本文整理汇总了C++中InnerProduct函数的典型用法代码示例。如果您正苦于以下问题:C++ InnerProduct函数的具体用法?C++ InnerProduct怎么用?C++ InnerProduct使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了InnerProduct函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: Multiply
bool CAR_DKW_o::SetParameters_InitializeABOmega()
{
if (!CAR_DKW::SetParameters_InitializeABOmega())
return false;
TDenseMatrix lambda1 = SIGMA_inverse * SIGMAlambda1;
TDenseVector KAPPAtheta = KAPPA * theta;
TDenseVector theta_Q;
aI_Q.Zeros(dataP->MATgrid_options.Dimension());
bI_Q.Zeros(dataP->MATgrid_options.Dimension(), Nfac);
for (int i=0; i<dataP->MATgrid_options.Dimension(); i++)
{
double MAT = dataP->MATgrid_options(i);
TDenseVector temp_ay;
TDenseMatrix temp_by;
if (!YieldFacLoad(temp_ay, temp_by, KAPPA_rn, Inv_KAPPA_rn, Inv_Kron_KAPPA_rn, SIGMA, KAPPAtheta, rho0, rho1, lambda0,TDenseVector(1,MAT)))
return false;
TDenseVector temp_by_vector = temp_by.RowVector(0); // -MAT * temp_by.RowVector(0);
theta_Q = Multiply(Inv_KAPPA_rn, KAPPAtheta-SIGMA*lambda0+MultiplyTranspose(SIGMA,SIGMA)*temp_by_vector);
double rho0_Q = rho0_pi - InnerProduct(lambda0, sigq)+InnerProduct(sigq, TransposeMultiply(SIGMA,temp_by_vector));
TDenseVector rho1_Q = rho1_pi - TransposeMultiply(lambda1, sigq);
double temp_aI_Q;
TDenseVector temp_bI_Q;
InfExpFacLoad(temp_aI_Q, temp_bI_Q, KAPPA_rn, Inv_KAPPA_rn, Inv_Kron_KAPPA_rn, SIGMA, theta_Q, sigq, sigqx, rho0_Q, rho1_Q, MAT);
aI_Q(i) = temp_aI_Q;
bI_Q.InsertRowMatrix(i, 0, temp_bI_Q);
}
return true;
}
示例2: CompMod
void CompMod(zz_pX& x, const zz_pX& g, const zz_pXArgument& A,
const zz_pXModulus& F)
{
if (deg(g) <= 0) {
x = g;
return;
}
zz_pX s, t;
vec_zz_p scratch(INIT_SIZE, F.n);
long m = A.H.length() - 1;
long l = ((g.rep.length()+m-1)/m) - 1;
zz_pXMultiplier M;
build(M, A.H[m], F);
InnerProduct(t, g.rep, l*m, l*m + m - 1, A.H, F.n, scratch);
for (long i = l-1; i >= 0; i--) {
InnerProduct(s, g.rep, i*m, i*m + m - 1, A.H, F.n, scratch);
MulMod(t, t, M, F);
add(t, t, s);
}
x = t;
}
示例3: PlainUpdateMap
void PlainUpdateMap(vec_zz_p& xx, const vec_zz_p& a,
const zz_pX& b, const zz_pX& f)
{
long n = deg(f);
long i, m;
if (IsZero(b)) {
xx.SetLength(0);
return;
}
m = n-1 - deg(b);
vec_zz_p x(INIT_SIZE, n);
for (i = 0; i <= m; i++)
InnerProduct(x[i], a, b.rep, i);
if (deg(b) != 0) {
zz_pX c(INIT_SIZE, n);
LeftShift(c, b, m);
for (i = m+1; i < n; i++) {
MulByXMod(c, c, f);
InnerProduct(x[i], a, c.rep);
}
}
xx = x;
}
示例4: CompMod
void CompMod(ZZ_pX& x, const ZZ_pX& g, const ZZ_pXArgument& A,
const ZZ_pXModulus& F)
{
if (deg(g) <= 0) {
x = g;
return;
}
ZZ_pX s, t;
ZZVec scratch(F.n, ZZ_p::ExtendedModulusSize());
long m = A.H.length() - 1;
long l = ((g.rep.length()+m-1)/m) - 1;
ZZ_pXMultiplier M;
build(M, A.H[m], F);
