本文整理汇总了C++中IGRAPH_VECTOR_INIT_FINALLY函数的典型用法代码示例。如果您正苦于以下问题:C++ IGRAPH_VECTOR_INIT_FINALLY函数的具体用法?C++ IGRAPH_VECTOR_INIT_FINALLY怎么用?C++ IGRAPH_VECTOR_INIT_FINALLY使用的例子?那么, 这里精选的函数代码示例或许可以为您提供帮助。
在下文中一共展示了IGRAPH_VECTOR_INIT_FINALLY函数的15个代码示例,这些例子默认根据受欢迎程度排序。您可以为喜欢或者感觉有用的代码点赞,您的评价将有助于系统推荐出更棒的C++代码示例。
示例1: igraph_i_eigen_matrix_lapack_common
int igraph_i_eigen_matrix_lapack_common(const igraph_matrix_t *A,
const igraph_eigen_which_t *which,
igraph_vector_complex_t *values,
igraph_matrix_complex_t *vectors) {
igraph_vector_t valuesreal, valuesimag;
igraph_matrix_t vectorsright, *myvectors= vectors ? &vectorsright : 0;
int n=(int) igraph_matrix_nrow(A);
int info=1;
IGRAPH_VECTOR_INIT_FINALLY(&valuesreal, n);
IGRAPH_VECTOR_INIT_FINALLY(&valuesimag, n);
if (vectors) { IGRAPH_MATRIX_INIT_FINALLY(&vectorsright, n, n); }
IGRAPH_CHECK(igraph_lapack_dgeev(A, &valuesreal, &valuesimag,
/*vectorsleft=*/ 0, myvectors, &info));
IGRAPH_CHECK(igraph_i_eigen_matrix_lapack_reorder(&valuesreal,
&valuesimag,
myvectors, which, values,
vectors));
if (vectors) {
igraph_matrix_destroy(&vectorsright);
IGRAPH_FINALLY_CLEAN(1);
}
igraph_vector_destroy(&valuesimag);
igraph_vector_destroy(&valuesreal);
IGRAPH_FINALLY_CLEAN(2);
return 0;
}
示例2: igraph_vector_rank
int igraph_vector_rank(const igraph_vector_t *v, igraph_vector_t *res,
long int nodes) {
igraph_vector_t rad;
igraph_vector_t ptr;
long int edges = igraph_vector_size(v);
long int i, c=0;
IGRAPH_VECTOR_INIT_FINALLY(&rad, nodes);
IGRAPH_VECTOR_INIT_FINALLY(&ptr, edges);
IGRAPH_CHECK(igraph_vector_resize(res, edges));
for (i=0; i<edges; i++) {
long int elem=VECTOR(*v)[i];
VECTOR(ptr)[i] = VECTOR(rad)[elem];
VECTOR(rad)[elem] = i+1;
}
for (i=0; i<nodes; i++) {
long int p=VECTOR(rad)[i];
while (p != 0) {
VECTOR(*res)[p-1]=c++;
p=VECTOR(ptr)[p-1];
}
}
igraph_vector_destroy(&ptr);
igraph_vector_destroy(&rad);
IGRAPH_FINALLY_CLEAN(2);
return 0;
}
示例3: igraph_2dgrid_init
int igraph_2dgrid_init(igraph_2dgrid_t *grid, igraph_matrix_t *coords,
igraph_real_t minx, igraph_real_t maxx, igraph_real_t deltax,
igraph_real_t miny, igraph_real_t maxy, igraph_real_t deltay) {
long int i;
grid->coords=coords;
grid->minx=minx;
grid->maxx=maxx;
grid->deltax=deltax;
grid->miny=miny;
grid->maxy=maxy;
grid->deltay=deltay;
grid->stepsx=(long int) ceil((maxx-minx)/deltax);
grid->stepsy=(long int) ceil((maxy-miny)/deltay);
IGRAPH_CHECK(igraph_matrix_init(&grid->startidx,
grid->stepsx, grid->stepsy));
IGRAPH_FINALLY(igraph_matrix_destroy, &grid->startidx);
IGRAPH_VECTOR_INIT_FINALLY(&grid->next, igraph_matrix_nrow(coords));
IGRAPH_VECTOR_INIT_FINALLY(&grid->prev, igraph_matrix_nrow(coords));
for (i=0; i<igraph_vector_size(&grid->next); i++) {
VECTOR(grid->next)[i]=-1;
}
grid->massx=0;
grid->massy=0;
grid->vertices=0;
IGRAPH_FINALLY_CLEAN(3);
return 0;
}
示例4: igraph_complementer
int igraph_complementer(igraph_t *res, const igraph_t *graph,
igraph_bool_t loops) {
long int no_of_nodes=igraph_vcount(graph);
igraph_vector_t edges;
igraph_vector_t neis;
long int i, j;
long int zero=0, *limit;
IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
if (igraph_is_directed(graph)) {
limit=&zero;
} else {
limit=&i;
}
for (i=0; i<no_of_nodes; i++) {
IGRAPH_ALLOW_INTERRUPTION();
IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) i,
