if specified heap tuple was inserted by given
* xaction/command and return
*
* - -1 if not
* - 0 if there is no tuple at all
* - 1 if yes
*/
int
XLogIsOwnerOfTuple(RelFileNode hnode, ItemPointer iptr,
TransactionId xid, CommandId cid)
{
Relation reln;
Buffer buffer;
Page page;
ItemId lp;
HeapTupleHeader htup;
reln = XLogOpenRelation(false, RM_HEAP_ID, hnode);
if (!RelationIsValid(reln))
return (0);
buffer = ReadBuffer(reln, ItemPointerGetBlockNumber(iptr));
if (!BufferIsValid(buffer))
return (0);
LockBuffer(buffer, BUFFER_LOCK_SHARE);
page = (Page) BufferGetPage(buffer);
if (PageIsNew((PageHeader) page) ||
ItemPointerGetOffsetNumber(iptr) > PageGetMaxOffsetNumber(page))
{
UnlockAndReleaseBuffer(buffer);
return (0);
}
lp = PageGetItemId(page, ItemPointerGetOffsetNumber(iptr));
if (!ItemIdIsUsed(lp) || ItemIdDeleted(lp))
{
UnlockAndReleaseBuffer(buffer);
return (0);
}
htup = (HeapTupleHeader) PageGetItem(page, lp);
Assert(PageGetSUI(page) == ThisStartUpID);
if (!TransactionIdEquals(HeapTupleHeaderGetXmin(htup), xid) ||
HeapTupleHeaderGetCmin(htup) != cid)
{
UnlockAndReleaseBuffer(buffer);
return (-1);
}
UnlockAndReleaseBuffer(buffer);
return (1);
}
示例5: mask_lp_flags
/*
* mask_lp_flags
*
* In some index AMs, line pointer flags can be modified in master without
* emitting any WAL record.
*/
void
mask_lp_flags(Page page)
{
OffsetNumber offnum,
maxoff;
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemId = PageGetItemId(page, offnum);
if (ItemIdIsUsed(itemId))
itemId->lp_flags = LP_UNUSED;
}
}
示例6: brin_evacuate_page
/*
* Move all tuples out of a page.
*
* The caller must hold lock on the page. The lock and pin are released.
*/
void
brin_evacuate_page(Relation idxRel, BlockNumber pagesPerRange,
BrinRevmap *revmap, Buffer buf)
{
OffsetNumber off;
OffsetNumber maxoff;
Page page;
page = BufferGetPage(buf);
Assert(((BrinSpecialSpace *)
PageGetSpecialPointer(page))->flags & BRIN_EVACUATE_PAGE);
maxoff = PageGetMaxOffsetNumber(page);
for (off = FirstOffsetNumber; off <= maxoff; off++)
{
BrinTuple *tup;
Size sz;
ItemId lp;
CHECK_FOR_INTERRUPTS();
lp = PageGetItemId(page, off);
if (ItemIdIsUsed(lp))
{
sz = ItemIdGetLength(lp);
tup = (BrinTuple *) PageGetItem(page, lp);
tup = brin_copy_tuple(tup, sz);
LockBuffer(buf, BUFFER_LOCK_UNLOCK);
if (!brin_doupdate(idxRel, pagesPerRange, revmap, tup->bt_blkno,
buf, off, tup, sz, tup, sz, false))
off--; /* retry */
LockBuffer(buf, BUFFER_LOCK_SHARE);
/* It's possible that someone extended the revmap over this page */
if (!BRIN_IS_REGULAR_PAGE(page))
break;
}
}
UnlockReleaseBuffer(buf);
}
示例7: PageAddItemExtended
/*
* PageAddItemExtended
*
* Add an item to a page. Return value is the offset at which it was
* inserted, or InvalidOffsetNumber if the item is not inserted for any
* reason. A WARNING is issued indicating the reason for the refusal.
*
* offsetNumber must be either InvalidOffsetNumber to specify finding a
* free item pointer, or a value between FirstOffsetNumber and one past
* the last existing item, to specify using that particular item pointer.
*
* If offsetNumber is valid and flag PAI_OVERWRITE is set, we just store
* the item at the specified offsetNumber, which must be either a
* currently-unused item pointer, or one past the last existing item.
*
* If offsetNumber is valid and flag PAI_OVERWRITE is not set, insert
* the item at the specified offsetNumber, moving existing items later
* in the array to make room.