InnerProduct(t, g.rep, l*m, l*m + m - 1, A.H, F.n, scratch);
for (long i = l-1; i >= 0; i--) {
InnerProduct(s, g.rep, i*m, i*m + m - 1, A.H, F.n, scratch);
MulMod(t, t, M, F);
add(t, t, s);
}
x = t;
}
示例5: DoubleDeriv1
double DoubleDeriv1 (edge *TheEdge, position *ThePosition, line *TheLine,
int index_x, int index_y)
{
int index;
double dv[3], v[3], newv[3], hat[3], temp1;
if (!TheEdge || !ThePosition || !TheLine) return (0.0);
if (index_y < index_x) {
index = index_x; index_x = index_y; index_y = index;
}
ComputeV (v, *TheLine);
RotateQuaternion (newv, ThePosition->q, v);
temp1 = InnerProduct (newv, TheEdge->m);
if ((index_x == THETA) && (index_y == THETA) ||
(index_x == OMEGA) && (index_y == OMEGA))
return (-2.0 * sqr(temp1));
if ((index_x == THETA) && (index_y == OMEGA))
return (0.0);
if (((index_x == THETA) || (index_x == OMEGA)) &&
((index_y == ALPHA) || (index_y == BETA) || (index_y == GAMMA))) {
if (index_x == THETA) {
hat[0] = 0.0; hat[1] = -1.0; hat[2] = 0.0;
} else {
hat[0] = 1.0; hat[1] = 0.0; hat[2] = 0.0;
}
RotateQuaternion (v, TheLine->q, hat);
RotateQuaternion (newv, ThePosition->q, v);
DerivR (dv, newv, IndexToAxis (index_y));
return (2.0 * temp1 * InnerProduct (dv, TheEdge->m));
}
if ( ((index_x == ALPHA) || (index_x == BETA) || (index_x == GAMMA)) &&
((index_y == ALPHA) || (index_y == BETA) || (index_y == GAMMA)) ) {
ComputeV (v, *TheLine);
RotateQuaternion (newv, ThePosition->q, v);
DoubleDerivR (dv, newv, IndexToAxis (index_x), IndexToAxis (index_y));
return (2.0 * temp1 * InnerProduct (dv, TheEdge->m));
}
pexit ("Bad Parameters to DoubleDeriv1");
return 0.0;
}
示例6: ComputeGS
static
void ComputeGS(mat_ZZ& B, xdouble **B1, xdouble **mu, xdouble *b,
xdouble *c, long k, xdouble bound, long st, xdouble *buf)
{
long n = B.NumCols();
long i, j;
xdouble s, t1, y, t;
ZZ T1;
xdouble *mu_k = mu[k];
if (st < k) {
for (i = 1; i < st; i++)
buf[i] = mu_k[i]*c[i];
}
for (j = st; j <= k-1; j++) {
if (b[k]*b[j] < NTL_FDOUBLE_PRECISION*NTL_FDOUBLE_PRECISION) {
double z = 0;
xdouble *B1_k = B1[k];
xdouble *B1_j = B1[j];
for (i = 1; i <= n; i++)
z += B1_k[i].x * B1_j[i].x;
s = z;
}
else {
s = InnerProduct(B1[k], B1[j], n);
if (s*s <= b[k]*b[j]/bound) {
InnerProduct(T1, B(k), B(j));
conv(s, T1);
}
}
xdouble *mu_j = mu[j];
t1 = 0;
for (i = 1; i <= j-1; i++)
MulAdd(t1, t1, mu_j[i], buf[i]);
mu_k[j] = (buf[j] = (s - t1))/c[j];
}
s = 0;
for (j = 1; j <= k-1; j++)
MulAdd(s, s, mu_k[j], buf[j]);
c[k] = b[k] - s;
}
示例7: Deriv1
double Deriv1 (edge *TheEdge, position *ThePosition, line *TheLine,
int index)
{
double v[3], newv[3], dv[3], hat[3];
if (!TheEdge || !ThePosition || !TheLine) return (0.0);
switch (index) {
case THETA :
hat[0] = 0.0; hat[1] = -1.0; hat[2] = 0.0;