IGRAPH_OUT));
if (loops) {
for (j=no_of_nodes-1; j>=*limit; j--) {
if (igraph_vector_empty(&neis) || j>igraph_vector_tail(&neis)) {
IGRAPH_CHECK(igraph_vector_push_back(&edges, i));
IGRAPH_CHECK(igraph_vector_push_back(&edges, j));
} else {
igraph_vector_pop_back(&neis);
}
}
} else {
for (j=no_of_nodes-1; j>=*limit; j--) {
if (igraph_vector_empty(&neis) || j>igraph_vector_tail(&neis)) {
if (i!=j) {
IGRAPH_CHECK(igraph_vector_push_back(&edges, i));
IGRAPH_CHECK(igraph_vector_push_back(&edges, j));
}
} else {
igraph_vector_pop_back(&neis);
}
}
}
}
IGRAPH_CHECK(igraph_create(res, &edges, (igraph_integer_t) no_of_nodes,
igraph_is_directed(graph)));
igraph_vector_destroy(&edges);
igraph_vector_destroy(&neis);
IGRAPH_I_ATTRIBUTE_DESTROY(res);
IGRAPH_I_ATTRIBUTE_COPY(res, graph, /*graph=*/1, /*vertex=*/1, /*edge=*/0);
IGRAPH_FINALLY_CLEAN(2);
return 0;
}
示例5: igraph_is_separator
int igraph_is_separator(const igraph_t *graph,
const igraph_vs_t candidate,
igraph_bool_t *res) {
long int no_of_nodes=igraph_vcount(graph);
igraph_vector_bool_t removed;
igraph_dqueue_t Q;
igraph_vector_t neis;
igraph_vit_t vit;
IGRAPH_CHECK(igraph_vit_create(graph, candidate, &vit));
IGRAPH_FINALLY(igraph_vit_destroy, &vit);
IGRAPH_CHECK(igraph_vector_bool_init(&removed, no_of_nodes));
IGRAPH_FINALLY(igraph_vector_bool_destroy, &removed);
IGRAPH_CHECK(igraph_dqueue_init(&Q, 100));
IGRAPH_FINALLY(igraph_dqueue_destroy, &Q);
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
IGRAPH_CHECK(igraph_i_is_separator(graph, &vit, -1, res, &removed,
&Q, &neis, no_of_nodes));
igraph_vector_destroy(&neis);
igraph_dqueue_destroy(&Q);
igraph_vector_bool_destroy(&removed);
igraph_vit_destroy(&vit);
IGRAPH_FINALLY_CLEAN(4);
return 0;
}
示例6: igraph_adjlist_simplify
int igraph_adjlist_simplify(igraph_adjlist_t *al) {
long int i;
long int n=al->length;
igraph_vector_t mark;
IGRAPH_VECTOR_INIT_FINALLY(&mark, n);
for (i=0; i<n; i++) {
igraph_vector_t *v=&al->adjs[i];
long int j, l=igraph_vector_size(v);
VECTOR(mark)[i] = i+1;
for (j=0; j<l; /* nothing */) {
long int e=VECTOR(*v)[j];
if (VECTOR(mark)[e] != i+1) {
VECTOR(mark)[e]=i+1;
j++;
} else {
VECTOR(*v)[j] = igraph_vector_tail(v);
igraph_vector_pop_back(v);
l--;
}
}
}
igraph_vector_destroy(&mark);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例7: igraph_similarity_inverse_log_weighted
int igraph_similarity_inverse_log_weighted(const igraph_t *graph,
igraph_matrix_t *res, const igraph_vs_t vids, igraph_neimode_t mode) {
igraph_vector_t weights;
igraph_neimode_t mode0;
long int i, no_of_nodes;
switch (mode) {
case IGRAPH_OUT: mode0 = IGRAPH_IN; break;
case IGRAPH_IN: mode0 = IGRAPH_OUT; break;
default: mode0 = IGRAPH_ALL;
}
no_of_nodes = igraph_vcount(graph);
IGRAPH_VECTOR_INIT_FINALLY(&weights, no_of_nodes);
IGRAPH_CHECK(igraph_degree(graph, &weights, igraph_vss_all(), mode0, 1));
for (i=0; i < no_of_nodes; i++) {
if (VECTOR(weights)[i] > 1)
VECTOR(weights)[i] = 1.0 / log(VECTOR(weights)[i]);
}
IGRAPH_CHECK(igraph_cocitation_real(graph, res, vids, mode0, &weights));
igraph_vector_destroy(&weights);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例8: igraph_similarity_jaccard_es
/**
* \ingroup structural
* \function igraph_similarity_jaccard_es
* \brief Jaccard similarity coefficient for a given edge selector.