*
* If offsetNumber is not valid, then assign a slot by finding the first
* one that is both unused and deallocated.
*
* If flag PAI_IS_HEAP is set, we enforce that there can't be more than
* MaxHeapTuplesPerPage line pointers on the page.
*
* !!! EREPORT(ERROR) IS DISALLOWED HERE !!!
*/
OffsetNumber
PageAddItemExtended(Page page,
Item item,
Size size,
OffsetNumber offsetNumber,
int flags)
{
PageHeader phdr = (PageHeader) page;
Size alignedSize;
int lower;
int upper;
ItemId itemId;
OffsetNumber limit;
bool needshuffle = false;
/*
* Be wary about corrupted page pointers
*/
if (phdr->pd_lower < SizeOfPageHeaderData ||
phdr->pd_lower > phdr->pd_upper ||
phdr->pd_upper > phdr->pd_special ||
phdr->pd_special > BLCKSZ)
ereport(PANIC,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
phdr->pd_lower, phdr->pd_upper, phdr->pd_special)));
/*
* Select offsetNumber to place the new item at
*/
limit = OffsetNumberNext(PageGetMaxOffsetNumber(page));
/* was offsetNumber passed in? */
if (OffsetNumberIsValid(offsetNumber))
{
/* yes, check it */
if ((flags & PAI_OVERWRITE) != 0)
{
if (offsetNumber < limit)
{
itemId = PageGetItemId(phdr, offsetNumber);
if (ItemIdIsUsed(itemId) || ItemIdHasStorage(itemId))
{
elog(WARNING, "will not overwrite a used ItemId");
return InvalidOffsetNumber;
}
}
}
else
{
if (offsetNumber < limit)
needshuffle = true; /* need to move existing linp's */
}
}
else
{
/* offsetNumber was not passed in, so find a free slot */
/* if no free slot, we'll put it at limit (1st open slot) */
if (PageHasFreeLinePointers(phdr))
{
/*
* Look for "recyclable" (unused) ItemId. We check for no storage
* as well, just to be paranoid --- unused items should never have
* storage.
*/
for (offsetNumber = 1; offsetNumber < limit; offsetNumber++)
{
itemId = PageGetItemId(phdr, offsetNumber);
if (!ItemIdIsUsed(itemId) && !ItemIdHasStorage(itemId))
break;
}
if (offsetNumber >= limit)
{
//.........这里部分代码省略.........
示例8: statapprox_heap
/*
* This function takes an already open relation and scans its pages,
* skipping those that have the corresponding visibility map bit set.
* For pages we skip, we find the free space from the free space map
* and approximate tuple_len on that basis. For the others, we count
* the exact number of dead tuples etc.
*
* This scan is loosely based on vacuumlazy.c:lazy_scan_heap(), but
* we do not try to avoid skipping single pages.
*/
static void
statapprox_heap(Relation rel, output_type *stat)
{
BlockNumber scanned,
nblocks,
blkno;
Buffer vmbuffer = InvalidBuffer;
BufferAccessStrategy bstrategy;
TransactionId OldestXmin;
uint64 misc_count = 0;
OldestXmin = GetOldestXmin(rel, PROCARRAY_FLAGS_VACUUM);
bstrategy = GetAccessStrategy(BAS_BULKREAD);
nblocks = RelationGetNumberOfBlocks(rel);
scanned = 0;
for (blkno = 0; blkno < nblocks; blkno++)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
Size freespace;
CHECK_FOR_INTERRUPTS();
/*
* If the page has only visible tuples, then we can find out the free
* space from the FSM and move on.
*/
if (VM_ALL_VISIBLE(rel, blkno, &vmbuffer))
{
freespace = GetRecordedFreeSpace(rel, blkno);
stat->tuple_len += BLCKSZ - freespace;
stat->free_space += freespace;
continue;
}
buf = ReadBufferExtended(rel, MAIN_FORKNUM, blkno,
RBM_NORMAL, bstrategy);
LockBuffer(buf, BUFFER_LOCK_SHARE);
page = BufferGetPage(buf);
/*
* It's not safe to call PageGetHeapFreeSpace() on new pages, so we
* treat them as being free space for our purposes.
