本文整理汇总了C++中INTERNAL_SYSCALL_DECL函数的典型用法代码示例。如果您正苦于以下问题:C++ INTERNAL_SYSCALL_DECL函数的具体用法?C++ INTERNAL_SYSCALL_DECL怎么用?C++ INTERNAL_SYSCALL_DECL使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了INTERNAL_SYSCALL_DECL函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: pthread_sigmask
int
pthread_sigmask (int how, const sigset_t *newmask, sigset_t *oldmask)
{
sigset_t local_newmask;
/* The only thing we have to make sure here is that SIGCANCEL and
SIGSETXID is not blocked. */
if (newmask != NULL
&& (__builtin_expect (__sigismember (newmask, SIGCANCEL), 0)
|| __builtin_expect (__sigismember (newmask, SIGSETXID), 0)))
{
local_newmask = *newmask;
__sigdelset (&local_newmask, SIGCANCEL);
__sigdelset (&local_newmask, SIGSETXID);
newmask = &local_newmask;
}
#ifdef INTERNAL_SYSCALL
/* We know that realtime signals are available if NPTL is used. */
INTERNAL_SYSCALL_DECL (err);
int result = INTERNAL_SYSCALL (rt_sigprocmask, err, 4, how, newmask,
oldmask, _NSIG / 8);
return (INTERNAL_SYSCALL_ERROR_P (result, err)
? INTERNAL_SYSCALL_ERRNO (result, err)
: 0);
#else
return sigprocmask (how, newmask, oldmask) == -1 ? errno : 0;
#endif
}
示例2: sighandler_setxid
/* For asynchronous cancellation we use a signal. This is the handler. */
static void
sighandler_setxid (int sig, siginfo_t *si, void *ctx)
{
/* Safety check. It would be possible to call this function for
other signals and send a signal from another process. This is not
correct and might even be a security problem. Try to catch as
many incorrect invocations as possible. */
if (sig != SIGSETXID
#ifdef __ASSUME_CORRECT_SI_PID
/* Kernels before 2.5.75 stored the thread ID and not the process
ID in si_pid so we skip this test. */
|| si->si_pid != THREAD_GETMEM (THREAD_SELF, pid)
#endif
|| si->si_code != SI_TKILL)
return;
INTERNAL_SYSCALL_DECL (err);
INTERNAL_SYSCALL_NCS (__xidcmd->syscall_no, err, 3, __xidcmd->id[0],
__xidcmd->id[1], __xidcmd->id[2]);
if (atomic_decrement_val (&__xidcmd->cntr) == 0)
lll_futex_wake (&__xidcmd->cntr, 1);
/* Reset the SETXID flag. */
struct pthread *self = THREAD_SELF;
int flags = THREAD_GETMEM (self, cancelhandling);
THREAD_SETMEM (self, cancelhandling, flags & ~SETXID_BITMASK);
/* And release the futex. */
self->setxid_futex = 1;
lll_futex_wake (&self->setxid_futex, 1);
}
示例3: __times
clock_t
__times (struct tms *buf)
{
INTERNAL_SYSCALL_DECL (err);
clock_t ret = INTERNAL_SYSCALL (times, err, 1, buf);
if (INTERNAL_SYSCALL_ERROR_P (ret, err)
&& __builtin_expect (INTERNAL_SYSCALL_ERRNO (ret, err) == EFAULT, 0))
{
/* This might be an error or not. For architectures which have
no separate return value and error indicators we cannot
distinguish a return value of -1 from an error. Do it the
hard way. We crash applications which pass in an invalid BUF
pointer. */
#define touch(v) \
do { \
clock_t temp = v; \
asm volatile ("" : "+r" (temp)); \
v = temp; \
} while (0)
touch (buf->tms_utime);
touch (buf->tms_stime);
touch (buf->tms_cutime);
touch (buf->tms_cstime);
/* If we come here the memory is valid and the kernel did not
