本文整理汇总了C++中INTEGER函数的典型用法代码示例。如果您正苦于以下问题:C++ INTEGER函数的具体用法?C++ INTEGER怎么用?C++ INTEGER使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了INTEGER函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: getDrivesForArray
void getDrivesForArray(const std::string& arrayName,
MDInterface& md,
QueryData& data) {
std::string path(md.getPathByDevName(arrayName));
if (path.empty()) {
LOG(ERROR) << "Could not get file path for " << arrayName;
return;
}
mdu_array_info_t array;
if (!md.getArrayInfo(path, array)) {
return;
}
/* Create a vector of with all expected slot positions. As we work through
* the RAID disks, we remove discovered slots */
std::vector<size_t> missingSlots(array.raid_disks);
std::iota(missingSlots.begin(), missingSlots.end(), 0);
/* Keep track of index in QueryData that have removed slots since we can't
* make safe assumptions about it's original slot position if disk_number >=
* total_disk and we're unable to deteremine total number of missing slots
* until we walk thru all MD_SB_DISKS */
std::vector<size_t> removedSlots;
size_t qdPos = data.size();
for (size_t i = 0; i < MD_SB_DISKS; i++) {
mdu_disk_info_t disk;
disk.number = i;
if (!md.getDiskInfo(path, disk)) {
continue;
}
if (disk.major > 0) {
Row r;
r["md_device_name"] = arrayName;
r["drive_name"] = md.getDevName(disk.major, disk.minor);
r["state"] = getDiskStateStr(disk.state);
if (disk.raid_disk >= 0) {
r["slot"] = INTEGER(disk.raid_disk);
missingSlots.erase(
std::remove(
missingSlots.begin(), missingSlots.end(), disk.raid_disk),
missingSlots.end());
/* We assume that if the disk number is less than the total disk count
* of the array, then it assumes its original slot position; If the
* number is greater than the disk count, then it's not safe to make
* that assumption. We do this check here b/c if a recovery is targeted
* for the same slot, we potentially miss identifying the original slot
* position of the bad disk. */
} else if (disk.raid_disk < 0 && disk.number < array.raid_disks) {
r["slot"] = std::to_string(disk.number);
missingSlots.erase(
std::remove(missingSlots.begin(), missingSlots.end(), disk.number),
missingSlots.end());
/* Mark QueryData position as a removedSlot to handle later*/
} else {
removedSlots.push_back(qdPos);
}
qdPos++;
data.push_back(r);
}
}
/* Handle all missing slots. See `scattered_faulty_and_removed` unit test in
* `./tests/md_tables_tests.cpp`*/
for (const auto& slot : missingSlots) {
if (!removedSlots.empty()) {
data[removedSlots[0]]["slot"] = INTEGER(slot);
removedSlots.erase(removedSlots.begin());
} else {
Row r;
r["md_device_name"] = arrayName;
r["drive_name"] = "unknown";
r["state"] = "removed";
r["slot"] = std::to_string(slot);
data.push_back(r);
}
}
}
示例2: AllocProtectInt
int * AllocProtectInt(int n){
SEXP x = R_NilValue;
PROTECT(x = NEW_INTEGER(n));
return( INTEGER(x) );
}
示例3: agmart3
SEXP agmart3(SEXP surv2, SEXP score2, SEXP weight2, SEXP strata2,
SEXP sortx, SEXP method2) {
int k, ksave;
int p, istrat, indx2;
double deaths, denom, e_denom;
double hazard, e_hazard, cumhaz;
double temp, time;
double wtsum;
int n, person;
/* pointers to the input data */
double *start, *stop, *event;
double *weight, *score;
int *sort1, *sort2, *strata;
int method; /* integer version of input */
/* output */
SEXP resid2;
double *resid;
n = nrows(surv2);
method = asInteger(method2);
start = REAL(surv2);
stop = start +n;
event = stop +n;
weight= REAL(weight2);
score = REAL(score2);
sort1 = INTEGER(sortx);
sort2 = sort1 + n;
strata= INTEGER(strata2);
PROTECT(resid2 = allocVector(REALSXP, n));
resid = REAL(resid2);
/*
** 'person' walks through the the data from 1 to n,
** sort1[0] points to the largest stop time, sort1[1] the next, ...
** 'time' is a scratch variable holding the time of current interest
** 'indx2' walks through the start times. It will be smaller than
** 'person': if person=27 that means that 27 subjects have stop >=time,
** and are thus potential members of the risk set. If 'indx2' =9,
** that means that 9 subjects have start >=time and thus are NOT part
** of the risk set. (stop > start for each subject guarrantees that
** the 9 are a subset of the 27).
** Basic algorithm: move 'person' forward, adding the new subject into
** the risk set. If this is a new, unique death time, take selected
** old obs out of the sums, add in obs tied at this time, then update
** the cumulative hazard. Everything resets at the end of a stratum.
** The sort order is from large time to small, so we encounter a subject's
** ending time first, then their start time.
** The martingale residual for a subject is
** status - (cumhaz at end of their interval - cumhaz at start)*score
*/
istrat=0;
indx2 =0;
denom =0;
cumhaz =0;
for (person=0; person <n; ) {
p = sort1[person];
if (event[p] ==0) { /* censored */
denom += score[p] * weight[p];
resid[p] = cumhaz * score[p];
person++;
} else {
time = stop[p]; /* found a new, unique death time */
/*
** Remove those subjects whose start time is to the right
** from the risk set, and finish computation of their residual
*/
for (; indx2 <strata[istrat]; indx2++) {
p = sort2[indx2];
if (start[p] < time) break;
denom -= score[p] * weight[p];
resid[p] -= cumhaz * score[p];
}
/*
** Add up over this death time, for all subjects
*/
deaths =0;
e_denom =0;
wtsum =0;
for (k=person; k<strata[istrat]; k++) {
p = sort1[k];
if (stop[p] < time) break; /* only tied times */
denom += score[p] * weight[p];
if (event[p] ==1) {
deaths ++;
e_denom += score[p] * weight[p];
wtsum += weight[p];
}
}
ksave = k;
/* compute the increment in hazard
** hazard = usual increment
** e_hazard = efron increment, for tied deaths only
*/
//.........这里部分代码省略.........