*/
if (!PageIsNew(page))
stat->free_space += PageGetHeapFreeSpace(page);
else
stat->free_space += BLCKSZ - SizeOfPageHeaderData;
if (PageIsNew(page) || PageIsEmpty(page))
{
UnlockReleaseBuffer(buf);
continue;
}
scanned++;
/*
* Look at each tuple on the page and decide whether it's live or
* dead, then count it and its size. Unlike lazy_scan_heap, we can
* afford to ignore problems and special cases.
*/
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid;
HeapTupleData tuple;
itemid = PageGetItemId(page, offnum);
if (!ItemIdIsUsed(itemid) || ItemIdIsRedirected(itemid) ||
ItemIdIsDead(itemid))
{
continue;
}
Assert(ItemIdIsNormal(itemid));
ItemPointerSet(&(tuple.t_self), blkno, offnum);
tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
//.........这里部分代码省略.........
示例9: brinGetTupleForHeapBlock
/*
* Fetch the BrinTuple for a given heap block.
*
* The buffer containing the tuple is locked, and returned in *buf. As an
* optimization, the caller can pass a pinned buffer *buf on entry, which will
* avoid a pin-unpin cycle when the next tuple is on the same page as a
* previous one.
*
* If no tuple is found for the given heap range, returns NULL. In that case,
* *buf might still be updated, but it's not locked.
*
* The output tuple offset within the buffer is returned in *off, and its size
* is returned in *size.
*/
BrinTuple *
brinGetTupleForHeapBlock(BrinRevmap *revmap, BlockNumber heapBlk,
Buffer *buf, OffsetNumber *off, Size *size, int mode)
{
Relation idxRel = revmap->rm_irel;
BlockNumber mapBlk;
RevmapContents *contents;
ItemPointerData *iptr;
BlockNumber blk;
Page page;
ItemId lp;
BrinTuple *tup;
ItemPointerData previptr;
/* normalize the heap block number to be the first page in the range */
heapBlk = (heapBlk / revmap->rm_pagesPerRange) * revmap->rm_pagesPerRange;
/* Compute the revmap page number we need */
mapBlk = revmap_get_blkno(revmap, heapBlk);
if (mapBlk == InvalidBlockNumber)
{
*off = InvalidOffsetNumber;
return NULL;
}
ItemPointerSetInvalid(&previptr);
for (;;)
{
CHECK_FOR_INTERRUPTS();
if (revmap->rm_currBuf == InvalidBuffer ||
BufferGetBlockNumber(revmap->rm_currBuf) != mapBlk)
{
if (revmap->rm_currBuf != InvalidBuffer)
ReleaseBuffer(revmap->rm_currBuf);
Assert(mapBlk != InvalidBlockNumber);
revmap->rm_currBuf = ReadBuffer(revmap->rm_irel, mapBlk);
}
LockBuffer(revmap->rm_currBuf, BUFFER_LOCK_SHARE);
contents = (RevmapContents *)
PageGetContents(BufferGetPage(revmap->rm_currBuf));
iptr = contents->rm_tids;
iptr += HEAPBLK_TO_REVMAP_INDEX(revmap->rm_pagesPerRange, heapBlk);
if (!ItemPointerIsValid(iptr))
{
LockBuffer(revmap->rm_currBuf, BUFFER_LOCK_UNLOCK);
return NULL;
}
/*
* Check the TID we got in a previous iteration, if any, and save the
* current TID we got from the revmap; if we loop, we can sanity-check
* that the next one we get is different. Otherwise we might be stuck
* looping forever if the revmap is somehow badly broken.
*/
if (ItemPointerIsValid(&previptr) && ItemPointerEquals(&previptr, iptr))
ereport(ERROR,
(errcode(ERRCODE_INDEX_CORRUPTED),
errmsg_internal("corrupted BRIN index: inconsistent range map")));
previptr = *iptr;
blk = ItemPointerGetBlockNumber(iptr);
*off = ItemPointerGetOffsetNumber(iptr);
LockBuffer(revmap->rm_currBuf, BUFFER_LOCK_UNLOCK);
/* Ok, got a pointer to where the BrinTuple should be. Fetch it. */
if (!BufferIsValid(*buf) || BufferGetBlockNumber(*buf) != blk)
{
if (BufferIsValid(*buf))
ReleaseBuffer(*buf);
*buf = ReadBuffer(idxRel, blk);
}
LockBuffer(*buf, mode);
page = BufferGetPage(*buf);
/* If we land on a revmap page, start over */
if (BRIN_IS_REGULAR_PAGE(page))
{
lp = PageGetItemId(page, *off);
if (ItemIdIsUsed(lp))
{
//.........这里部分代码省略.........