*
* </para><para>
* The Jaccard similarity coefficient of two vertices is the number of common
* neighbors divided by the number of vertices that are neighbors of at
* least one of the two vertices being considered. This function calculates
* the pairwise Jaccard similarities for the endpoints of edges in a given edge
* selector.
*
* \param graph The graph object to analyze
* \param res Pointer to a vector, the result of the calculation will
* be stored here. The number of elements is the same as the number
* of edges in \p es.
* \param es An edge selector that specifies the edges to be included in the
* result.
* \param mode The type of neighbors to be used for the calculation in
* directed graphs. Possible values:
* \clist
* \cli IGRAPH_OUT
* the outgoing edges will be considered for each node.
* \cli IGRAPH_IN
* the incoming edges will be considered for each node.
* \cli IGRAPH_ALL
* the directed graph is considered as an undirected one for the
* computation.
* \endclist
* \param loops Whether to include the vertices themselves in the neighbor
* sets.
* \return Error code:
* \clist
* \cli IGRAPH_ENOMEM
* not enough memory for temporary data.
* \cli IGRAPH_EINVVID
* invalid vertex id passed.
* \cli IGRAPH_EINVMODE
* invalid mode argument.
* \endclist
*
* Time complexity: O(nd), n is the number of edges in the edge selector, d is
* the (maximum) degree of the vertices in the graph.
*
* \sa \ref igraph_similarity_jaccard() and \ref igraph_similarity_jaccard_pairs()
* to calculate the Jaccard similarity between all pairs of a vertex set or
* some selected vertex pairs, or \ref igraph_similarity_dice(),
* \ref igraph_similarity_dice_pairs() and \ref igraph_similarity_dice_es() for a
* measure very similar to the Jaccard coefficient
*
* \example examples/simple/igraph_similarity.c
*/
int igraph_similarity_jaccard_es(const igraph_t *graph, igraph_vector_t *res,
const igraph_es_t es, igraph_neimode_t mode, igraph_bool_t loops) {
igraph_vector_t v;
igraph_eit_t eit;
IGRAPH_VECTOR_INIT_FINALLY(&v, 0);
IGRAPH_CHECK(igraph_eit_create(graph, es, &eit));
IGRAPH_FINALLY(igraph_eit_destroy, &eit);
while (!IGRAPH_EIT_END(eit)) {
long int eid = IGRAPH_EIT_GET(eit);
igraph_vector_push_back(&v, IGRAPH_FROM(graph, eid));
igraph_vector_push_back(&v, IGRAPH_TO(graph, eid));
IGRAPH_EIT_NEXT(eit);
}
igraph_eit_destroy(&eit);
IGRAPH_FINALLY_CLEAN(1);
IGRAPH_CHECK(igraph_similarity_jaccard_pairs(graph, res, &v, mode, loops));
igraph_vector_destroy(&v);
IGRAPH_FINALLY_CLEAN(1);
return IGRAPH_SUCCESS;
}
示例9: igraph_i_multilevel_simplify_multiple
/* removes multiple edges and returns new edge id's for each edge in |E|log|E| */
int igraph_i_multilevel_simplify_multiple(igraph_t *graph, igraph_vector_t *eids) {
long int ecount = igraph_ecount(graph);
long int i, l = -1, last_from = -1, last_to = -1;
igraph_bool_t directed = igraph_is_directed(graph);
igraph_integer_t from, to;
igraph_vector_t edges;
igraph_i_multilevel_link *links;
/* Make sure there's enough space in eids to store the new edge IDs */
IGRAPH_CHECK(igraph_vector_resize(eids, ecount));
links = igraph_Calloc(ecount, igraph_i_multilevel_link);
if (links == 0) {
IGRAPH_ERROR("multi-level community structure detection failed", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(free, links);
for (i = 0; i < ecount; i++) {
igraph_edge(graph, (igraph_integer_t) i, &from, &to);
links[i].from = from;