RotateQuaternion (dv, TheLine->q, hat);
RotateQuaternion (newv, ThePosition->q, dv);
return (InnerProduct (newv, TheEdge->m));
break;
case OMEGA :
hat[0] = 1.0; hat[1] = 0.0; hat[2] = 0.0;
RotateQuaternion (dv, TheLine->q, hat);
RotateQuaternion (newv, ThePosition->q, dv);
return (InnerProduct (newv, TheEdge->m));
break;
case ALPHA :
ComputeV (v, *TheLine);
RotateQuaternion (newv, ThePosition->q, v);
DerivR (dv, newv, 'x');
return (InnerProduct (dv, TheEdge->m));
break;
case BETA :
ComputeV (v, *TheLine);
RotateQuaternion (newv, ThePosition->q, v);
DerivR (dv, newv, 'y');
return (InnerProduct (dv, TheEdge->m));
break;
case GAMMA :
ComputeV (v, *TheLine);
RotateQuaternion (newv, ThePosition->q, v);
DerivR (dv, newv, 'z');
return (InnerProduct (dv, TheEdge->m));
break;
default :
pexit ("Bad parameters to Deriv1");
break;
}
return 0.0;
}
示例8: a0
double SBVAR::LogLikelihood(void)
{
double log_likelihood=log_likelihood_constant + lambda_T*LogAbsDeterminant(A0);
TDenseVector a0(n_vars), aplus(n_predetermined);
for (int i=n_vars-1; i >= 0; i--)
{
a0.RowVector(A0,i);
aplus.RowVector(Aplus,i);
log_likelihood+=-0.5*(InnerProduct(a0,a0,YY) - 2.0*InnerProduct(aplus,a0,XY) + InnerProduct(aplus,aplus,XX));
}
return log_likelihood;
}
示例9: Integrate
/*
Computes the log of the integral of the tempered posterior.
Integrate( (p(Y|Theta)*p(Theta))^(1/K) dTheta )
*/
double SBVAR_symmetric_linear::LogPosteriorIntegral(TDenseVector p, int ndraws, int thin, int burn_in)
{
if (ndraws <= 0) throw dw_exception("PosteriorIntegral(): number of draws must be postive");
if (thin <= 0) throw dw_exception("PosteriorIntegral(): thinning factor must be positive");
if (p.dim != NumberParameters()) throw dw_exception("PosteriorIntegral(): Incorrect number of parameters");
if (!simulation_info_set) SetSimulationInfo();
SetParameters(p.vector);
double integral=log_likelihood_constant + log_prior_constant;
for (int i=0; i < n_vars; i++)
integral+=0.5*dim_g[i]*1.837877066409345 + LogAbsDeterminant(Simulate_SqrtH[i]); // 1.837877066409345 = log(2*pi)
integral+=lambda_T*LogAbsDeterminant(A0);
for (int i=0; i < n_vars; i++)
{
TDenseVector x=InverseMultiply(Simulate_SqrtS[i],p.SubVector(begin_b[i],begin_b[i]+dim_b[i]-1));
integral+=-0.5*lambda_T*InnerProduct(x,x);
}
for (int i=0; i < n_vars; i++)
integral-=LogConditionalA0_gibbs(p,i,ndraws,thin,burn_in);
return integral;
}
示例10: wrapper
wrapper(size_t n, params prm = params(),
const backend_params &bprm = backend_params(),
const InnerProduct &inner_product = InnerProduct()
)
: s(prm.get("type", runtime::solver::bicgstab)), handle(0)
{
if (!prm.erase("type")) AMGCL_PARAM_MISSING("type");
switch(s) {
#define AMGCL_RUNTIME_SOLVER(type) \
case type: \