return an EFAULT error. Return the value given by the kernel. */
}
/* Return value (clock_t) -1 signals an error, but if there wasn't any,
return the following value. */
if (ret == (clock_t) -1)
return (clock_t) 0;
return ret;
}
示例4: mq_unlink
/* Remove message queue named NAME. */
int
mq_unlink (const char *name)
{
if (name[0] != '/')
{
__set_errno (EINVAL);
return -1;
}
INTERNAL_SYSCALL_DECL (err);
int ret = INTERNAL_SYSCALL (mq_unlink, err, 1, name + 1);
/* While unlink can return either EPERM or EACCES, mq_unlink should
return just EACCES. */
if (__glibc_unlikely (INTERNAL_SYSCALL_ERROR_P (ret, err)))
{
ret = INTERNAL_SYSCALL_ERRNO (ret, err);
if (ret == EPERM)
ret = EACCES;
__set_errno (ret);
ret = -1;
}
return ret;
}
示例5: posix_fadvise
int
posix_fadvise (int fd, off_t offset, off_t len, int advise)
{
INTERNAL_SYSCALL_DECL (err);
# ifdef __NR_fadvise64
int ret = INTERNAL_SYSCALL_CALL (fadvise64, err, fd,
__ALIGNMENT_ARG SYSCALL_LL (offset),
len, advise);
# else
# ifdef __ASSUME_FADVISE64_64_6ARG
int ret = INTERNAL_SYSCALL_CALL (fadvise64_64, err, fd, advise,
__ALIGNMENT_ARG SYSCALL_LL (offset),
SYSCALL_LL (len));
# else
# ifdef __ASSUME_FADVISE64_64_NO_ALIGN
# undef __ALIGNMENT_ARG
# define __ALIGNMENT_ARG
# endif
int ret = INTERNAL_SYSCALL_CALL (fadvise64_64, err, fd,
__ALIGNMENT_ARG SYSCALL_LL (offset),
SYSCALL_LL (len), advise);
# endif
# endif
if (INTERNAL_SYSCALL_ERROR_P (ret, err))
return INTERNAL_SYSCALL_ERRNO (ret, err);
return 0;
}
示例6: __clock_nanosleep
/* We can simply use the syscall. The CPU clocks are not supported
with this function. */
int
__clock_nanosleep (clockid_t clock_id, int flags, const struct timespec *req,
struct timespec *rem)
{
INTERNAL_SYSCALL_DECL (err);
int r;
if (clock_id == CLOCK_THREAD_CPUTIME_ID)
return EINVAL;
if (clock_id == CLOCK_PROCESS_CPUTIME_ID)
clock_id = MAKE_PROCESS_CPUCLOCK (0, CPUCLOCK_SCHED);
if (SINGLE_THREAD_P)
r = INTERNAL_SYSCALL (clock_nanosleep, err, 4, clock_id, flags, req, rem);
else
{
int oldstate = LIBC_CANCEL_ASYNC ();
r = INTERNAL_SYSCALL (clock_nanosleep, err, 4, clock_id, flags, req,
rem);
LIBC_CANCEL_RESET (oldstate);
}
return (INTERNAL_SYSCALL_ERROR_P (r, err)
? INTERNAL_SYSCALL_ERRNO (r, err) : 0);
}
示例7: posix_fadvise64
int posix_fadvise64(int fd, off64_t offset, off64_t len, int advice)
{
INTERNAL_SYSCALL_DECL (err);
/* ARM has always been funky. */
#if defined (__arm__) || \
(defined(__UCLIBC_SYSCALL_ALIGN_64BIT__) && (defined(__powerpc__) || defined(__xtensa__)))
/* arch with 64-bit data in even reg alignment #1: [powerpc/xtensa]
* custom syscall handler (rearranges @advice to avoid register hole punch) */
int ret = INTERNAL_SYSCALL (fadvise64_64, err, 6, fd, advice,
OFF64_HI_LO (offset), OFF64_HI_LO (len));
#elif defined(__UCLIBC_SYSCALL_ALIGN_64BIT__)
/* arch with 64-bit data in even reg alignment #2: [arcv2/others-in-future]
* stock syscall handler in kernel (reg hole punched) */
int ret = INTERNAL_SYSCALL (fadvise64_64, err, 7, fd, 0,
OFF64_HI_LO (offset), OFF64_HI_LO (len),
advice);