示例10: btree_xlog_delete_get_latestRemovedXid
//.........这里部分代码省略.........
if (!reachedConsistency)
elog(PANIC, "btree_xlog_delete_get_latestRemovedXid: cannot operate with inconsistent data");
/*
* Get index page. If the DB is consistent, this should not fail, nor
* should any of the heap page fetches below. If one does, we return
* InvalidTransactionId to cancel all HS transactions. That's probably
* overkill, but it's safe, and certainly better than panicking here.
*/
XLogRecGetBlockTag(record, 0, &rnode, NULL, &blkno);
ibuffer = XLogReadBufferExtended(rnode, MAIN_FORKNUM, blkno, RBM_NORMAL);
if (!BufferIsValid(ibuffer))
return InvalidTransactionId;
LockBuffer(ibuffer, BT_READ);
ipage = (Page) BufferGetPage(ibuffer);
/*
* Loop through the deleted index items to obtain the TransactionId from
* the heap items they point to.
*/
unused = (OffsetNumber *) ((char *) xlrec + SizeOfBtreeDelete);
for (i = 0; i < xlrec->nitems; i++)
{
/*
* Identify the index tuple about to be deleted
*/
iitemid = PageGetItemId(ipage, unused[i]);
itup = (IndexTuple) PageGetItem(ipage, iitemid);
/*
* Locate the heap page that the index tuple points at
*/
hblkno = ItemPointerGetBlockNumber(&(itup->t_tid));
hbuffer = XLogReadBufferExtended(xlrec->hnode, MAIN_FORKNUM, hblkno, RBM_NORMAL);
if (!BufferIsValid(hbuffer))
{
UnlockReleaseBuffer(ibuffer);
return InvalidTransactionId;
}
LockBuffer(hbuffer, BUFFER_LOCK_SHARE);
hpage = (Page) BufferGetPage(hbuffer);
/*
* Look up the heap tuple header that the index tuple points at by
* using the heap node supplied with the xlrec. We can't use
* heap_fetch, since it uses ReadBuffer rather than XLogReadBuffer.
* Note that we are not looking at tuple data here, just headers.
*/
hoffnum = ItemPointerGetOffsetNumber(&(itup->t_tid));
hitemid = PageGetItemId(hpage, hoffnum);
/*
* Follow any redirections until we find something useful.
*/
while (ItemIdIsRedirected(hitemid))
{
hoffnum = ItemIdGetRedirect(hitemid);
hitemid = PageGetItemId(hpage, hoffnum);
CHECK_FOR_INTERRUPTS();
}
/*
* If the heap item has storage, then read the header and use that to
* set latestRemovedXid.
*
* Some LP_DEAD items may not be accessible, so we ignore them.
*/
if (ItemIdHasStorage(hitemid))
{
htuphdr = (HeapTupleHeader) PageGetItem(hpage, hitemid);
HeapTupleHeaderAdvanceLatestRemovedXid(htuphdr, &latestRemovedXid);
}
else if (ItemIdIsDead(hitemid))
{
/*
* Conjecture: if hitemid is dead then it had xids before the xids
* marked on LP_NORMAL items. So we just ignore this item and move
* onto the next, for the purposes of calculating
* latestRemovedxids.
*/
}
else
Assert(!ItemIdIsUsed(hitemid));
UnlockReleaseBuffer(hbuffer);
}
UnlockReleaseBuffer(ibuffer);
/*
* If all heap tuples were LP_DEAD then we will be returning
* InvalidTransactionId here, which avoids conflicts. This matches
* existing logic which assumes that LP_DEAD tuples must already be older
* than the latestRemovedXid on the cleanup record that set them as
* LP_DEAD, hence must already have generated a conflict.
*/
return latestRemovedXid;
}
示例11: collect_corrupt_items
//.........这里部分代码省略.........
/* Read and lock the page. */
buffer = ReadBufferExtended(rel, MAIN_FORKNUM, blkno, RBM_NORMAL,
bstrategy);
LockBuffer(buffer, BUFFER_LOCK_SHARE);
page = BufferGetPage(buffer);
maxoff = PageGetMaxOffsetNumber(page);
/*
* The visibility map bits might have changed while we were acquiring
* the page lock. Recheck to avoid returning spurious results.