示例4: INTEGER
SEXP gbm_pred
(
SEXP radX, // the data matrix
SEXP rcRows, // number of rows
SEXP rcCols, // number of columns
SEXP rcTrees, // number of trees, may be a vector
SEXP rdInitF, // the initial value
SEXP rTrees, // the list of trees
SEXP rCSplits, // the list of categorical splits
SEXP raiVarType, // indicator of continuous/nominal
SEXP riSingleTree // boolean whether to return only results for one tree
)
{
unsigned long hr = 0;
int iTree = 0;
int iObs = 0;
int cRows = INTEGER(rcRows)[0];
int cPredIterations = LENGTH(rcTrees);
int iPredIteration = 0;
int cTrees = 0;
SEXP rThisTree = NULL;
int *aiSplitVar = NULL;
double *adSplitCode = NULL;
int *aiLeftNode = NULL;
int *aiRightNode = NULL;
int *aiMissingNode = NULL;
int iCurrentNode = 0;
double dX = 0.0;
int iCatSplitIndicator = 0;
bool fSingleTree = (INTEGER(riSingleTree)[0]==1);
SEXP radPredF = NULL;
// allocate the predictions to return
PROTECT(radPredF = allocVector(REALSXP, cRows*cPredIterations));
if(radPredF == NULL)
{
hr = GBM_OUTOFMEMORY;
goto Error;
}
// initialize the predicted values
if(!fSingleTree)
{
// initialize with the intercept for only the smallest rcTrees
for(iObs=0; iObs<cRows; iObs++)
{
REAL(radPredF)[iObs] = REAL(rdInitF)[0];
}
}
else
{
for(iObs=0; iObs<cRows*cPredIterations; iObs++)
{
REAL(radPredF)[iObs] = 0.0;
}
}
iTree = 0;
for(iPredIteration=0; iPredIteration<LENGTH(rcTrees); iPredIteration++)
{
cTrees = INTEGER(rcTrees)[iPredIteration];
if(fSingleTree) iTree=cTrees-1;
if(!fSingleTree && (iPredIteration>0))
{
// copy over from the last rcTrees
for(iObs=0; iObs<cRows; iObs++)
{
REAL(radPredF)[cRows*iPredIteration+iObs] =
REAL(radPredF)[cRows*(iPredIteration-1)+iObs];
}
}
while(iTree<cTrees)
{
rThisTree = VECTOR_ELT(rTrees,iTree);
// these relate to columns returned by pretty.gbm.tree()
aiSplitVar = INTEGER(VECTOR_ELT(rThisTree,0));
adSplitCode = REAL (VECTOR_ELT(rThisTree,1));
aiLeftNode = INTEGER(VECTOR_ELT(rThisTree,2));
aiRightNode = INTEGER(VECTOR_ELT(rThisTree,3));
aiMissingNode = INTEGER(VECTOR_ELT(rThisTree,4));
for(iObs=0; iObs<cRows; iObs++)
{
iCurrentNode = 0;
while(aiSplitVar[iCurrentNode] != -1)
{
dX = REAL(radX)[aiSplitVar[iCurrentNode]*cRows + iObs];
// missing?
if(ISNA(dX))
{
iCurrentNode = aiMissingNode[iCurrentNode];
}
// continuous?
else if(INTEGER(raiVarType)[aiSplitVar[iCurrentNode]] == 0)
{
if(dX < adSplitCode[iCurrentNode])
{
iCurrentNode = aiLeftNode[iCurrentNode];
}
//.........这里部分代码省略.........
示例5: f
SEXP gbm
(
SEXP radY, // outcome or response
SEXP radOffset, // offset for f(x), NA for no offset
SEXP radX,
SEXP raiXOrder,
SEXP radWeight,
SEXP radMisc, // other row specific data (eg failure time), NA=no Misc
SEXP rcRows,
SEXP rcCols,
SEXP racVarClasses,
SEXP ralMonotoneVar,
SEXP rszFamily,
SEXP rcTrees,
SEXP rcDepth, // interaction depth
SEXP rcMinObsInNode,
SEXP rdShrinkage,
SEXP rdBagFraction,
SEXP rcTrain,
SEXP radFOld,
SEXP rcCatSplitsOld,
SEXP rcTreesOld,
SEXP rfVerbose
)
{
unsigned long hr = 0;
SEXP rAns = NULL;
SEXP rNewTree = NULL;
SEXP riSplitVar = NULL;
SEXP rdSplitPoint = NULL;
SEXP riLeftNode = NULL;
SEXP riRightNode = NULL;
SEXP riMissingNode = NULL;
SEXP rdErrorReduction = NULL;
SEXP rdWeight = NULL;
SEXP rdPred = NULL;
SEXP rdInitF = NULL;
SEXP radF = NULL;
SEXP radTrainError = NULL;
SEXP radValidError = NULL;
SEXP radOOBagImprove = NULL;
SEXP rSetOfTrees = NULL;
SEXP rSetSplitCodes = NULL;
SEXP rSplitCode = NULL;
VEC_VEC_CATEGORIES vecSplitCodes;
int i = 0;
int iT = 0;
int cTrees = INTEGER(rcTrees)[0];
const int cResultComponents = 7;
// rdInitF, radF, radTrainError, radValidError, radOOBagImprove
// rSetOfTrees, rSetSplitCodes
const int cTreeComponents = 8;
// riSplitVar, rdSplitPoint, riLeftNode,
// riRightNode, riMissingNode, rdErrorReduction, rdWeight, rdPred
int cNodes = 0;
int cTrain = INTEGER(rcTrain)[0];
double dTrainError = 0.0;
double dValidError = 0.0;
double dOOBagImprove = 0.0;
CGBM *pGBM = NULL;
CDataset *pData = NULL;
CDistribution *pDist = NULL;
// set up the dataset
pData = new CDataset();
if(pData==NULL)
{
hr = GBM_OUTOFMEMORY;
goto Error;
}
// initialize R's random number generator
GetRNGstate();
// initialize some things
hr = gbm_setup(REAL(radY),
REAL(radOffset),
REAL(radX),
INTEGER(raiXOrder),
REAL(radWeight),
REAL(radMisc),
INTEGER(rcRows)[0],
INTEGER(rcCols)[0],
INTEGER(racVarClasses),
INTEGER(ralMonotoneVar),
CHAR(STRING_ELT(rszFamily,0)),
INTEGER(rcTrees)[0],
INTEGER(rcDepth)[0],
INTEGER(rcMinObsInNode)[0],
REAL(rdShrinkage)[0],
REAL(rdBagFraction)[0],
INTEGER(rcTrain)[0],
pData,
//.........这里部分代码省略.........