# else
int ret = INTERNAL_SYSCALL (fadvise64_64, err, 6, fd,
OFF64_HI_LO (offset), OFF64_HI_LO (len),
advice);
# endif
if (INTERNAL_SYSCALL_ERROR_P (ret, err))
return INTERNAL_SYSCALL_ERRNO (ret, err);
return 0;
}
示例8: __fe_nomask_env
const fenv_t *
__fe_nomask_env (void)
{
#if __ASSUME_NEW_PRCTL_SYSCALL == 0
# if defined PR_SET_FPEXC && defined PR_FP_EXC_PRECISE
int result = INLINE_SYSCALL (prctl, 2, PR_SET_FPEXC, PR_FP_EXC_PRECISE);
if (result == -1 && errno == EINVAL)
# endif
{
struct sigaction act;
act.sa_handler = (sighandler_t) fe_nomask_handler;
sigemptyset (&act.sa_mask);
act.sa_flags = 0;
sigaction (SIGUSR1, &act, &oact);
raise (SIGUSR1);
}
#else
INTERNAL_SYSCALL_DECL (err);
INTERNAL_SYSCALL (prctl, err, 2, PR_SET_FPEXC, PR_FP_EXC_PRECISE);
#endif
return FE_ENABLED_ENV;
}
示例9: __feholdexcept
int
__feholdexcept (fenv_t *envp)
{
fenv_union_t u;
INTERNAL_SYSCALL_DECL (err);
int r;
/* Get the current state. */
r = INTERNAL_SYSCALL (prctl, err, 2, PR_GET_FPEXC, &u.l[0]);
if (INTERNAL_SYSCALL_ERROR_P (r, err))
return -1;
u.l[1] = fegetenv_register ();
*envp = u.fenv;
/* Clear everything except for the rounding mode and trapping to the
kernel. */
u.l[0] &= ~(PR_FP_EXC_DIV
| PR_FP_EXC_OVF
| PR_FP_EXC_UND
| PR_FP_EXC_RES
| PR_FP_EXC_INV);
u.l[1] &= SPEFSCR_FRMC | (SPEFSCR_ALL_EXCEPT_ENABLE & ~SPEFSCR_FINXE);
/* Put the new state in effect. */
fesetenv_register (u.l[1]);
r = INTERNAL_SYSCALL (prctl, err, 2, PR_SET_FPEXC,
u.l[0] | PR_FP_EXC_SW_ENABLE);
if (INTERNAL_SYSCALL_ERROR_P (r, err))
return -1;
return 0;
}
示例10: __pthread_kill
int
__pthread_kill (pthread_t threadid, int signo)
{
struct pthread *pd = (struct pthread *) threadid;
/* Make sure the descriptor is valid. */
if (DEBUGGING_P && INVALID_TD_P (pd))
/* Not a valid thread handle. */
return ESRCH;
/* Force load of pd->tid into local variable or register. Otherwise
if a thread exits between ESRCH test and tgkill, we might return
EINVAL, because pd->tid would be cleared by the kernel. */
pid_t tid = atomic_forced_read (pd->tid);
if (__glibc_unlikely (tid <= 0))
/* Not a valid thread handle. */
return ESRCH;
/* Disallow sending the signal we use for cancellation, timers,
for the setxid implementation. */
if (signo == SIGCANCEL || signo == SIGTIMER || signo == SIGSETXID)
return EINVAL;
/* We have a special syscall to do the work. */
INTERNAL_SYSCALL_DECL (err);
pid_t pid = __getpid ();
int val = INTERNAL_SYSCALL_CALL (tgkill, err, pid, tid, signo);
return (INTERNAL_SYSCALL_ERROR_P (val, err)
? INTERNAL_SYSCALL_ERRNO (val, err) : 0);
}
示例11: __getegid
gid_t
__getegid (void)
{
INTERNAL_SYSCALL_DECL (err);
#if __ASSUME_32BITUIDS > 0
/* No error checking. */
return INTERNAL_SYSCALL (getegid32, err, 0);
#else
# ifdef __NR_getegid32
if (__libc_missing_32bit_uids <= 0)
{
int result;
result = INTERNAL_SYSCALL (getegid32, err, 0);
if (! INTERNAL_SYSCALL_ERROR_P (result, err)
|| INTERNAL_SYSCALL_ERRNO (result, err) != ENOSYS)
return result;
__libc_missing_32bit_uids = 1;
}
# endif /* __NR_getegid32 */
/* No error checking. */
return INTERNAL_SYSCALL (getegid, err, 0);
#endif