*/
if (check_frozen && !VM_ALL_FROZEN(rel, blkno, &vmbuffer))
check_frozen = false;
if (check_visible && !VM_ALL_VISIBLE(rel, blkno, &vmbuffer))
check_visible = false;
if (!check_visible && !check_frozen)
{
UnlockReleaseBuffer(buffer);
continue;
}
/* Iterate over each tuple on the page. */
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
HeapTupleData tuple;
ItemId itemid;
itemid = PageGetItemId(page, offnum);
/* Unused or redirect line pointers are of no interest. */
if (!ItemIdIsUsed(itemid) || ItemIdIsRedirected(itemid))
continue;
/* Dead line pointers are neither all-visible nor frozen. */
if (ItemIdIsDead(itemid))
{
ItemPointerSet(&(tuple.t_self), blkno, offnum);
record_corrupt_item(items, &tuple.t_self);
continue;
}
/* Initialize a HeapTupleData structure for checks below. */
ItemPointerSet(&(tuple.t_self), blkno, offnum);
tuple.t_data = (HeapTupleHeader) PageGetItem(page, itemid);
tuple.t_len = ItemIdGetLength(itemid);
tuple.t_tableOid = relid;
/*
* If we're checking whether the page is all-visible, we expect
* the tuple to be all-visible.
*/
if (check_visible &&
!tuple_all_visible(&tuple, OldestXmin, buffer))
{
TransactionId RecomputedOldestXmin;
/*
* Time has passed since we computed OldestXmin, so it's
* possible that this tuple is all-visible in reality even
* though it doesn't appear so based on our
* previously-computed value. Let's compute a new value so we
* can be certain whether there is a problem.
*
示例12: heap_get_root_tuples
/*
* For all items in this page, find their respective root line pointers.
* If item k is part of a HOT-chain with root at item j, then we set
* root_offsets[k - 1] = j.
*
* The passed-in root_offsets array must have MaxHeapTuplesPerPage entries.
* We zero out all unused entries.
*
* The function must be called with at least share lock on the buffer, to
* prevent concurrent prune operations.
*
* Note: The information collected here is valid only as long as the caller
* holds a pin on the buffer. Once pin is released, a tuple might be pruned
* and reused by a completely unrelated tuple.
*/
void
heap_get_root_tuples(Page page, OffsetNumber *root_offsets)
{
OffsetNumber offnum,
maxoff;
MemSet(root_offsets, 0, MaxHeapTuplesPerPage * sizeof(OffsetNumber));
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber; offnum <= maxoff; offnum = OffsetNumberNext(offnum))
{
ItemId lp = PageGetItemId(page, offnum);
HeapTupleHeader htup;
OffsetNumber nextoffnum;
TransactionId priorXmax;
/* skip unused and dead items */
if (!ItemIdIsUsed(lp) || ItemIdIsDead(lp))
continue;
if (ItemIdIsNormal(lp))
{
htup = (HeapTupleHeader) PageGetItem(page, lp);
/*
* Check if this tuple is part of a HOT-chain rooted at some other
* tuple. If so, skip it for now; we'll process it when we find
* its root.
*/
if (HeapTupleHeaderIsHeapOnly(htup))
continue;
/*
* This is either a plain tuple or the root of a HOT-chain.
* Remember it in the mapping.
*/
root_offsets[offnum - 1] = offnum;
/* If it's not the start of a HOT-chain, we're done with it */
if (!HeapTupleHeaderIsHotUpdated(htup))
continue;
/* Set up to scan the HOT-chain */
nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
priorXmax = HeapTupleHeaderGetXmax(htup);
}
else
{
/* Must be a redirect item. We do not set its root_offsets entry */
Assert(ItemIdIsRedirected(lp));
/* Set up to scan the HOT-chain */
nextoffnum = ItemIdGetRedirect(lp);
priorXmax = InvalidTransactionId;
}
/*
* Now follow the HOT-chain and collect other tuples in the chain.
*
* Note: Even though this is a nested loop, the complexity of the
* function is O(N) because a tuple in the page should be visited not
* more than twice, once in the outer loop and once in HOT-chain
* chases.