示例6: MBAPoints
SEXP MBAPoints(SEXP xyz, SEXP xyzEst, SEXP m, SEXP n, SEXP h, SEXP extend, SEXP verbose) {
int i,j;
int nProtect = 0;
SEXP xyzPts, Z;
//get the surface points
PROTECT(xyzPts = getAttrib(xyz, R_DimSymbol)); nProtect++;
int nPts = INTEGER(xyzPts)[0];
typedef std::vector<double> dVec;
boost::shared_ptr<dVec> x_arr(new std::vector<double>);
boost::shared_ptr<dVec> y_arr(new std::vector<double>);
boost::shared_ptr<dVec> z_arr(new std::vector<double>);
for(i = 0; i < nPts; i++){
x_arr->push_back(REAL(xyz)[i]);
y_arr->push_back(REAL(xyz)[nPts+i]);
z_arr->push_back(REAL(xyz)[2*nPts+i]);
}
double maxXSurf = *std::max_element((*x_arr).begin(), (*x_arr).end());
double minXSurf = *std::min_element((*x_arr).begin(), (*x_arr).end());
double maxYSurf = *std::max_element((*y_arr).begin(), (*y_arr).end());
double minYSurf = *std::min_element((*y_arr).begin(), (*y_arr).end());
//get the points
xyzPts = getAttrib(xyzEst, R_DimSymbol);
int nEstPts = INTEGER(xyzPts)[0];
double maxXPt = REAL(xyzEst)[0];
double minXPt = REAL(xyzEst)[0];
double maxYPt = REAL(xyzEst)[nEstPts];
double minYPt = REAL(xyzEst)[nEstPts];
for(i = 0; i < nEstPts; i++){
if(REAL(xyzEst)[i] > maxXPt) maxXPt = REAL(xyzEst)[i];
if(REAL(xyzEst)[i] < minXPt) minXPt = REAL(xyzEst)[i];
if(REAL(xyzEst)[nEstPts+i] > maxYPt) maxYPt = REAL(xyzEst)[nEstPts+i];
if(REAL(xyzEst)[nEstPts+i] < minYPt) minYPt = REAL(xyzEst)[nEstPts+i];
}
std::string extendDirection = "";
if(INTEGER(extend)[0]){
if(maxXSurf < maxXPt){
maxXSurf = maxXPt;
extendDirection="+x ";
}
if(minXSurf > minXPt){
minXSurf = minXPt;
extendDirection+="-x ";
}
if(maxYSurf < maxYPt){
maxYSurf = maxYPt;
extendDirection+="+y ";
}
if(minYSurf > minYPt){
minYSurf = minYPt;
extendDirection+="-y ";
}
}
//init
MBA mba(x_arr, y_arr, z_arr);
mba.setDomain(minXSurf, minYSurf, maxXSurf, maxYSurf);
mba.MBAalg(INTEGER(m)[0], INTEGER(n)[0], INTEGER(h)[0]);
//retrieve the spline surface and evaluate
UCBspl::SplineSurface surface = mba.getSplineSurface();
double umin, vmin, umax, vmax;
surface.getDomain(umin, vmin, umax, vmax);
PROTECT(Z = allocVector(REALSXP, nEstPts)); nProtect++;
int ptsOutSide = 0;
for (i = 0; i < nEstPts; i++){
if(REAL(xyzEst)[i] < umin || REAL(xyzEst)[i] > umax ||
REAL(xyzEst)[nEstPts+i] < vmin || REAL(xyzEst)[nEstPts+i] > vmax){
REAL(Z)[i] = NA_REAL;
ptsOutSide++;
}else{
REAL(Z)[i] = surface.f(REAL(xyzEst)[i], REAL(xyzEst)[nEstPts+i]);
}
}
if(INTEGER(verbose)[0]){
if(extendDirection != "")
warning("domain extended in the %sdirection(s)\n", extendDirection.c_str());
if(ptsOutSide)
warning("%i point(s) fell outside the domain and were set to NA\n", ptsOutSide);
}
//clean-up
mba.cleanup(2);
//just to be sure
//.........这里部分代码省略.........