links[i].to = to;
links[i].id = i;
}
qsort((void*)links, (size_t) ecount, sizeof(igraph_i_multilevel_link),
igraph_i_multilevel_link_cmp);
IGRAPH_VECTOR_INIT_FINALLY(&edges, 0);
for (i = 0; i < ecount; i++) {
if (links[i].from == last_from && links[i].to == last_to) {
VECTOR(*eids)[links[i].id] = l;
continue;
}
last_from = links[i].from;
last_to = links[i].to;
igraph_vector_push_back(&edges, last_from);
igraph_vector_push_back(&edges, last_to);
l++;
VECTOR(*eids)[links[i].id] = l;
}
free(links);
IGRAPH_FINALLY_CLEAN(1);
igraph_destroy(graph);
IGRAPH_CHECK(igraph_create(graph, &edges, igraph_vcount(graph), directed));
igraph_vector_destroy(&edges);
IGRAPH_FINALLY_CLEAN(1);
return 0;
}
示例10: igraph_i_maximum_bipartite_matching_unweighted_relabel
int igraph_i_maximum_bipartite_matching_unweighted_relabel(const igraph_t* graph,
const igraph_vector_bool_t* types, igraph_vector_t* labels,
igraph_vector_long_t* match, igraph_bool_t smaller_set) {
long int i, j, n, no_of_nodes = igraph_vcount(graph), matched_to;
igraph_dqueue_long_t q;
igraph_vector_t neis;
debug("Running global relabeling.\n");
/* Set all the labels to no_of_nodes first */
igraph_vector_fill(labels, no_of_nodes);
/* Allocate vector for neighbors */
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
/* Create a FIFO for the BFS and initialize it with the unmatched rows
* (i.e. members of the larger set) */
IGRAPH_CHECK(igraph_dqueue_long_init(&q, 0));
IGRAPH_FINALLY(igraph_dqueue_long_destroy, &q);
for (i = 0; i < no_of_nodes; i++) {
if (VECTOR(*types)[i] != smaller_set && VECTOR(*match)[i] == -1) {
IGRAPH_CHECK(igraph_dqueue_long_push(&q, i));
VECTOR(*labels)[i] = 0;
}
}
/* Run the BFS */
while (!igraph_dqueue_long_empty(&q)) {
long int v = igraph_dqueue_long_pop(&q);
long int w;
IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) v,
IGRAPH_ALL));
n = igraph_vector_size(&neis);
//igraph_vector_shuffle(&neis);
for (j = 0; j < n; j++) {
w = (long int) VECTOR(neis)[j];
if (VECTOR(*labels)[w] == no_of_nodes) {
VECTOR(*labels)[w] = VECTOR(*labels)[v] + 1;
matched_to = VECTOR(*match)[w];
if (matched_to != -1 && VECTOR(*labels)[matched_to] == no_of_nodes) {
IGRAPH_CHECK(igraph_dqueue_long_push(&q, matched_to));
VECTOR(*labels)[matched_to] = VECTOR(*labels)[w] + 1;
}
}
}
}
printf("Inside relabel : ");
igraph_vector_print(labels);
igraph_dqueue_long_destroy(&q);
igraph_vector_destroy(&neis);
IGRAPH_FINALLY_CLEAN(2);
return IGRAPH_SUCCESS;
}
示例11: igraph_adjlist_init_complementer
int igraph_adjlist_init_complementer(const igraph_t *graph,
igraph_adjlist_t *al,
igraph_neimode_t mode,
igraph_bool_t loops) {
long int i, j, k, n;
igraph_bool_t* seen;
igraph_vector_t vec;
if (mode != IGRAPH_IN && mode != IGRAPH_OUT && mode != IGRAPH_ALL) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_EINVMODE);
}
if (!igraph_is_directed(graph)) { mode=IGRAPH_ALL; }
al->length=igraph_vcount(graph);
al->adjs=igraph_Calloc(al->length, igraph_vector_t);
if (al->adjs == 0) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_adjlist_destroy, al);
n=al->length;
seen=igraph_Calloc(n, igraph_bool_t);
if (seen==0) {
IGRAPH_ERROR("Cannot create complementer adjlist view", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(igraph_free, seen);
IGRAPH_VECTOR_INIT_FINALLY(&vec, 0);
for (i=0; i<al->length; i++) {
IGRAPH_ALLOW_INTERRUPTION();
igraph_neighbors(graph, &vec, i, mode);
memset(seen, 0, sizeof(igraph_bool_t)*al->length);