*/
for (;;)
{
lp = PageGetItemId(page, nextoffnum);
/* Check for broken chains */
if (!ItemIdIsNormal(lp))
break;
htup = (HeapTupleHeader) PageGetItem(page, lp);
if (TransactionIdIsValid(priorXmax) &&
!TransactionIdEquals(priorXmax, HeapTupleHeaderGetXmin(htup)))
break;
/* Remember the root line pointer for this item */
root_offsets[nextoffnum - 1] = offnum;
/* Advance to next chain member, if any */
if (!HeapTupleHeaderIsHotUpdated(htup))
break;
nextoffnum = ItemPointerGetOffsetNumber(&htup->t_ctid);
//.........这里部分代码省略.........
示例13: PageRepairFragmentation
/*
* PageRepairFragmentation
*
* Frees fragmented space on a page.
* It doesn't remove unused line pointers! Please don't change this.
*
* This routine is usable for heap pages only, but see PageIndexMultiDelete.
*
* Returns number of unused line pointers on page. If "unused" is not NULL
* then the unused[] array is filled with indexes of unused line pointers.
*/
int
PageRepairFragmentation(Page page, OffsetNumber *unused)
{
Offset pd_lower = ((PageHeader) page)->pd_lower;
Offset pd_upper = ((PageHeader) page)->pd_upper;
Offset pd_special = ((PageHeader) page)->pd_special;
itemIdSort itemidbase,
itemidptr;
ItemId lp;
int nline,
nused;
int i;
Size totallen;
Offset upper;
/*
* It's worth the trouble to be more paranoid here than in most places,
* because we are about to reshuffle data in (what is usually) a shared
* disk buffer. If we aren't careful then corrupted pointers, lengths,
* etc could cause us to clobber adjacent disk buffers, spreading the data
* loss further. So, check everything.
*/
if (pd_lower < SizeOfPageHeaderData ||
pd_lower > pd_upper ||
pd_upper > pd_special ||
pd_special > BLCKSZ ||
pd_special != MAXALIGN(pd_special))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted page pointers: lower = %u, upper = %u, special = %u",
pd_lower, pd_upper, pd_special),
errSendAlert(true)));
nline = PageGetMaxOffsetNumber(page);
nused = 0;
for (i = 0; i < nline; i++)
{
lp = PageGetItemId(page, i + 1);
if (ItemIdDeleted(lp)) /* marked for deletion */
lp->lp_flags &= ~(LP_USED | LP_DELETE);
if (ItemIdIsUsed(lp))
nused++;
else if (unused)
unused[i - nused] = (OffsetNumber) i;
}
if (nused == 0)
{
/* Page is completely empty, so just reset it quickly */
for (i = 0; i < nline; i++)
{
lp = PageGetItemId(page, i + 1);
lp->lp_len = 0; /* indicate unused & deallocated */
}
((PageHeader) page)->pd_upper = pd_special;
}
else
{ /* nused != 0 */
/* Need to compact the page the hard way */
itemidbase = (itemIdSort) palloc(sizeof(itemIdSortData) * nused);
itemidptr = itemidbase;
totallen = 0;
for (i = 0; i < nline; i++)
{
lp = PageGetItemId(page, i + 1);
if (ItemIdIsUsed(lp))
{
itemidptr->offsetindex = i;
itemidptr->itemoff = ItemIdGetOffset(lp);
if (itemidptr->itemoff < (int) pd_upper ||
itemidptr->itemoff >= (int) pd_special)
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
errmsg("corrupted item pointer: %u",
itemidptr->itemoff),
errSendAlert(true)));
itemidptr->alignedlen = MAXALIGN(ItemIdGetLength(lp));
totallen += itemidptr->alignedlen;
itemidptr++;
}
else
{
lp->lp_len = 0; /* indicate unused & deallocated */
}
}
if (totallen > (Size) (pd_special - pd_lower))
ereport(ERROR,
(errcode(ERRCODE_DATA_CORRUPTED),
//.........这里部分代码省略.........
示例14: count_nondeletable_pages
/*
* Rescan end pages to verify that they are (still) empty of tuples.
*
* Returns number of nondeletable pages (last nonempty page + 1).