示例7: extractItem
static void extractItem(char *buffer, SEXP ans, int i, LocalData *d)
{
char *endp;
switch(TYPEOF(ans)) {
case NILSXP:
break;
case LGLSXP:
if (isNAstring(buffer, 0, d))
LOGICAL(ans)[i] = NA_INTEGER;
else {
int tr = StringTrue(buffer), fa = StringFalse(buffer);
if(tr || fa) LOGICAL(ans)[i] = tr;
else expected("a logical", buffer, d);
}
break;
case INTSXP:
if (isNAstring(buffer, 0, d))
INTEGER(ans)[i] = NA_INTEGER;
else {
INTEGER(ans)[i] = Strtoi(buffer, 10);
if (INTEGER(ans)[i] == NA_INTEGER)
expected("an integer", buffer, d);
}
break;
case REALSXP:
if (isNAstring(buffer, 0, d))
REAL(ans)[i] = NA_REAL;
else {
REAL(ans)[i] = Strtod(buffer, &endp, TRUE, d);
if (!isBlankString(endp))
expected("a real", buffer, d);
}
break;
case CPLXSXP:
if (isNAstring(buffer, 0, d))
COMPLEX(ans)[i].r = COMPLEX(ans)[i].i = NA_REAL;
else {
COMPLEX(ans)[i] = strtoc(buffer, &endp, TRUE, d);
if (!isBlankString(endp))
expected("a complex", buffer, d);
}
break;
case STRSXP:
if (isNAstring(buffer, 1, d))
SET_STRING_ELT(ans, i, NA_STRING);
else
SET_STRING_ELT(ans, i, insertString(buffer, d));
break;
case RAWSXP:
if (isNAstring(buffer, 0, d))
RAW(ans)[i] = 0;
else {
RAW(ans)[i] = strtoraw(buffer, &endp);
if (!isBlankString(endp))
expected("a raw", buffer, d);
}
break;
default:
UNIMPLEMENTED_TYPE("extractItem", ans);
}
}
示例8: R_plmd_model
SEXP R_plmd_model(SEXP Y, SEXP PsiCode, SEXP PsiK, SEXP Groups, SEXP Ngroups){
SEXP R_return_value;
SEXP R_weights;
SEXP R_residuals;
SEXP R_beta;
SEXP R_SE;
SEXP R_was_split;
SEXP R_return_value_names;
SEXP dim1;
double *beta;
double *residuals;
double *weights;
double *se;
int *was_split;
int *groups;
double residSE;
double *Ymat;
double *X; /* Needed for SE */
int X_cols, X_rows;
int rows;
int cols;
int ngroups;
int howmany_split =0;
int i;
PROTECT(dim1 = getAttrib(Y,R_DimSymbol));
rows = INTEGER(dim1)[0];
cols = INTEGER(dim1)[1];
UNPROTECT(1);
PROTECT(R_return_value = allocVector(VECSXP,5));
/*
Don't allocate R_beta/R_SE straight away, we won't know how much space
these will actually need until finishing the PLM-d fitting procedure.
Instead we will just allocate those for which we currently know the size
*/
PROTECT(R_weights = allocMatrix(REALSXP,rows,cols));
PROTECT(R_residuals = allocMatrix(REALSXP,rows,cols));
PROTECT(R_was_split = allocVector(INTSXP,rows));
/* 0 - beta (added below)
1 - weights
2 - residuals
3 - standard errors (added below)
4 - R_was_split
*/
SET_VECTOR_ELT(R_return_value,1,R_weights);
SET_VECTOR_ELT(R_return_value,2,R_residuals);
SET_VECTOR_ELT(R_return_value,4,R_was_split);
UNPROTECT(3);
residuals = NUMERIC_POINTER(R_residuals);
weights = NUMERIC_POINTER(R_weights);
was_split = INTEGER_POINTER(R_was_split);
groups = INTEGER_POINTER(Groups);
ngroups = INTEGER(Ngroups)[0];
Ymat = NUMERIC_POINTER(Y);
beta = Calloc(cols + rows*ngroups -1, double);
se = Calloc(cols + rows*ngroups -1, double);
plmd_fit(Ymat, rows, cols, ngroups, groups, was_split, beta, residuals, weights, PsiFunc(asInteger(PsiCode)),asReal(PsiK), 20);
for (i = 0; i < rows; i++){
howmany_split+=was_split[i];
}
if (howmany_split > 0){
PROTECT(R_beta = allocVector(REALSXP,rows + cols + howmany_split*(ngroups-1)));
PROTECT(R_SE = allocVector(REALSXP,rows + cols + howmany_split*(ngroups-1)));
X = plmd_get_design_matrix(rows, cols, ngroups, groups,was_split,&X_rows,&X_cols);
rlm_compute_se(X,Ymat, X_rows, X_cols, beta, residuals, weights, se,(double *)NULL, &residSE, 2, PsiFunc(asInteger(PsiCode)),asReal(PsiK));
//.........这里部分代码省略.........