handle = static_cast<void*>(new amgcl::solver::type<Backend, InnerProduct>(n, prm, bprm, inner_product)); \
break
AMGCL_RUNTIME_SOLVER(cg);
AMGCL_RUNTIME_SOLVER(bicgstab);
AMGCL_RUNTIME_SOLVER(bicgstabl);
AMGCL_RUNTIME_SOLVER(gmres);
AMGCL_RUNTIME_SOLVER(lgmres);
AMGCL_RUNTIME_SOLVER(fgmres);
AMGCL_RUNTIME_SOLVER(idrs);
#undef AMGCL_RUNTIME_SOLVER
default:
throw std::invalid_argument("Unsupported solver type");
}
}
示例11: GillespiePetzold_Stepsize
double GillespiePetzold_Stepsize(Vector& x ,
Vector& a ,
double & a0 ,
const Matrix& nu ,
double tau,
double eps,
PropensityJacobianFunc jacobian)
{
static Matrix f(x.Size(), x.Size());
static Vector mu = a;
static Vector sigma = a;
static double r1, r2;
static double tau1, tau2;
f = jacobian(x)*nu;
mu = f*a;
sigma = InnerProduct(f, f)*a;
r1 = mu.Norm(); //Max norm
r2 = sigma.Norm(); // Max norm
tau1 = eps * a0;
tau2 = tau1 * tau1;
if (r1 > 0)
tau1 = tau1/r1;
else
tau1 = 100.;
if (r2 > 0)
tau2 = tau2/r2;
else
tau2 = 100.;
if (tau1 > tau2)
return tau2;
else
return tau1;
}
示例12: CharPolyBound
NTL_START_IMPL
static
long CharPolyBound(const mat_ZZ& a)
// This bound is computed via interpolation
// through complex roots of unity.
{
long n = a.NumRows();
long i;
ZZ res, t1, t2;
set(res);
for (i = 0; i < n; i++) {
InnerProduct(t1, a[i], a[i]);
abs(t2, a[i][i]);
mul(t2, t2, 2);
add(t2, t2, 1);
add(t1, t1, t2);
if (t1 > 1) {
SqrRoot(t1, t1);
add(t1, t1, 1);
}
mul(res, res, t1);
}
return NumBits(res);
}
示例13: DoCP0Test
TInt DoCP0Test(TAny* aPtr)
{
TUint seed[2];
seed[0]=(TUint)aPtr;
seed[1]=0;
TInt16 vec1[128];
TInt16 vec2[128];
TInt run;
for (run=0; run<100000; ++run)
{
TInt n=(Random(seed)&63)+64; // vector length
TInt i;
for (i=0; i<n; ++i)
{
vec1[i]=(TInt16)(Random(seed)&0xffff);
vec2[i]=(TInt16)(Random(seed)&0xffff);
TInt64 result, result2;
InnerProduct(result,vec1,vec2,n);
InnerProduct2(result2,vec1,vec2,n);
if (result != result2)
{
User::Panic(_L("ERROR"),run);
}
}
}
return 0;
}
示例14: Evaluate
double ScalarFiniteElement<D> ::
Evaluate (const IntegrationPoint & ip, FlatVector<double> x) const
{
VectorMem<20, double> shape(ndof);
CalcShape (ip, shape);
return InnerProduct (shape, x);
}
示例15: ProjectPowers
void ProjectPowers(vec_zz_p& x, const vec_zz_p& a, long k,
const zz_pXArgument& H, const zz_pXModulus& F)
{
long n = F.n;
if (a.length() > n || k < 0 || NTL_OVERFLOW(k, 1, 0))
Error("ProjectPowers: bad args");
long m = H.H.length()-1;
long l = (k+m-1)/m - 1;
zz_pXMultiplier M;
build(M, H.H[m], F);
vec_zz_p s(INIT_SIZE, n);
s = a;
StripZeroes(s);
x.SetLength(k);
for (long i = 0; i <= l; i++) {
long m1 = min(m, k-i*m);
zz_p* w = &x[i*m];
for (long j = 0; j < m1; j++)
InnerProduct(w[j], H.H[j].rep, s);
if (i < l)
UpdateMap(s, s, M, F);
}
}