n=al->length;
if (!loops) { seen[i] = 1; n--; }
for (j=0; j<igraph_vector_size(&vec); j++) {
if (! seen [ (long int) VECTOR(vec)[j] ] ) {
n--;
seen[ (long int) VECTOR(vec)[j] ] = 1;
}
}
IGRAPH_CHECK(igraph_vector_init(&al->adjs[i], n));
for (j=0, k=0; k<n; j++) {
if (!seen[j]) {
VECTOR(al->adjs[i])[k++] = j;
}
}
}
igraph_Free(seen);
igraph_vector_destroy(&vec);
IGRAPH_FINALLY_CLEAN(3);
return 0;
}
示例12: igraph_i_maximal_or_largest_cliques_or_indsets
int igraph_i_maximal_or_largest_cliques_or_indsets(const igraph_t *graph,
igraph_vector_ptr_t *res,
igraph_integer_t *clique_number,
igraph_bool_t keep_only_largest,
igraph_bool_t complementer) {
igraph_i_max_ind_vsets_data_t clqdata;
long int no_of_nodes = igraph_vcount(graph), i;
if (igraph_is_directed(graph))
IGRAPH_WARNING("directionality of edges is ignored for directed graphs");
clqdata.matrix_size=no_of_nodes;
clqdata.keep_only_largest=keep_only_largest;
if (complementer)
IGRAPH_CHECK(igraph_adjlist_init_complementer(graph, &clqdata.adj_list, IGRAPH_ALL, 0));
else
IGRAPH_CHECK(igraph_adjlist_init(graph, &clqdata.adj_list, IGRAPH_ALL));
IGRAPH_FINALLY(igraph_adjlist_destroy, &clqdata.adj_list);
clqdata.IS = igraph_Calloc(no_of_nodes, igraph_integer_t);
if (clqdata.IS == 0)
IGRAPH_ERROR("igraph_i_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);
IGRAPH_FINALLY(igraph_free, clqdata.IS);
IGRAPH_VECTOR_INIT_FINALLY(&clqdata.deg, no_of_nodes);
for (i=0; i<no_of_nodes; i++)
VECTOR(clqdata.deg)[i] = igraph_vector_size(igraph_adjlist_get(&clqdata.adj_list, i));
clqdata.buckets = igraph_Calloc(no_of_nodes+1, igraph_set_t);
if (clqdata.buckets == 0)
IGRAPH_ERROR("igraph_maximal_or_largest_cliques_or_indsets failed", IGRAPH_ENOMEM);
IGRAPH_FINALLY(igraph_i_free_set_array, clqdata.buckets);
for (i=0; i<no_of_nodes; i++)
IGRAPH_CHECK(igraph_set_init(&clqdata.buckets[i], 0));
if (res) igraph_vector_ptr_clear(res);
/* Do the show */
clqdata.largest_set_size=0;
IGRAPH_CHECK(igraph_i_maximal_independent_vertex_sets_backtrack(graph, res, &clqdata, 0));
/* Cleanup */
for (i=0; i<no_of_nodes; i++) igraph_set_destroy(&clqdata.buckets[i]);
igraph_adjlist_destroy(&clqdata.adj_list);
igraph_vector_destroy(&clqdata.deg);
igraph_free(clqdata.IS);
igraph_free(clqdata.buckets);
IGRAPH_FINALLY_CLEAN(4);
if (clique_number) *clique_number = clqdata.largest_set_size;
return 0;
}
示例13: igraph_vector_order1
int igraph_vector_order1(const igraph_vector_t* v,
igraph_vector_t* res, igraph_real_t nodes) {
long int edges=igraph_vector_size(v);
igraph_vector_t ptr;
igraph_vector_t rad;
long int i, j;
assert(v!=NULL);
assert(v->stor_begin != NULL);
IGRAPH_VECTOR_INIT_FINALLY(&ptr, nodes+1);
IGRAPH_VECTOR_INIT_FINALLY(&rad, edges);
IGRAPH_CHECK(igraph_vector_resize(res, edges));
for (i=0; i<edges; i++) {
long int radix=v->stor_begin[i];
if (VECTOR(ptr)[radix]!=0) {
VECTOR(rad)[i]=VECTOR(ptr)[radix];
}
VECTOR(ptr)[radix]=i+1;
}
j=0;
for (i=0; i<nodes+1; i++) {
if (VECTOR(ptr)[i] != 0) {
long int next=VECTOR(ptr)[i]-1;
res->stor_begin[j++]=next;
while (VECTOR(rad)[next] != 0) {
next=VECTOR(rad)[next]-1;
res->stor_begin[j++]=next;
}
}
}
igraph_vector_destroy(&ptr);
igraph_vector_destroy(&rad);
IGRAPH_FINALLY_CLEAN(2);
return 0;
}
示例14: igraph_empty_attrs
/**
* \ingroup interface
* \function igraph_empty_attrs
* \brief Creates an empty graph with some vertices, no edges and some graph attributes.