示例9: layoutNRow
int layoutNRow(SEXP l) {
return INTEGER(VECTOR_ELT(l, LAYOUT_NROW))[0];
}
示例10: T
//EXPORT int JpmcdsCdsoneUpfrontCharge(cdsone.c)
SEXP calcUpfrontTest
(SEXP baseDate_input, /* (I) Value date for zero curve */
SEXP types, /* "MMMMMSSSSSSSSS"*/
SEXP rates, /* rates[14] = {1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9,
1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9, 1e-9};/\* (I)
Array of swap rates *\/ */
SEXP expiries,
SEXP mmDCC, /* (I) DCC of MM instruments */
SEXP fixedSwapFreq, /* (I) Fixed leg freqency/interval */
SEXP floatSwapFreq, /* (I) Floating leg freqency/interval */
SEXP fixedSwapDCC, /* (I) DCC of fixed leg */
SEXP floatSwapDCC, /* (I) DCC of floating leg */
SEXP badDayConvZC, //'M' badDayConv for zero curve
SEXP holidays,//'None'
// input for upfront charge calculation
SEXP todayDate_input, /*today: T (Where T = trade date)*/
SEXP valueDate_input, /* value date: T+3 Business Days*/
SEXP benchmarkDate_input,/* start date of benchmark CDS for internal
** clean spread bootstrapping;
** accrual Begin Date */
SEXP startDate_input,/* Accrual Begin Date */
SEXP endDate_input,/* Maturity (Fixed) */
SEXP stepinDate_input, /* T + 1*/
SEXP dccCDS, /* accruedDcc */
SEXP ivlCDS,
SEXP stubCDS,
SEXP badDayConvCDS,
SEXP calendar,
SEXP parSpread,
SEXP couponRate,
SEXP recoveryRate,
SEXP isPriceClean_input,
SEXP payAccruedOnDefault_input,
SEXP notional)
{
// static char routine[] = "JpmcdsCdsoneUpfrontCharge";
// my vars
int n;
TDate baseDate, today, benchmarkDate, startDate, endDate, stepinDate,valueDate;
int isPriceClean, payAccruedOnDefault;
SEXP upfrontPayment;
TCurve *discCurve = NULL;
char* pt_types;
char* pt_holidays;
char* pt_mmDCC;
char* pt_fixedSwapDCC;
char* pt_floatSwapDCC;
char* pt_fixedSwapFreq;
char* pt_floatSwapFreq;
char* pt_dccCDS;
char* pt_ivlCDS;
char* pt_stubCDS;
char* pt_calendar;
char* pt_badDayConvCDS;
// new
char *pt_badDayConvZC;
double parSpread_for_upf, couponRate_for_upf, recoveryRate_for_upf, notional_for_upf;
// function to consolidate R input to TDate
baseDate_input = coerceVector(baseDate_input,INTSXP);
baseDate = JpmcdsDate((long)INTEGER(baseDate_input)[0],
(long)INTEGER(baseDate_input)[1],
(long)INTEGER(baseDate_input)[2]);
todayDate_input = coerceVector(todayDate_input,INTSXP);
today = JpmcdsDate((long)INTEGER(todayDate_input)[0],
(long)INTEGER(todayDate_input)[1],
(long)INTEGER(todayDate_input)[2]);
valueDate_input = coerceVector(valueDate_input,INTSXP);
valueDate = JpmcdsDate((long)INTEGER(valueDate_input)[0],
(long)INTEGER(valueDate_input)[1],
(long)INTEGER(valueDate_input)[2]);
benchmarkDate_input = coerceVector(benchmarkDate_input,INTSXP);
benchmarkDate = JpmcdsDate((long)INTEGER(benchmarkDate_input)[0],
(long)INTEGER(benchmarkDate_input)[1],
(long)INTEGER(benchmarkDate_input)[2]);
startDate_input = coerceVector(startDate_input,INTSXP);
startDate = JpmcdsDate((long)INTEGER(startDate_input)[0],
(long)INTEGER(startDate_input)[1],
(long)INTEGER(startDate_input)[2]);
endDate_input = coerceVector(endDate_input,INTSXP);
endDate = JpmcdsDate((long)INTEGER(endDate_input)[0],
(long)INTEGER(endDate_input)[1],
(long)INTEGER(endDate_input)[2]);
stepinDate_input = coerceVector(stepinDate_input,INTSXP);
stepinDate = JpmcdsDate((long)INTEGER(stepinDate_input)[0],
(long)INTEGER(stepinDate_input)[1],
//.........这里部分代码省略.........
示例11: glm_mcmcbas
SEXP glm_mcmcbas(SEXP Y, SEXP X, SEXP Roffset, SEXP Rweights,
SEXP Rprobinit, SEXP Rmodeldim,
SEXP modelprior, SEXP betaprior, SEXP Rbestmodel,SEXP plocal,
SEXP BURNIN_Iterations,
SEXP family, SEXP Rcontrol,
SEXP Rupdate, SEXP Rlaplace)
{
int nProtected = 0;
int nModels=LENGTH(Rmodeldim);
SEXP ANS = PROTECT(allocVector(VECSXP, 17)); ++nProtected;
SEXP ANS_names = PROTECT(allocVector(STRSXP, 17)); ++nProtected;
SEXP Rprobs = PROTECT(duplicate(Rprobinit)); ++nProtected;
SEXP MCMCprobs= PROTECT(duplicate(Rprobinit)); ++nProtected;
SEXP R2 = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP shrinkage = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP modelspace = PROTECT(allocVector(VECSXP, nModels)); ++nProtected;
SEXP modeldim = PROTECT(duplicate(Rmodeldim)); ++nProtected;
SEXP counts = PROTECT(duplicate(Rmodeldim)); ++nProtected;
SEXP beta = PROTECT(allocVector(VECSXP, nModels)); ++nProtected;
SEXP se = PROTECT(allocVector(VECSXP, nModels)); ++nProtected;
SEXP deviance = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP modelprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP priorprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP logmarg = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP sampleprobs = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP Q = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP Rintercept = PROTECT(allocVector(REALSXP, nModels)); ++nProtected;
SEXP NumUnique = PROTECT(allocVector(INTSXP, 1)); ++nProtected;
double *probs, MH=0.0, prior_m=1.0,shrinkage_m, logmargy, postold, postnew;
int i, m, n, pmodel_old, *bestmodel;
int mcurrent, n_sure;
glmstptr *glmfamily;
glmfamily = make_glmfamily_structure(family);
betapriorptr *betapriorfamily;
betapriorfamily = make_betaprior_structure(betaprior, family);
//get dimsensions of all variables
int p = INTEGER(getAttrib(X,R_DimSymbol))[1];
int k = LENGTH(modelprobs);
int update = INTEGER(Rupdate)[0];
double eps = DBL_EPSILON;
struct Var *vars = (struct Var *) R_alloc(p, sizeof(struct Var)); // Info about the model variables.