}
示例12: fedisableexcept
int
fedisableexcept (int excepts)
{
int result = 0, pflags, r;
INTERNAL_SYSCALL_DECL (err);
r = INTERNAL_SYSCALL (prctl, err, 2, PR_GET_FPEXC, &pflags);
if (INTERNAL_SYSCALL_ERROR_P (r, err))
return -1;
/* Save old enable bits. */
result = __fexcepts_from_prctl (pflags);
pflags &= ~__fexcepts_to_prctl (excepts);
r = INTERNAL_SYSCALL (prctl, err, 2, PR_SET_FPEXC,
pflags | PR_FP_EXC_SW_ENABLE);
if (INTERNAL_SYSCALL_ERROR_P (r, err))
return -1;
/* If disabling signals for "inexact", also disable trapping to the
kernel. */
if ((excepts & FE_INEXACT) != 0)
{
unsigned long fpescr;
fpescr = fegetenv_register ();
fpescr &= ~SPEFSCR_FINXE;
fesetenv_register (fpescr);
}
return result;
}
示例13: sched_setaffinity
int sched_setaffinity(pid_t pid, size_t cpusetsize, const cpu_set_t *cpuset)
{
size_t cnt;
if (unlikely (__kernel_cpumask_size == 0)) {
INTERNAL_SYSCALL_DECL (err);
int res;
size_t psize = 128;
void *p = alloca (psize);
while (res = INTERNAL_SYSCALL (sched_getaffinity, err, 3, getpid (),
psize, p),
INTERNAL_SYSCALL_ERROR_P (res, err)
&& INTERNAL_SYSCALL_ERRNO (res, err) == EINVAL)
p = extend_alloca (p, psize, 2 * psize);
if (res == 0 || INTERNAL_SYSCALL_ERROR_P (res, err)) {
__set_errno (INTERNAL_SYSCALL_ERRNO (res, err));
return -1;
}
__kernel_cpumask_size = res;
}
/* We now know the size of the kernel cpumask_t. Make sure the user
does not request to set a bit beyond that. */
for (cnt = __kernel_cpumask_size; cnt < cpusetsize; ++cnt)
if (((char *) cpuset)[cnt] != '\0') {
/* Found a nonzero byte. This means the user request cannot be
fulfilled. */
__set_errno (EINVAL);
return -1;
}
return INLINE_SYSCALL (sched_setaffinity, 3, pid, cpusetsize, cpuset);
}
示例14: setfsuid
int
setfsuid (uid_t uid)
{
INTERNAL_SYSCALL_DECL (err);
# if __ASSUME_32BITUIDS > 0
/* No error checking. */
return INTERNAL_SYSCALL (setfsuid32, err, 1, uid);
# else
# ifdef __NR_setfsuid32
if (__libc_missing_32bit_uids <= 0)
{
int result;
result = INTERNAL_SYSCALL (setfsuid32, err, 1, uid);
if (! INTERNAL_SYSCALL_ERROR_P (result, err)
|| INTERNAL_SYSCALL_ERRNO (result, err) != ENOSYS)
return result;
__libc_missing_32bit_uids = 1;
}
# endif /* __NR_setfsuid32 */
if (uid != (uid_t) ((__kernel_uid_t) uid))
{
__set_errno (EINVAL);
return -1;
}
/* No error checking. */
return INTERNAL_SYSCALL (setfsuid, err, 1, uid);
# endif
}
示例15: posix_fallocate
/* Reserve storage for the data of the file associated with FD. */
int
posix_fallocate (int fd, __off_t offset, __off_t len)
{
#ifdef __NR_fallocate
# ifndef __ASSUME_FALLOCATE
if (__builtin_expect (__have_fallocate >= 0, 1))
# endif
{
INTERNAL_SYSCALL_DECL (err);
int res = INTERNAL_SYSCALL (fallocate, err, 4, fd, 0, offset, len);
if (! INTERNAL_SYSCALL_ERROR_P (res, err))
return 0;
# ifndef __ASSUME_FALLOCATE
if (__builtin_expect (INTERNAL_SYSCALL_ERRNO (res, err) == ENOSYS, 0))
__have_fallocate = -1;
else
# endif
if (INTERNAL_SYSCALL_ERRNO (res, err) != EOPNOTSUPP)
return INTERNAL_SYSCALL_ERRNO (res, err);
}
#endif
return internal_fallocate (fd, offset, len);
}