*/
static BlockNumber
count_nondeletable_pages(Relation onerel, LVRelStats *vacrelstats)
{
BlockNumber blkno;
/* Strange coding of loop control is needed because blkno is unsigned */
blkno = vacrelstats->rel_pages;
while (blkno > vacrelstats->nonempty_pages)
{
Buffer buf;
Page page;
OffsetNumber offnum,
maxoff;
bool hastup;
/*
* We don't insert a vacuum delay point here, because we have an
* exclusive lock on the table which we want to hold for as short a
* time as possible. We still need to check for interrupts however.
*/
CHECK_FOR_INTERRUPTS();
blkno--;
buf = ReadBufferExtended(onerel, MAIN_FORKNUM, blkno,
RBM_NORMAL, vac_strategy);
/* In this phase we only need shared access to the buffer */
LockBuffer(buf, BUFFER_LOCK_SHARE);
page = BufferGetPage(buf);
if (PageIsNew(page) || PageIsEmpty(page))
{
/* PageIsNew probably shouldn't happen... */
UnlockReleaseBuffer(buf);
continue;
}
hastup = false;
maxoff = PageGetMaxOffsetNumber(page);
for (offnum = FirstOffsetNumber;
offnum <= maxoff;
offnum = OffsetNumberNext(offnum))
{
ItemId itemid;
itemid = PageGetItemId(page, offnum);
/*
* Note: any non-unused item should be taken as a reason to keep
* this page. We formerly thought that DEAD tuples could be
* thrown away, but that's not so, because we'd not have cleaned
* out their index entries.
*/
if (ItemIdIsUsed(itemid))
{
hastup = true;
break; /* can stop scanning */
}
} /* scan along page */
UnlockReleaseBuffer(buf);
/* Done scanning if we found a tuple here */
if (hastup)
return blkno + 1;
}
/*
* If we fall out of the loop, all the previously-thought-to-be-empty
* pages still are; we need not bother to look at the last known-nonempty
* page.
*/
return vacrelstats->nonempty_pages;
}
示例15: BitmapHeapNext
//.........这里部分代码省略.........
/*
* Get next page of results if needed
*/
if (tbmres == NULL)
{
node->tbmres = tbmres = tbm_iterate(tbm);
if (tbmres == NULL)
{
/* no more entries in the bitmap */
break;
}
/*
* Ignore any claimed entries past what we think is the end of the
* relation. (This is probably not necessary given that we got at
* least AccessShareLock on the table before performing any of the
* indexscans, but let's be safe.)
*/
if (tbmres->blockno >= scan->rs_nblocks)
{
node->tbmres = tbmres = NULL;
continue;
}
/*
* Fetch the current heap page and identify candidate tuples.
*/
bitgetpage(scan, tbmres);
/*
* Set rs_cindex to first slot to examine
*/
scan->rs_cindex = 0;
}
else
{
/*
* Continuing in previously obtained page; advance rs_cindex
*/
scan->rs_cindex++;
}
/*
* Out of range? If so, nothing more to look at on this page
*/
if (scan->rs_cindex < 0 || scan->rs_cindex >= scan->rs_ntuples)
{
node->tbmres = tbmres = NULL;
continue;
}
/*
* Okay to fetch the tuple
*/
targoffset = scan->rs_vistuples[scan->rs_cindex];
dp = (Page) BufferGetPage(scan->rs_cbuf);
lp = PageGetItemId(dp, targoffset);
Assert(ItemIdIsUsed(lp));
scan->rs_ctup.t_data = (HeapTupleHeader) PageGetItem((Page) dp, lp);
scan->rs_ctup.t_len = ItemIdGetLength(lp);
ItemPointerSet(&scan->rs_ctup.t_self, tbmres->blockno, targoffset);
pgstat_count_heap_fetch(&scan->rs_pgstat_info);
/*
* Set up the result slot to point to this tuple. Note that the slot
* acquires a pin on the buffer.
*/
ExecStoreTuple(&scan->rs_ctup,
slot,
scan->rs_cbuf,
false);
/*
* If we are using lossy info, we have to recheck the qual conditions
* at every tuple.
*/
if (tbmres->ntuples < 0)
{
econtext->ecxt_scantuple = slot;
ResetExprContext(econtext);
if (!ExecQual(node->bitmapqualorig, econtext, false))
{
/* Fails recheck, so drop it and loop back for another */
ExecClearTuple(slot);
continue;
}
}
/* OK to return this tuple */
return slot;
}
/*
* if we get here it means we are at the end of the scan..
*/
return ExecClearTuple(slot);
}