probs = REAL(Rprobs);
n = sortvars(vars, probs, p);
for (i =n; i <p; i++) REAL(MCMCprobs)[vars[i].index] = probs[vars[i].index];
for (i =0; i <n; i++) REAL(MCMCprobs)[vars[i].index] = 0.0;
// fill in the sure things
int *model = ivecalloc(p);
for (i = n, n_sure = 0; i < p; i++) {
model[vars[i].index] = (int) vars[i].prob;
if (model[vars[i].index] == 1) ++n_sure;
}
GetRNGstate();
NODEPTR tree, branch;
tree = make_node(-1.0);
// Rprintf("For m=0, Initialize Tree with initial Model\n");
m = 0;
bestmodel = INTEGER(Rbestmodel);
INTEGER(modeldim)[m] = n_sure;
// Rprintf("Create Tree\n");
branch = tree;
CreateTree(branch, vars, bestmodel, model, n, m, modeldim);
int pmodel = INTEGER(modeldim)[m];
SEXP Rmodel_m = PROTECT(allocVector(INTSXP,pmodel));
GetModel_m(Rmodel_m, model, p);
//evaluate logmargy and shrinkage
SEXP glm_fit = PROTECT(glm_FitModel(X, Y, Rmodel_m, Roffset, Rweights,
glmfamily, Rcontrol, Rlaplace,
betapriorfamily));
prior_m = compute_prior_probs(model,pmodel,p, modelprior);
logmargy = REAL(getListElement(getListElement(glm_fit, "lpy"),"lpY"))[0];
shrinkage_m = REAL(getListElement(getListElement(glm_fit, "lpy"),
"shrinkage"))[0];
SetModel2(logmargy, shrinkage_m, prior_m, sampleprobs, logmarg, shrinkage, priorprobs, m);
SetModel1(glm_fit, Rmodel_m, beta, se, modelspace, deviance, R2,
Q, Rintercept, m);
UNPROTECT(2);
int nUnique=0, newmodel=0;
double *real_model = vecalloc(n);
int *modelold = ivecalloc(p);
int old_loc = 0;
int new_loc;
pmodel_old = pmodel;
nUnique=1;
INTEGER(counts)[0] = 0;
postold = REAL(logmarg)[m] + log(REAL(priorprobs)[m]);
//.........这里部分代码省略.........
示例12: BATCHgdwm_loop_MLPnet
SEXP BATCHgdwm_loop_MLPnet (SEXP origNet, SEXP Ptrans, SEXP Ttrans, SEXP nepochs, SEXP rho, SEXP thread_number ) {
//The only difference between wm and without it is the weight update (and the place the values are stored, one is batchgd the other is batchgdwm)
SEXP net;
SEXP R_fcall, args, arg1, arg2, arg3;
PROTECT(net=duplicate(origNet));
int* Ptransdim = INTEGER(coerceVector(getAttrib(Ptrans, R_DimSymbol), INTSXP));
int* Ttransdim = INTEGER(coerceVector(getAttrib(Ttrans, R_DimSymbol), INTSXP));
int n_epochs = INTEGER(nepochs)[0];
struct AMOREnet* ptnet = copynet_RC(net);
struct AMOREneuron** neurons = ptnet->neurons;
/////////////////////////////////////////////////////////////////////////
//Convert input and target to double only once (and instead of copying it every time, just change the pointers)
//Different rows for easy switching pointers
double* input_data = REAL(Ptrans);
double* target_data = REAL(Ttrans);
double** inputs = (double**) R_alloc(Ptransdim[1],sizeof(double*)); //This is an 'Index'
double** targets = (double**) R_alloc(Ptransdim[1],sizeof(double*)); //This is an 'Index'
for (int fila=0; fila < Ptransdim[1]; fila++) {
inputs[fila] = &input_data [fila*Ptransdim[0]];
targets[fila] = &target_data[fila*Ttransdim[0]];
}
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
// Thread number calculation
int n_threads = 1;
#ifdef _OPENMP
{
int max_threads = omp_get_max_threads();
int given_threads = 0;
if (isInteger(thread_number))
given_threads = INTEGER(thread_number)[0];
else if (isNumeric(thread_number))
given_threads = floor(REAL(thread_number)[0]);
if (given_threads <1) //I HAVE THE POWER TO SCHEDULE!
if(max_threads >1)
n_threads = max_threads-1; //Leave a CPU free
else
n_threads = 1;
else if (given_threads > max_threads)
n_threads = max_threads;
else
n_threads = given_threads;
if (neurons[0]->actf == CUSTOM_ACTF) //OMP + R custom functions = bad idea
n_threads = 1;
else if ((ptnet->deltaE.name != LMLS_NAME) && (ptnet->deltaE.name != LMS_NAME))
n_threads = 1;
//printf("Using %i threads from a max of %i.\n",n_threads ,max_threads);
}
#endif
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
//Contribution (who is to blame) : Parallelization done by Jose Maria
//Memory allocation for running different threads in parallel:
// Each thread will have his own pool of memory to handle the two kinds of temp vars:
// Vars used only inside the forwards/backwards (v0, v1 and method_delta)
// These vars will be initialized and read only by each thread
// Vars that hold the information on how much the weights and the bias should change
// These vars will be initialized by each thread, then accumulated and read by the master thread when the batch is finished
int n_neurons = ptnet->last_neuron+1;
//Temp values, internal in each iteration
double ** v0s = (double** ) R_alloc(n_threads,sizeof(double* )); //This is an 'Index'
double ** v1s = (double** ) R_alloc(n_threads,sizeof(double* )); //This is an 'Index'
double ** method_deltas = (double** ) R_alloc(n_threads,sizeof(double* )); //This is an 'Index'
//Accumulated values
double ** method_deltas_bias = (double** ) R_alloc(n_threads,sizeof(double* )); //This is an 'Index'
double *** method_sums_delta_x = (double***) R_alloc(n_threads,sizeof(double**)); //This is an 'Index'
for(int id_thread=0; id_thread<n_threads;id_thread++){
double* chunk = (double*) R_alloc(4*n_neurons,sizeof(double)); //Actual chunk of memory for each thread, trying to avoid R_alloc calls
//Advantages: Good proximity reference in cache for values of the same thread, and since it has at least 2 neurons
// (Who would have a NNetwork with less than 2 neurons?), chunks are larger than 64 bytes (i7 L2 cache block size?)