*
* </para><para>
* Use this instead of \ref igraph_empty() if you wish to add some graph
* attributes right after initialization. This function is currently
* not very interesting for the ordinary user, just supply 0 here or
* use \ref igraph_empty().
* \param graph Pointer to a not-yet initialized graph object.
* \param n The number of vertices in the graph, a non-negative
* integer number is expected.
* \param directed Whether the graph is directed or not.
* \param attr The attributes.
* \return Error code:
* \c IGRAPH_EINVAL: invalid number of vertices.
*
* Time complexity: O(|V|) for a graph with
* |V| vertices (and no edges).
*/
int igraph_empty_attrs(igraph_t *graph, igraph_integer_t n, igraph_bool_t directed, void* attr) {
if (n<0) {
IGRAPH_ERROR("cannot create empty graph with negative number of vertices",
IGRAPH_EINVAL);
}
if (!IGRAPH_FINITE(n)) {
IGRAPH_ERROR("number of vertices is not finite (NA, NaN or Inf)", IGRAPH_EINVAL);
}
graph->n=0;
graph->directed=directed;
IGRAPH_VECTOR_INIT_FINALLY(&graph->from, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->to, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->oi, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->ii, 0);
IGRAPH_VECTOR_INIT_FINALLY(&graph->os, 1);
IGRAPH_VECTOR_INIT_FINALLY(&graph->is, 1);
VECTOR(graph->os)[0]=0;
VECTOR(graph->is)[0]=0;
/* init attributes */
graph->attr=0;
IGRAPH_CHECK(igraph_i_attribute_init(graph, attr));
/* add the vertices */
IGRAPH_CHECK(igraph_add_vertices(graph, n, 0));
IGRAPH_FINALLY_CLEAN(6);
return 0;
}
示例15: igraph_is_connected_weak
int igraph_is_connected_weak(const igraph_t *graph, igraph_bool_t *res) {
long int no_of_nodes=igraph_vcount(graph);
char *already_added;
igraph_vector_t neis=IGRAPH_VECTOR_NULL;
igraph_dqueue_t q=IGRAPH_DQUEUE_NULL;
long int i, j;
if (no_of_nodes == 0) {
*res = 1;
return IGRAPH_SUCCESS;
}
already_added=igraph_Calloc(no_of_nodes, char);
if (already_added==0) {
IGRAPH_ERROR("is connected (weak) failed", IGRAPH_ENOMEM);
}
IGRAPH_FINALLY(free, already_added); /* TODO: hack */
IGRAPH_DQUEUE_INIT_FINALLY(&q, 10);
IGRAPH_VECTOR_INIT_FINALLY(&neis, 0);
/* Try to find at least two clusters */
already_added[0]=1;
IGRAPH_CHECK(igraph_dqueue_push(&q, 0));
j=1;
while ( !igraph_dqueue_empty(&q)) {
long int actnode=(long int) igraph_dqueue_pop(&q);
IGRAPH_ALLOW_INTERRUPTION();
IGRAPH_CHECK(igraph_neighbors(graph, &neis, (igraph_integer_t) actnode,
IGRAPH_ALL));
for (i=0; i <igraph_vector_size(&neis); i++) {
long int neighbor=(long int) VECTOR(neis)[i];
if (already_added[neighbor] != 0) { continue; }
IGRAPH_CHECK(igraph_dqueue_push(&q, neighbor));
j++;
already_added[neighbor]++;
}
}
/* Connected? */
*res = (j == no_of_nodes);
igraph_Free(already_added);
igraph_dqueue_destroy(&q);
igraph_vector_destroy(&neis);
IGRAPH_FINALLY_CLEAN(3);
return 0;
}