v0s [id_thread] = chunk ;
v1s [id_thread] = &chunk[ n_neurons];
method_deltas [id_thread] = &chunk[2*n_neurons];
method_deltas_bias[id_thread] = &chunk[3*n_neurons];
method_sums_delta_x[id_thread] = (double**) R_alloc(n_neurons,sizeof(double*)); //This is an 'Index'
for(int i=0; i<n_neurons; i++) //Different weigth number for each layer, TODO: R_alloc each layer instead of each neuron
method_sums_delta_x[id_thread][i] = (double*) R_alloc(neurons[i]->last_input_link+1,sizeof(double));
}
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
//Consistency (leave pnet as if the function had worked with their values instead of external ones)
// R_alloc should handle freeing the memory, so it's not needed to free the previously allocated memory to avoid memory leaks
// Changing pointer instead of copying data
ptnet->input = inputs[Ptransdim[1]-1];
ptnet->target = targets[Ptransdim[1]-1];
/////////////////////////////////////////////////////////////////////////
/////////////////////////////////////////////////////////////////////////
//.........这里部分代码省略.........
示例13: write_volume
/* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
* Purpose:
*
*
*
*
*
*/
SEXP write_volume(SEXP filename, SEXP nDimensions,
SEXP dimLengths,
SEXP dimStarts,
SEXP dimSteps,
SEXP volumeDataType,
SEXP volumeRange,
SEXP hSlab) {
mihandle_t minc_volume;
midimhandle_t dim[MI2_MAX_VAR_DIMS];
mivolumeprops_t volume_properties;
int result;
int ndx;
int no_dimensions;
int dim_lengths[MI2_MAX_VAR_DIMS];
double dim_starts[MI2_MAX_VAR_DIMS];
double dim_steps[MI2_MAX_VAR_DIMS];
double volume_range_min, volume_range_max;
int volume_data_type;
// pointer to the volume data
double *hSlab_p;
misize_t hSlab_start[MI2_MAX_VAR_DIMS];
misize_t hSlab_count[MI2_MAX_VAR_DIMS];
// start ...
if ( R_DEBUG_mincIO ) Rprintf("write_volume: start ...\n");
/* init number of dimensions and their respective sizes
... yes, I could get this myself, but it's best set in the calling R code */
no_dimensions = INTEGER(nDimensions)[0];
volume_data_type = INTEGER(volumeDataType)[0];
volume_range_min = REAL(volumeRange)[0];
volume_range_max = REAL(volumeRange)[1];
// init volume data pointer
hSlab_p = REAL(hSlab);
// init lenghts, steps, and starts
for (ndx=0; ndx < no_dimensions; ++ndx) {
dim_lengths[ndx] = INTEGER(dimLengths)[ndx];
hSlab_count[ndx] = INTEGER(dimLengths)[ndx];
dim_starts[ndx] = REAL(dimStarts)[ndx];
dim_steps[ndx] = REAL(dimSteps)[ndx];
}
// set the properties for the new output volume
// ... no compression, no chunking, no multi-resolution, ... nothin fancy
result = minew_volume_props(&volume_properties);
if (result != MI_NOERROR) {
error("write_volume:minew_volume_props: Error setting output volume properties: %s.\n", CHAR(STRING_ELT(filename, 0)));
}
result = miset_props_compression_type(volume_properties, MI_COMPRESS_NONE);
if (result != MI_NOERROR) {
error("write_volume:miset_props_compression_type: Error setting output volume properties: %s.\n", CHAR(STRING_ELT(filename, 0)));
}
result = miset_props_multi_resolution(volume_properties, FALSE, 1);
if (result != MI_NOERROR) {
error("write_volume:miset_props_multi_resolution: Error setting output volume properties: %s.\n", CHAR(STRING_ELT(filename, 0)));
}
/* create the 3 output dimensions in the order Z, Y, X, as the volume
is stored in this order */
// z-dim
result = micreate_dimension("zspace",
MI_DIMCLASS_SPATIAL,
MI_DIMATTR_REGULARLY_SAMPLED,
dim_lengths[0],
&dim[0]);
//
if (result != MI_NOERROR) {
error("write_volume: Error initializing the dimension struct for %s dimension.\n", "zspace");
}
// y-dim
result = micreate_dimension("yspace",
MI_DIMCLASS_SPATIAL,
MI_DIMATTR_REGULARLY_SAMPLED,
dim_lengths[1],
&dim[1]);
//
if (result != MI_NOERROR) {
error("write_volume: Error initializing the dimension struct for %s dimension.\n", "yspace");
}
// x-dim
result = micreate_dimension("xspace",
MI_DIMCLASS_SPATIAL,
//.........这里部分代码省略.........
示例14: genMDDevices
QueryData genMDDevices(QueryContext& context) {
QueryData results;
MDStat mds;
MD md;
std::vector<std::string> lines;
getLines(lines);
md.parseMDStat(lines, mds);
for (const auto& device : mds.devices) {
std::string path(md.getPathByDevName(device.name));
if (path.empty()) {
LOG(ERROR) << "Could not get file path for " << device.name;
return results;
}
mdu_array_info_t array;
if (!md.getArrayInfo(path, array)) {
return results;
}
Row r;
r["device_name"] = device.name;
r["status"] = device.status;
r["raid_level"] = INTEGER(array.level);
r["size"] = BIGINT(device.usableSize);
r["chunk_size"] = BIGINT(array.chunk_size);
r["raid_disks"] = INTEGER(array.raid_disks);
r["nr_raid_disks"] = INTEGER(array.nr_disks);
r["working_disks"] = INTEGER(array.working_disks);
r["active_disks"] = INTEGER(array.active_disks);
r["failed_disks"] = INTEGER(array.failed_disks);
r["spare_disks"] = INTEGER(array.spare_disks);
r["superblock_state"] = getSuperBlkStateStr(array.state);
r["superblock_version"] = md.getSuperblkVersion(device.name);
r["superblock_update_time"] = BIGINT(array.utime);
if (!device.recovery.progress.empty()) {
r["recovery_progress"] = device.recovery.progress;
r["recovery_finish"] = device.recovery.finish;
r["recovery_speed"] = device.recovery.speed;
}
if (!device.resync.progress.empty()) {
r["resync_progress"] = device.resync.progress;
r["resync_finish"] = device.resync.finish;
r["resync_speed"] = device.resync.speed;
}
if (!device.reshape.progress.empty()) {
r["reshape_progress"] = device.reshape.progress;
r["reshape_finish"] = device.reshape.finish;
r["reshape_speed"] = device.reshape.speed;
}
if (!device.checkArray.progress.empty()) {
r["check_array_progress"] = device.checkArray.progress;
r["check_array_finish"] = device.checkArray.finish;
r["check_array_speed"] = device.checkArray.speed;
}
if (!device.bitmap.onMem.empty()) {
r["bitmap_on_mem"] = device.bitmap.onMem;
r["bitmap_chunk_size"] = device.bitmap.chunkSize;
r["bitmap_external_file"] = device.bitmap.externalFile;
}
r["other"] = device.other;
r["unused_devices"] = mds.unused;
results.push_back(r);
}
return results;
}
示例15: mc_irf_var
//extern "C"
SEXP mc_irf_var(SEXP varobj, SEXP nsteps, SEXP draws)
{
int m, p, dr=INTEGER(draws)[0], ns=INTEGER(nsteps)[0], T, df, i;
SEXP AR, Y, Bhat, XR, prior, hstar, meanS, output;
// Get # vars/lags/steps/draws/T/df
PROTECT(AR = listElt(varobj, "ar.coefs"));
PROTECT(Y = listElt(varobj, "Y"));
m = INTEGER(getAttrib(AR, R_DimSymbol))[0]; //#vars
p = INTEGER(getAttrib(AR, R_DimSymbol))[2]; //#lags
T = nrows(Y); df = T - m*p - m - 1;
UNPROTECT(2);
// Put coefficients from varobj$Bhat in Bcoefs vector (m^2*p, 1)
PROTECT(Bhat = coerceVector(listElt(varobj, "Bhat"), REALSXP));
Matrix bcoefs = R2Cmat(Bhat, m*p, m);
bcoefs = bcoefs.AsColumn();
UNPROTECT(1);
// Define X(T x m*p) subset of varobj$X and XXinv as solve(X'X)
PROTECT(XR = coerceVector(listElt(varobj,"X"),REALSXP));
Matrix X = R2Cmat(XR, T, m*p), XXinv;
UNPROTECT(1);
// Get the correct moment matrix
PROTECT(prior = listElt(varobj,"prior"));
if(!isNull(prior)){
PROTECT(hstar = coerceVector(listElt(varobj,"hstar"),REALSXP));
XXinv = R2Cmat(hstar, m*p, m*p).i();
UNPROTECT(1);
}
else { XXinv = (X.t()*X).i(); }
UNPROTECT(1);
// Get the transpose of the Cholesky decomp of XXinv
SymmetricMatrix XXinvSym; XXinvSym << XXinv;
XXinv = Cholesky(XXinvSym);
// Cholesky of covariance
PROTECT(meanS = coerceVector(listElt(varobj,"mean.S"),REALSXP));
SymmetricMatrix meanSSym; meanSSym << R2Cmat(meanS, m, m);
Matrix Sigmat = Cholesky(meanSSym);
UNPROTECT(1);
// Matricies needed for the loop
ColumnVector bvec; bvec=0.0;
Matrix sqrtwish, impulse(dr,m*m*ns); impulse = 0.0;
SymmetricMatrix sigmadraw; sigmadraw = 0.0;
IdentityMatrix I(m);
GetRNGstate();
// Main Loop
for (i=1; i<=dr; i++){
// Wishart/Beta draws
sigmadraw << Sigmat*(T*rwish(I,df).i())*Sigmat.t();
sqrtwish = Cholesky(sigmadraw);
bvec = bcoefs+KP(sqrtwish, XXinv)*rnorms(m*m*p);
// IRF computation
impulse.Row(i) = irf_var_from_beta(sqrtwish, bvec, ns).t();
if (!(i%1000)){ Rprintf("Monte Carlo IRF Iteration = %d\n",i); }
} // end main loop
PutRNGstate();
int dims[]={dr,ns,m*m};
PROTECT(output = C2R3D(impulse,dims));
setclass(output,"mc.irf.VAR");
UNPROTECT(1);
return output;
}